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We show that it is consistent with ZFC that there exist:

(1) An unbounded (with respect to �∗) and strongly measure zero subgroup of Z
N , but

without the Menger property.
(2) An unbounded (with respect to �∗) and strongly measure zero subgroup of Z

N with
the Menger property which does not have the Rothberger property.

This answers the last two problems which remained from a classification project of
Machura and Tsaban.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We denote by Z
N the Baer–Specker group, that is the set of all countable sequences of integers with the group opera-

tion + of the coordinatewise addition.
The topology on Z

N is defined by the usual metric: for x, y ∈ Z
N , x �= y,

d(x, y) = 1

min{n: x(n) �= y(n)} + 1
.

If X ⊆ Z
N , then by diam(X) we denote the diameter of X , which is defined as sup{d(x, y): x, y ∈ X}.

Throughout this paper we use standard terminology and notation. N = N ∪ {∞} is the one point compactification of
the set N, N

N↑ denotes the set of all increasing elements of N
N , and we write P (N) for the set of all subsets of N.

The quantifiers ∃∞n and ∀∞n stand for “there exist infinitely many n” and “for all except finitely many n”, respectively.
If X ⊆ Z

N , then 〈X〉 denotes the subgroup of Z
N generated by X . For X, Y ⊆ Z

N , we define the algebraic sum X + Y =
{x + y: x ∈ X and y ∈ Y }. If i ∈ Z and x ∈ Z

N , then ix is the element of Z
N obtained by the coordinatewise multiplication

of x by i, and for X ⊆ Z
N , i X = {ix: x ∈ X}.

An X ⊆ Z
N is said to be �∗ bounded (or dominated) if there is a function f ∈ N

N with the property: ∀g ∈ X
∀∞

n |g(n)| � f (n), that is ∀g ∈ X |g| �∗ f . Otherwise, we call X an unbounded set with respect to �∗ , or shortly, un-
bounded. By b we denote the minimal cardinality of an unbounded subset of N

N , and d is equal to the minimal cardinality
of a dominating subset of N

N . The name cov(M) stands for the minimal cardinality of a set X ⊆ N
N which satisfies: there

is no f ∈ N
N such that ∀g ∈ X∃∞

n f (n) = g(n). We shall say that X ⊆ Z
N is a κ-Lusin set iff X has cardinality κ and for every

meager set M , the intersection X ∩ M is of cardinality smaller than κ .
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In the following definition, we restrict our attention to subsets of Z
N , however it is clear that an X can be a subset of a

less concrete topological (or metric) space.

Definition 1. Suppose that X is a subset of Z
N .

(1) X is strongly measure zero if for every sequence {εn}n∈N of positive real numbers, there exists a sequence {Xn}n∈N of
subsets of X , with diam(Xn) � εn , for n ∈ N, such that X ⊆ ⋃

n∈N
Xn ,

(2) X has the Menger property if for each sequence {Un}n∈N of open covers of X , there are finite sets Un ⊆ Un , n ∈ N, such
that

⋃
n∈N

Un is a cover of X ,
(3) X has the Rothberger property if for each sequence {Un}n∈N of open covers of X , there are Un ∈ Un , n ∈ N, with X ⊆⋃

n∈N
Un , and finally,

(4) X has the Hurewicz property if for each sequence {Un}n∈N of open covers of X , there exist finite Un ⊆ Un , n ∈ N, so that
every x ∈ X is in all but finitely many sets of the form

⋃
Un , n ∈ N.

2. The main theorems

In Problem 9.14 of [4], M. Machura and B. Tsaban ask whether there could exist an unbounded strongly measure zero
subgroup G of Z

N , which does not have the Menger property. We give a positive answer.

Theorem 2. It is consistent with ZFC that there is a strongly measure zero subgroup G̃ of Z
N , unbounded with respect to �∗ , and

without the Menger property.

Proof. To get a required subgroup G̃ , we introduce an auxiliary property P , and then we apply the following sequence of
lemmas and a theorem of M. Scheepers. Let X be a subgroup of Z

N . We shall say that X has the P -property if for every
x, y ∈ X , x + y = O (constant zero sequence) or ∃∞n (x + y)(n) �= 0. Notice that this is just the Vitali equivalence relation,
and that every subgroup X ⊆ Z

N with the property P picks at most one representative of each class.

Lemma 3. Suppose that X ⊆ Z
N is an infinite subgroup with the P -property and of cardinality smaller than κ � c. Assume also that

Y ⊆ Z
N is a set of cardinality κ . Then there is y ∈ Y such that 〈X ∪ {y}〉 has the P -property.

