Topology and its Applications 156 (2008) 138–141

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

A note on unbounded strongly measure zero subgroups of the Baer–Specker group

Tomasz Weiss

Institute of Mathematics, Akademia Podlaska, 08-110 Siedlce, Poland

article info abstract

Article history: Received 14 September 2007 Received in revised form 28 February 2008 Accepted 4 March 2008

MSC: primary 54G20, 54G15, 54D20

Keywords: Selection principles Menger property Hurewicz property

We show that it is consistent with ZFC that there exist:

- (1) An unbounded (with respect to \leqslant_{*}) and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$, but without the Menger property.
- (2) An unbounded (with respect to \leqslant_{*}) and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ with the Menger property which does not have the Rothberger property.

This answers the last two problems which remained from a classification project of Machura and Tsaban.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We denote by \mathbb{Z}^N the Baer–Specker group, that is the set of all countable sequences of integers with the group operation $+$ of the coordinatewise addition.

The topology on $\mathbb{Z}^{\mathbb{N}}$ is defined by the usual metric: for *x*, $y \in \mathbb{Z}^{\mathbb{N}}$, $x \neq y$,

$$
d(x, y) = \frac{1}{\min\{n: x(n) \neq y(n)\} + 1}.
$$

If $X \subset \mathbb{Z}^{\mathbb{N}}$, then by diam (X) we denote the diameter of *X*, which is defined as sup $\{d(x, y): x, y \in X\}$.

Throughout this paper we use standard terminology and notation. $\overline{N} = N \cup \{\infty\}$ is the one point compactification of the set N, $\mathbb{N}^{\mathbb{N}}$ denotes the set of all increasing elements of $\mathbb{N}^{\mathbb{N}}$, and we write $P(\mathbb{N})$ for the set of all subsets of N. The quantifiers ∃∞*n* and ∀∞*n* stand for "there exist infinitely many *n*" and "for all except finitely many *n*", respectively. If $X \subseteq \mathbb{Z}^{\mathbb{N}}$, then $\langle X \rangle$ denotes the subgroup of $\mathbb{Z}^{\mathbb{N}}$ generated by *X*. For *X*, *Y* $\subseteq \mathbb{Z}^{\mathbb{N}}$, we define the algebraic sum $X + Y =$ ${x + y: x \in X}$ and ${y \in Y}$. If $i \in \mathbb{Z}$ and $x \in \mathbb{Z}^N$, then *ix* is the element of \mathbb{Z}^N obtained by the coordinatewise multiplication of *x* by *i*, and for $X \subseteq \mathbb{Z}^{\mathbb{N}}$, $iX = \{ix: x \in X\}$.

An $X\subseteq\mathbb{Z}^{\mathbb{N}}$ is said to be \leqslant_{*} bounded (or dominated) if there is a function $f\in\mathbb{N}^{\mathbb{N}}$ with the property: $\forall g\in X$ $\forall_{n}^{\infty}|g(n)| \leqslant f(n)$, that is $\forall g \in X \ |g| \leqslant_{*} f$. Otherwise, we call X an unbounded set with respect to \leq_{*} , or shortly, unbounded. By b we denote the minimal cardinality of an unbounded subset of $\mathbb{N}^{\mathbb{N}}$, and $\mathfrak d$ is equal to the minimal cardinality of a dominating subset of $\mathbb{N}^{\mathbb{N}}$. The name cov (\mathcal{M}) stands for the minimal cardinality of a set $X \subseteq \mathbb{N}^{\mathbb{N}}$ which satisfies: there is no $f \in \mathbb{N}^{\mathbb{N}}$ such that $\forall g \in X \exists_n^{\infty} f(n) = g(n)$. We shall say that $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is a κ -Lusin set iff X has cardinality κ and for every meager set *M*, the intersection $X \cap M$ is of cardinality smaller than κ .

