10pology and its Applications 156 (2008) 138–141

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A note on unbounded strongly measure zero subgroups of the Baer–Specker group

Tomasz Weiss

Institute of Mathematics, Akademia Podlaska, 08-110 Siedlce, Poland

ARTICLE INFO

Article history: Received 14 September 2007 Received in revised form 28 February 2008 Accepted 4 March 2008

MSC: primary 54G20, 54G15, 54D20

Keywords: Selection principles Menger property Hurewicz property

ABSTRACT

We show that it is consistent with ZFC that there exist:

- (1) An unbounded (with respect to \leq_*) and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$, but without the Menger property.
- (2) An unbounded (with respect to \leqslant_*) and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ with the Menger property which does not have the Rothberger property.

This answers the last two problems which remained from a classification project of Machura and Tsaban.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We denote by $\mathbb{Z}^{\mathbb{N}}$ the Baer–Specker group, that is the set of all countable sequences of integers with the group operation + of the coordinatewise addition.

The topology on $\mathbb{Z}^{\mathbb{N}}$ is defined by the usual metric: for $x, y \in \mathbb{Z}^{\mathbb{N}}, x \neq y$,

$$d(x, y) = \frac{1}{\min\{n: x(n) \neq y(n)\} + 1}.$$

If $X \subseteq \mathbb{Z}^{\mathbb{N}}$, then by diam(X) we denote the diameter of X, which is defined as sup{d(x, y): $x, y \in X$ }.

Throughout this paper we use standard terminology and notation. $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ is the one point compactification of the set \mathbb{N} , $\mathbb{N}^{\mathbb{N}\uparrow}$ denotes the set of all increasing elements of $\mathbb{N}^{\mathbb{N}}$, and we write $P(\mathbb{N})$ for the set of all subsets of \mathbb{N} . The quantifiers $\exists^{\infty}n$ and $\forall^{\infty}n$ stand for "there exist infinitely many n" and "for all except finitely many n", respectively. If $X \subseteq \mathbb{Z}^{\mathbb{N}}$, then $\langle X \rangle$ denotes the subgroup of $\mathbb{Z}^{\mathbb{N}}$ generated by X. For $X, Y \subseteq \mathbb{Z}^{\mathbb{N}}$, we define the algebraic sum $X + Y = \{x + y: x \in X \text{ and } y \in Y\}$. If $i \in \mathbb{Z}$ and $x \in \mathbb{Z}^{\mathbb{N}}$, then ix is the element of $\mathbb{Z}^{\mathbb{N}}$ obtained by the coordinatewise multiplication of x by i, and for $X \subseteq \mathbb{Z}^{\mathbb{N}}$, $iX = \{ix: x \in X\}$.

An $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is said to be \leq_* bounded (or dominated) if there is a function $f \in \mathbb{N}^{\mathbb{N}}$ with the property: $\forall g \in X$ $\forall_n^{\infty}|g(n)| \leq f(n)$, that is $\forall g \in X |g| \leq_* f$. Otherwise, we call X an unbounded set with respect to \leq_* , or shortly, unbounded. By b we denote the minimal cardinality of an unbounded subset of $\mathbb{N}^{\mathbb{N}}$, and \mathfrak{d} is equal to the minimal cardinality of a dominating subset of $\mathbb{N}^{\mathbb{N}}$. The name $\operatorname{cov}(\mathcal{M})$ stands for the minimal cardinality of a set $X \subseteq \mathbb{N}^{\mathbb{N}}$ which satisfies: there is no $f \in \mathbb{N}^{\mathbb{N}}$ such that $\forall g \in X \exists_n^{\infty} f(n) = g(n)$. We shall say that $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is a κ -Lusin set iff X has cardinality κ and for every meager set M, the intersection $X \cap M$ is of cardinality smaller than κ .

E-mail address: tomaszweiss@go2.pl.