Proof. It suffices to notice that 〈X ∪ {y}〉 = ⋃
i∈Z

(X + i{y}). �
Lemma 4. Suppose that cov(M) = c. Then there is a set L̃ ⊆ Z

N such that 〈̃L〉 is strongly measure zero, unbounded, and satisfies the
P -property.

Proof. By cov(M) = c, there is L, a c-Lusin set in Z
N such that Ln is a Rothberger set, for every n ∈ N (see [3, Theorem 2.13]

or [6] for an easy proof). Clearly, L is unbounded, and 〈L〉 is strongly measure zero as the Rothberger property is closed un-
der taking continuous images and countable unions. Using Lemma 3 and the fact that for every f ∈ ωω , the set L \ {g ∈ Z

N:
∀∞

n |g(n)| � f (n)} has cardinality c, we define inductively L̃ ⊆ L as required. �
Lemma 5. Assume that cov(M) = c. Then there exists a strongly measure zero, unbounded subgroup G ⊆ Z

N , satisfying the P -
property, and such that G ∩ 〈{0,1}N〉 = {O}.

Proof. Define Ψ : Z
N → Z

N as follows:

Ψ (x)(n) = x(n) · (2n + 1).

Then, Ψ is additive and uniformly continuous. Thus, G = Ψ [〈̃L〉] is an unbounded and strongly measure zero subgroup of Z
N

with the property,

G ∩ {
g ∈ Z

N: ∀∞n
∣∣g(n)

∣∣ � n
} = {O}.

This finishes the proof as 〈{0,1}N〉 ⊆ {g ∈ Z
N: ∀∞

n |g(n)| � n}. �
We now follow the terminology from [2]. Assume that Z is a subset of N

N that consists of nondecreasing functions f
which satisfy the following condition: for every n, if f (n) < ∞, then f (n) < f (n + 1). If q is a finite increasing sequence of
natural numbers, then we define q′ ∈ Z as follows: q′(k) = q(k) if k < length(q) and q′(k) = ∞, otherwise.

Let Q denote the set of all q′ which satisfy the above condition. To each f ∈ Z , we assign the set τ ( f ) = {k ∈ N:
k ∈ range( f )}. Clearly, τ : Z → P (N) is a bijective function, and if we identify every x ∈ P (N) with its characteristic function,
then τ : Z → {0,1}N is a homeomorphism [7]. For the rest of this paper we shall denote the set τ [NN↑] by [N]ω .
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Assume now that in addition to cov(M) = c, we have that b = d. Hence there exists a scale B = { fα: α < c} ⊆ N
N↑ , that

is a set well ordered by �∗ , and such that for every g ∈ N
N , there exists fα with g �∗ fα . It is easy to see that we may

suppose without loss of generality that for every α,β < c, α < β , the intersection range( fα) ∩ range( fβ) is finite.
Let us put H = Q ∪ B . By Theorem 10 of [2], H is strongly measure zero, and Hn is a Hurewicz set for every n ∈ N.

Theorem 6. (See Scheepers [5].) If X is a strongly measure zero set with the Hurewicz property, and Y is a strongly measure zero set,
then the product X × Y has strongly measure zero.

Proof. See Theorem 10 in [5]. �
Corollary 7. The subgroup 〈τ [H]〉 ⊆ Z

N is a strongly measure zero set with the Hurewicz property.

Proof. Use the fact that〈
τ [H]〉 = ⋃

n∈N

{
i1τ [H] + · · · + inτ [H]: i1, . . . , in ∈ {−1,1}},

and repeatedly apply Theorem 6. �
Lemma 8. The subgroup 〈τ [B]〉 ⊆ Z

N is not a Menger set.

Proof. Suppose that e denotes the continuous function e : [N]ω → N
N↑ of assigning an increasing enumeration to an infinite

subset of N. Then e maps τ [B] onto a dominating subset of N
N , hence τ [B] is not a Menger set. Let B ′ = {x ∈ [N]ω: x is of

the form x1 + · · · + xk , for some x1, . . . , xk ∈ τ [B] and k ∈ N}. Clearly, B ′ is not a Menger set either. On the other hand, by
pairwise almost disjointness of elements of τ [B], we have that 〈τ [B]〉 ∩ {0,1}N = B ′ which finishes the proof. �

Let G1 = 〈τ [B]〉 ⊆ 〈τ [H]〉. To complete the proof of Theorem 2, we apply Scheepers’ theorem again, and we obtain that
G + 〈τ [H]〉 is a strongly measure zero subgroup. Thus, a smaller set G̃ = G + G1 is a strongly measure zero subgroup as
well. Let us assume that x ∈ G , x �= O, y ∈ G1. We have that,

∃∞n
∣∣x(n) + y(n)

∣∣ > n.