E-mail address: [tomaszweiss@go2.pl.](mailto:tomaszweiss@go2.pl)

^{0166-8641/\$ –} see front matter © 2008 Elsevier B.V. All rights reserved. [doi:10.1016/j.topol.2008.03.026](http://dx.doi.org/10.1016/j.topol.2008.03.026)

In the following definition, we restrict our attention to subsets of $\mathbb{Z}^{\mathbb{N}}$, however it is clear that an *X* can be a subset of a less concrete topological (or metric) space.

Definition 1. Suppose that *X* is a subset of $\mathbb{Z}^{\mathbb{N}}$.

- (1) *X* is *strongly measure zero* if for every sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive real numbers, there exists a sequence $\{X_n\}_{n\in\mathbb{N}}$ of subsets of *X*, with diam $(X_n) \le \varepsilon_n$, for $n \in \mathbb{N}$, such that $X \subseteq \bigcup_{n \in \mathbb{N}} X_n$,
- (2) *X* has the *Menger property* if for each sequence $\{U_n\}_{n\in\mathbb{N}}$ of open covers of *X*, there are finite sets $U_n \subseteq U_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} U_n$ is a cover of *X*,
- (3) *X* has the *Rothberger property* if for each sequence $\{U_n\}_{n\in\mathbb{N}}$ of open covers of *X*, there are $U_n \in U_n$, $n \in \mathbb{N}$, with $X \subseteq$ $\bigcup_{n\in\mathbb{N}}U_n$, and finally,
- (4) *X* has the *Hurewicz property* if for each sequence $\{U_n\}_{n\in\mathbb{N}}$ of open covers of *X*, there exist finite $U_n \subseteq U_n$, $n \in \mathbb{N}$, so that every $x \in X$ is in all but finitely many sets of the form $\bigcup U_n$, $n \in \mathbb{N}$.

2. The main theorems

In Problem 9.14 of [4], M. Machura and B. Tsaban ask whether there could exist an unbounded strongly measure zero subgroup *G* of $\mathbb{Z}^{\mathbb{N}}$, which does not have the Menger property. We give a positive answer.

Theorem 2. It is consistent with ZFC that there is a strongly measure zero subgroup \widetilde{G} of $\mathbb{Z}^{\mathbb{N}}$, unbounded with respect to \leqslant_* , and *without the Menger property.*

Proof. To get a required subgroup \tilde{G} , we introduce an auxiliary property P , and then we apply the following sequence of lemmas and a theorem of M. Scheepers. Let *X* be a subgroup of $\mathbb{Z}^{\mathbb{N}}$. We shall say that *X* has the *P*-property if for every *x*, *y* ∈ *X*, *x* + *y* = ① (constant zero sequence) or $\exists^{\infty} n$ (*x* + *y*)(*n*) \neq 0. Notice that this is just the Vitali equivalence relation, and that every subgroup $X \subseteq \mathbb{Z}^N$ with the property $\mathcal P$ picks at most one representative of each class.

Lemma 3. Suppose that $X ⊆ \mathbb{Z}^N$ is an infinite subgroup with the P-property and of cardinality smaller than $κ ≤ ε$. Assume also that *Y* $\subset \mathbb{Z}^{\mathbb{N}}$ *is a set of cardinality k. Then there is* $y \in Y$ *such that* $\langle X \cup \{y\} \rangle$ *has the* P-property.

Proof. It suffices to notice that $(X \cup \{y\}) = \bigcup_{i \in \mathbb{Z}} (X + i\{y\})$. \Box

Lemma 4. *Suppose that* $cov(\mathcal{M}) = c$. Then there is a set $\widetilde{L} \subseteq \mathbb{Z}^{\mathbb{N}}$ such that $\widetilde{(L)}$ is strongly measure zero, unbounded, and satisfies the P*-property.*