^{0166-8641/\$ –} see front matter $\,\,\odot\,$ 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2008.03.026

In the following definition, we restrict our attention to subsets of $\mathbb{Z}^{\mathbb{N}}$, however it is clear that an X can be a subset of a less concrete topological (or metric) space.

Definition 1. Suppose that *X* is a subset of $\mathbb{Z}^{\mathbb{N}}$.

- (1) *X* is strongly measure zero if for every sequence $\{\varepsilon_n\}_{n\in\mathbb{N}}$ of positive real numbers, there exists a sequence $\{X_n\}_{n\in\mathbb{N}}$ of subsets of *X*, with diam $(X_n) \leq \varepsilon_n$, for $n \in \mathbb{N}$, such that $X \subseteq \bigcup_{n \in \mathbb{N}} X_n$,
- (2) *X* has the *Menger property* if for each sequence $\{U_n\}_{n \in \mathbb{N}}$ of open covers of *X*, there are finite sets $U_n \subseteq U_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} U_n$ is a cover of *X*,
- (3) *X* has the *Rothberger property* if for each sequence $\{U_n\}_{n \in \mathbb{N}}$ of open covers of *X*, there are $U_n \in U_n$, $n \in \mathbb{N}$, with $X \subseteq \bigcup_{n \in \mathbb{N}} U_n$, and finally,
- (4) *X* has the *Hurewicz property* if for each sequence $\{U_n\}_{n \in \mathbb{N}}$ of open covers of *X*, there exist finite $U_n \subseteq U_n$, $n \in \mathbb{N}$, so that every $x \in X$ is in all but finitely many sets of the form $\bigcup U_n$, $n \in \mathbb{N}$.

2. The main theorems

In Problem 9.14 of [4], M. Machura and B. Tsaban ask whether there could exist an unbounded strongly measure zero subgroup G of $\mathbb{Z}^{\mathbb{N}}$, which does not have the Menger property. We give a positive answer.

Theorem 2. It is consistent with ZFC that there is a strongly measure zero subgroup \widetilde{G} of $\mathbb{Z}^{\mathbb{N}}$, unbounded with respect to \leq_* , and without the Menger property.

Proof. To get a required subgroup \widetilde{G} , we introduce an auxiliary property \mathcal{P} , and then we apply the following sequence of lemmas and a theorem of M. Scheepers. Let X be a subgroup of $\mathbb{Z}^{\mathbb{N}}$. We shall say that X has the \mathcal{P} -property if for every $x, y \in X, x + y = \mathbb{O}$ (constant zero sequence) or $\exists^{\infty}n \ (x + y)(n) \neq 0$. Notice that this is just the Vitali equivalence relation, and that every subgroup $X \subseteq \mathbb{Z}^{\mathbb{N}}$ with the property \mathcal{P} picks at most one representative of each class.

Lemma 3. Suppose that $X \subseteq \mathbb{Z}^{\mathbb{N}}$ is an infinite subgroup with the \mathcal{P} -property and of cardinality smaller than $\kappa \leq \mathfrak{c}$. Assume also that $Y \subseteq \mathbb{Z}^{\mathbb{N}}$ is a set of cardinality κ . Then there is $y \in Y$ such that $\langle X \cup \{y\} \rangle$ has the \mathcal{P} -property.

Proof. It suffices to notice that $\langle X \cup \{y\} \rangle = \bigcup_{i \in \mathbb{Z}} (X + i\{y\})$. \Box

Lemma 4. Suppose that $cov(\mathcal{M}) = \mathfrak{c}$. Then there is a set $\widetilde{L} \subseteq \mathbb{Z}^{\mathbb{N}}$ such that $\langle \widetilde{L} \rangle$ is strongly measure zero, unbounded, and satisfies the \mathcal{P} -property.