Consequently,

G̃ ∩ {
g ∈ Z

N: ∀∞n
∣∣g(n)

∣∣ � n
} = G1.

Hence the intersection of G̃ with an Fσ set is equal to G1. This implies that G̃ is an unbounded and strongly measure zero
subgroup of Z

N without the Menger property. �
In [4, Problem 9.15], the authors ask whether there could exist an unbounded, Menger, strongly measure zero subgroup

of Z
N , which does not have the Rothberger property. The next theorem gives an affirmative answer to this question.

Theorem 9. It is consistent with ZFC that there is G̃ , an unbounded (with respect to �∗) and strongly measure zero subgroup of Z
N

that has the Menger property, and does not have the Rothberger property.

Proof. We follow the same scenario as in the proof of Theorem 2 above.

Lemma 10. There is M, a model of ZFC theory, satisfying ℵ1 = b = cov(M) < d = ℵ2 in which there exists an unbounded, strongly
measure zero subgroup G ⊆ Z

N such that G ∩ {g: ∀∞
n |g(n)| � n} = {O}.

Proof. Let V be a model of ZFC which satisfies ℵ1 < b = ℵ2 = c. Suppose that Pℵ1 is an ℵ1-iteration of the random forcing
with finite supports. If F is a V -generic filter on Pℵ1 , then we have that ℵ1 = b = cov(M) < d = ℵ2 = c holds in M = V [F ]
(see [1, p. 382]). Assume that L is a set of ℵ1 generic Cohen reals added by F . Then L is an ℵ1-Lusin set in Z

N such that
Ln has the Rothberger property, for every n ∈ N (this was pointed out by B. Tsaban). Thus, using Lemma 5 from above, we
can construct an unbounded, strongly measure zero subgroup G ⊆ Z

N which satisfies

G ∩ {
g: ∀∞

n

∣∣g(n)
∣∣ � n

} = {O}. �
Next we combine methods from Lemma 9.12 in [4] and from Theorem 2 above. Let η : N × N → N be any bijection

that satisfies η(m,n) � m,n, for every m,n ∈ N. We may assume for example that η is a function defined by η(m,n) =
1
2 (m2 + 2mn + n2 + 3m + n). Let us put Ψ ( f , g)(n) = η(( f , g)(n)). Clearly, Ψ : N

N × N
N → N

N is a homeomorphism, and
Φ : N

N → N
N defined by Φ(h) = π1Ψ

−1(h), where π1 denotes the projection onto the first coordinate, is a continuous
function.
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Lemma 11. (See Machura and Tsaban [4].) Assume that ℵ1 = b = cov(M). Then there exists a subgroup D of the Cantor group {0,1}N

which has cardinality ℵ1 , and satisfies the following two conditions.

(1) D is generated by τ [B], where B is an unbounded and well ordered by �∗ subset of N
N↑ of cardinality ℵ1 ,

(2) D ⊆ [N]ω ∪ {O} and Φ ◦ e[D \ {O}] is a family of size ℵ1 that witnesses cov(M) = ℵ1 .

Proof. See Lemma 9.12 in [4]. �
Lemma 12. The subgroup 〈τ [B]〉 ⊆ Z

N does not have the Rothberger property.

Proof. Define as in Lemma 8.1 from [4] the continuous group homomorphism Φ : Z
N → {0,1}N by Φ( f )(n) = f (n) mod 2.

Then,

Φ
[〈
τ [B]〉] = Φ

[〈D〉] = D.

By Lemma 12, we know that D does not have the Rothberger property. Thus, 〈τ [B]〉 is not a Rothberger set either. �
Let G1 = 〈τ [B]〉 and H = Q ∪ B . Since 〈τ [H]〉 is a strongly measure zero subgroup with the Hurewicz property, we obtain

that G̃ = G + G1 is an unbounded and strongly measure zero subgroup of Z
N without the Rothberger property. Clearly, G̃ is

of cardinality ℵ1 < d, hence it is a Menger subgroup as was required. �
Remark 13. Notice that Theorems 2 and 10 prove that the settings (2.b) and (3.c) of Fig. 1 in [4] are consistent with ZFC.
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