Proof. By cov(M) = c, there is *L*, a c-Lusin set in $\mathbb{Z}^{\mathbb{N}}$ such that L^n is a Rothberger set, for every $n \in \mathbb{N}$ (see [3, Theorem 2.13] or [6] for an easy proof). Clearly, *L* is unbounded, and $\langle L \rangle$ is strongly measure zero as the Rothberger property is closed under taking continuous images and countable unions. Using Lemma 3 and the fact that for every $f \in \omega^{\omega}$, the set $L \setminus \{g \in \mathbb{Z}^N\}$: $\forall_{n}^{\infty} | g(n) | \leqslant f(n) \}$ has cardinality c, we define inductively $\widetilde{L} \subseteq L$ as required. $□$

Lemma 5. Assume that $cov(\mathcal{M}) = c$. Then there exists a strongly measure zero, unbounded subgroup $G \subseteq \mathbb{Z}^N$, satisfying the P*property, and such that* $G \cap \langle \{0, 1\}^{\mathbb{N}} \rangle = \{ \mathbb{O} \}.$

Proof. Define $\Psi : \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$ as follows:

 $\Psi(x)(n) = x(n) \cdot (2n + 1).$

Then, Ψ is additive and uniformly continuous. Thus, $G = \Psi(\tilde{L})$ is an unbounded and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ with the property,

$$
G \cap \{g \in \mathbb{Z}^{\mathbb{N}} \colon \forall^{\infty} n | g(n) | \leqslant n \} = \{ \mathbb{O} \}.
$$

This finishes the proof as $\langle {0, 1}^{\mathbb{N}} \rangle \subseteq {g \in \mathbb{Z}^{\mathbb{N}}: \forall_{n}^{\infty} |g(n)| \leq n}.$

We now follow the terminology from [2]. Assume that $\mathcal Z$ is a subset of $\overline{\mathbb N}^{\mathbb N}$ that consists of nondecreasing functions *f* which satisfy the following condition: for every n, if $f(n) < \infty$, then $f(n) < f(n+1)$. If q is a finite increasing sequence of natural numbers, then we define $q' \in \mathcal{Z}$ as follows: $q'(k) = q(k)$ if $k <$ length (q) and $q'(k) = \infty$, otherwise.

Let \overline{Q} denote the set of all *q'* which satisfy the above condition. To each $f \in \mathcal{Z}$, we assign the set $\tau(f) = \{k \in \mathbb{N} :$ $k \in \text{range}(f)$ }. Clearly, $\tau: \mathcal{Z} \to P(\mathbb{N})$ is a bijective function, and if we identify every $x \in P(\mathbb{N})$ with its characteristic function, then $\tau : \mathcal{Z} \to \{0,1\}^{\mathbb{N}}$ is a homeomorphism [7]. For the rest of this paper we shall denote the set $\tau[\mathbb{N}^{\mathbb{N}}]$ by $[\mathbb{N}]^{\omega}$.

Assume now that in addition to $cov(\mathcal{M}) = c$, we have that $b = 0$. Hence there exists a scale $B = \{f_\alpha : \alpha < c\} \subseteq \mathbb{N}^{\mathbb{N}\uparrow}$, that is a set well ordered by \leq_{*} , and such that for every $g \in \mathbb{N}^{\mathbb{N}}$, there exists f_α with $g \leq_{*} f_\alpha$. It is easy to see that we may suppose without loss of generality that for every $\alpha, \beta < \epsilon$, $\alpha < \beta$, the intersection range(f_α) \cap range(f_β) is finite.

Let us put *H* = \overline{O} ∪ *B*. By Theorem 10 of [2], *H* is strongly measure zero, and *Hⁿ* is a Hurewicz set for every *n* ∈ N.