Proof. By $cov(\mathcal{M}) = c$, there is L, a c-Lusin set in $\mathbb{Z}^{\mathbb{N}}$ such that L^n is a Rothberger set, for every $n \in \mathbb{N}$ (see [3, Theorem 2.13] or [6] for an easy proof). Clearly, L is unbounded, and $\langle L \rangle$ is strongly measure zero as the Rothberger property is closed under taking continuous images and countable unions. Using Lemma 3 and the fact that for every $f \in \omega^{\omega}$, the set $L \setminus \{g \in \mathbb{Z}^{\mathbb{N}} : \forall_n^{\infty} | g(n) | \leq f(n) \}$ has cardinality c, we define inductively $\tilde{L} \subseteq L$ as required. \Box

Lemma 5. Assume that $cov(\mathcal{M}) = c$. Then there exists a strongly measure zero, unbounded subgroup $G \subseteq \mathbb{Z}^{\mathbb{N}}$, satisfying the \mathcal{P} -property, and such that $G \cap \langle \{0, 1\}^{\mathbb{N}} \rangle = \{\mathbb{O}\}$.

Proof. Define $\Psi : \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$ as follows:

 $\Psi(x)(n) = x(n) \cdot (2n+1).$

Then, Ψ is additive and uniformly continuous. Thus, $G = \Psi[\langle \widetilde{L} \rangle]$ is an unbounded and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ with the property,

 $G \cap \{g \in \mathbb{Z}^{\mathbb{N}} \colon \forall^{\infty} n | g(n) | \leq n\} = \{\mathbb{O}\}.$

This finishes the proof as $\langle \{0, 1\}^{\mathbb{N}} \rangle \subseteq \{g \in \mathbb{Z}^{\mathbb{N}} \colon \forall_n^{\infty} | g(n) | \leq n \}$. \Box

We now follow the terminology from [2]. Assume that \mathcal{Z} is a subset of $\mathbb{N}^{\mathbb{N}}$ that consists of nondecreasing functions f which satisfy the following condition: for every n, if $f(n) < \infty$, then f(n) < f(n + 1). If q is a finite increasing sequence of natural numbers, then we define $q' \in \mathcal{Z}$ as follows: q'(k) = q(k) if k < length(q) and $q'(k) = \infty$, otherwise.

Let \overline{Q} denote the set of all q' which satisfy the above condition. To each $f \in \mathcal{Z}$, we assign the set $\tau(f) = \{k \in \mathbb{N}: k \in \operatorname{range}(f)\}$. Clearly, $\tau: \mathcal{Z} \to P(\mathbb{N})$ is a bijective function, and if we identify every $x \in P(\mathbb{N})$ with its characteristic function, then $\tau: \mathcal{Z} \to \{0, 1\}^{\mathbb{N}}$ is a homeomorphism [7]. For the rest of this paper we shall denote the set $\tau[\mathbb{N}^{\mathbb{N}\uparrow}]$ by $[\mathbb{N}]^{\omega}$.

Assume now that in addition to $cov(\mathcal{M}) = c$, we have that $\mathfrak{b} = \mathfrak{d}$. Hence there exists a scale $B = \{f_{\alpha} : \alpha < c\} \subseteq \mathbb{N}^{\mathbb{N}^{\uparrow}}$, that is a set well ordered by \leq_{*} , and such that for every $g \in \mathbb{N}^{\mathbb{N}}$, there exists f_{α} with $g \leq_{*} f_{\alpha}$. It is easy to see that we may suppose without loss of generality that for every $\alpha, \beta < c, \alpha < \beta$, the intersection $range(f_{\alpha}) \cap range(f_{\beta})$ is finite.

Let us put $H = \overline{Q} \cup B$. By Theorem 10 of [2], H is strongly measure zero, and H^n is a Hurewicz set for every $n \in \mathbb{N}$.

Theorem 6. (See Scheepers [5].) If X is a strongly measure zero set with the Hurewicz property, and Y is a strongly measure zero set, then the product $X \times Y$ has strongly measure zero.

Proof. See Theorem 10 in [5]. □

Corollary 7. The subgroup $\langle \tau[H] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ is a strongly measure zero set with the Hurewicz property.