Theorem 6. *(See Scheepers [5].) If X is a strongly measure zero set with the Hurewicz property, and Y is a strongly measure zero set, then the product* $X \times Y$ *has strongly measure zero.*

Proof. See Theorem 10 in [5]. \Box

Corollary 7. *The subgroup* $\langle \tau[H] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ *is a strongly measure zero set with the Hurewicz property.*

Proof. Use the fact that

$$
\langle \tau[H] \rangle = \bigcup_{n \in \mathbb{N}} \{i_1 \tau[H] + \cdots + i_n \tau[H]; i_1, \ldots, i_n \in \{-1, 1\} \},\
$$

and repeatedly apply Theorem 6. \Box

Lemma 8. *The subgroup* $\langle \tau[B] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ *is not a Menger set.*

Proof. Suppose that *e* denotes the continuous function *e* : [ℕ]^ω → ℕℕ↑ of assigning an increasing enumeration to an infinite subset of \tilde{N} . Then *e* maps $\tau[B]$ onto a dominating subset of $\mathbb{N}^{\mathbb{N}}$, hence $\tau[B]$ is not a Menger set. Let $B' = \{x \in [\mathbb{N}]^{\omega}$: *x* is of the form $x_1 + \cdots + x_k$, for some $x_1, \ldots, x_k \in \tau[B]$ and $k \in \mathbb{N}$. Clearly, *B'* is not a Menger set either. On the other hand, by pairwise almost disjointness of elements of $\tau[B]$, we have that $\langle \tau[B] \rangle \cap \{0,1\}^{\mathbb{N}} = B'$ which finishes the proof. \Box

Let $G_1 = \langle \tau[B] \rangle \subset \langle \tau[H] \rangle$. To complete the proof of Theorem 2, we apply Scheepers' theorem again, and we obtain that $G + \langle \tau[H] \rangle$ is a strongly measure zero subgroup. Thus, a smaller set $\tilde{G} = G + G_1$ is a strongly measure zero subgroup as well. Let us assume that $x \in G$, $x \neq \mathbb{O}$, $y \in G_1$. We have that,

$$
\exists^{\infty} n | x(n) + y(n) | > n.
$$

Consequently,

 $\widetilde{G} \cap \{ g \in \mathbb{Z}^{\mathbb{N}} \colon \forall^{\infty} n \big| g(n) \big| \leqslant n \} = G_1.$

Hence the intersection of \tilde{G} with an F_{σ} set is equal to G_1 . This implies that \tilde{G} is an unbounded and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ without the Menger property. \Box

In [4, Problem 9.15], the authors ask whether there could exist an unbounded, Menger, strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$, which does not have the Rothberger property. The next theorem gives an affirmative answer to this question.

Theorem 9. It is consistent with ZFC that there is \widetilde{G} , an unbounded (with respect to \leqslant_*) and strongly measure zero subgroup of $\mathbb{Z}^\mathbb{N}$ *that has the Menger property, and does not have the Rothberger property.*

Proof. We follow the same scenario as in the proof of Theorem 2 above.

Lemma 10. There is M, a model of ZFC theory, satisfying $\aleph_1 = \mathfrak{b} = \text{cov}(\mathcal{M}) < \mathfrak{d} = \aleph_2$ in which there exists an unbounded, strongly m easure zero subgroup $G \subseteq \mathbb{Z}^{\mathbb{N}}$ such that $G \cap \{g \colon \forall_{n}^{\infty} | g(n) | \leqslant n \} = \{ \mathbb{O} \}.$

Proof. Let *V* be a model of ZFC which satisfies $\aleph_1 < b = \aleph_2 = c$. Suppose that P_{\aleph_1} is an \aleph_1 -iteration of the random forcing with finite supports. If *F* is a *V*-generic filter on P_{\aleph_1} , then we have that $\aleph_1 = \mathfrak{b} = \text{cov}(\mathcal{M}) < \mathfrak{d} = \aleph_2 = \mathfrak{c}$ holds in $M = V[F]$ (see [1, p. 382]). Assume that *L* is a set of \aleph_1 generic Cohen reals added by *F*. Then *L* is an \aleph_1 -Lusin set in $\mathbb{Z}^{\mathbb{N}}$ such that *L*^{*n*} has the Rothberger property, for every *n* ∈ N (this was pointed out by B. Tsaban). Thus, using Lemma 5 from above, we can construct an unbounded, strongly measure zero subgroup $G \subseteq \mathbb{Z}^{\mathbb{N}}$ which satisfies

$$
G \cap \{g: \ \forall_n^{\infty} |g(n)| \leqslant n\} = \{\mathbb{O}\}.
$$

Next we combine methods from Lemma 9.12 in [4] and from Theorem 2 above. Let $\eta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be any bijection that satisfies $\eta(m, n) \geq m, n$, for every $m, n \in \mathbb{N}$. We may assume for example that η is a function defined by $\eta(m, n)$ = $\frac{1}{2}(m^2+2mn+n^2+3m+n)$. Let us put $\Psi(f,g)(n)=\eta((f,g)(n))$. Clearly, $\Psi:\mathbb{N}^{\mathbb{N}}\times\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ is a homeomorphism, and $\Phi: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ defined by $\Phi(h) = \pi_1 \Psi^{-1}(h)$, where π_1 denotes the projection onto the first coordinate, is a continuous function.

Lemma 11. *(See Machura and Tsaban [4].) Assume that* $\aleph_1 = \mathfrak{b} = cov(\mathcal{M})$ *. Then there exists a subgroup D of the Cantor group* $\{0, 1\}^{\mathbb{N}}$ *which has cardinality* \aleph_1 *, and satisfies the following two conditions.*

(1) D is generated by τ [B], where B is an unbounded and well ordered by \leqslant_* subset of $\mathbb{N}^\mathbb{N}{}^\uparrow$ of cardinality \aleph_1 , (2) $D \subseteq [N]^{\omega} \cup \{0\}$ and $\Phi \circ e[D \setminus \{0\}]$ is a family of size \aleph_1 that witnesses $cov(\mathcal{M}) = \aleph_1$.

Proof. See Lemma 9.12 in [4]. \Box

Lemma 12. *The subgroup* $\langle \tau[B] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ does not have the Rothberger property.

Proof. Define as in Lemma 8.1 from [4] the continuous group homomorphism $\overline{\Phi}: \mathbb{Z}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$ by $\overline{\Phi}(f)(n) = f(n)$ mod 2. Then,

 $\overline{\Phi}$ [$\langle \tau[B] \rangle$] = $\overline{\Phi}$ [$\langle D \rangle$] = D.

By Lemma 12, we know that *D* does not have the Rothberger property. Thus, $\langle \tau[B] \rangle$ is not a Rothberger set either. \Box

Let $G_1 = \langle \tau | B \rangle$ and $H = \overline{Q} \cup B$. Since $\langle \tau | H \rangle$ is a strongly measure zero subgroup with the Hurewicz property, we obtain that $\tilde{G} = G + G_1$ is an unbounded and strongly measure zero subgroup of \mathbb{Z}^N without the Rothberger property. Clearly, \tilde{G} is of cardinality $\aleph_1 < \delta$, hence it is a Menger subgroup as was required. \Box

Remark 13. Notice that Theorems 2 and 10 prove that the settings (2.b) and (3.c) of Fig. 1 in [4] are consistent with ZFC.

Acknowledgements

We thank Roman Pol and Boaz Tsaban for making useful remarks on this paper.

References

[1] T. Bartoszyński, H. Judah, On the Structure of the Real Line, A.K. Peters, Massachussets, 1995.

[2] T. Bartoszyński, B. Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz conjectures, Proc. Amer. Math. Soc. 134 (2) (2006) 605-615.

- [3] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241–266.
- [4] M. Machura, B. Tsaban, The combinatorics of the Baer–Specker group, Israel J. Math., in press.
- [5] M. Scheepers, Finite powers of strong measure zero sets, J. Symbolic Logic 64 (3) (1999) 1295–1306.

[6] B. Tsaban, *o*-Bounded groups and other topological groups with strong combinatorial properties, Proc. Amer. Math. Soc. 134 (2006) 881–891.

[7] B. Tsaban, L. Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc. 10 (2008) 837–866.