Proof. Use the fact that

$$\langle \tau[H] \rangle = \bigcup_{n \in \mathbb{N}} \{ i_1 \tau[H] + \dots + i_n \tau[H]: i_1, \dots, i_n \in \{-1, 1\} \},$$

and repeatedly apply Theorem 6. \Box

Lemma 8. The subgroup $\langle \tau[B] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ is not a Menger set.

Proof. Suppose that *e* denotes the continuous function $e : [\mathbb{N}]^{\omega} \to \mathbb{N}^{\mathbb{N}\uparrow}$ of assigning an increasing enumeration to an infinite subset of \mathbb{N} . Then *e* maps $\tau[B]$ onto a dominating subset of $\mathbb{N}^{\mathbb{N}}$, hence $\tau[B]$ is not a Menger set. Let $B' = \{x \in [\mathbb{N}]^{\omega}: x \text{ is of the form } x_1 + \cdots + x_k$, for some $x_1, \ldots, x_k \in \tau[B]$ and $k \in \mathbb{N}\}$. Clearly, B' is not a Menger set either. On the other hand, by pairwise almost disjointness of elements of $\tau[B]$, we have that $\langle \tau[B] \rangle \cap \{0, 1\}^{\mathbb{N}} = B'$ which finishes the proof. \Box

Let $G_1 = \langle \tau[B] \rangle \subseteq \langle \tau[H] \rangle$. To complete the proof of Theorem 2, we apply Scheepers' theorem again, and we obtain that $G + \langle \tau[H] \rangle$ is a strongly measure zero subgroup. Thus, a smaller set $\widetilde{G} = G + G_1$ is a strongly measure zero subgroup as well. Let us assume that $x \in G$, $x \neq \mathbb{O}$, $y \in G_1$. We have that,

 $\exists^{\infty} n |x(n) + y(n)| > n.$

Consequently,

 $\widetilde{G} \cap \left\{ g \in \mathbb{Z}^{\mathbb{N}} \colon \forall^{\infty} n \left| g(n) \right| \leq n \right\} = G_1.$

Hence the intersection of \widetilde{G} with an F_{σ} set is equal to G_1 . This implies that \widetilde{G} is an unbounded and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ without the Menger property. \Box

In [4, Problem 9.15], the authors ask whether there could exist an unbounded, Menger, strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$, which does not have the Rothberger property. The next theorem gives an affirmative answer to this question.

Theorem 9. It is consistent with ZFC that there is \widetilde{G} , an unbounded (with respect to \leq_*) and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ that has the Menger property, and does not have the Rothberger property.

Proof. We follow the same scenario as in the proof of Theorem 2 above.

Lemma 10. There is M, a model of ZFC theory, satisfying $\aleph_1 = \mathfrak{b} = \operatorname{cov}(\mathcal{M}) < \mathfrak{d} = \aleph_2$ in which there exists an unbounded, strongly measure zero subgroup $G \subseteq \mathbb{Z}^{\mathbb{N}}$ such that $G \cap \{g: \forall_n^{\infty} | g(n) | \leq n\} = \{\mathbb{O}\}.$

Proof. Let *V* be a model of ZFC which satisfies $\aleph_1 < \mathfrak{b} = \aleph_2 = \mathfrak{c}$. Suppose that P_{\aleph_1} is an \aleph_1 -iteration of the random forcing with finite supports. If *F* is a *V*-generic filter on P_{\aleph_1} , then we have that $\aleph_1 = \mathfrak{b} = \operatorname{cov}(\mathcal{M}) < \mathfrak{d} = \aleph_2 = \mathfrak{c}$ holds in $\mathcal{M} = V[F]$ (see [1, p. 382]). Assume that *L* is a set of \aleph_1 generic Cohen reals added by *F*. Then *L* is an \aleph_1 -Lusin set in $\mathbb{Z}^{\mathbb{N}}$ such that L^n has the Rothberger property, for every $n \in \mathbb{N}$ (this was pointed out by B. Tsaban). Thus, using Lemma 5 from above, we can construct an unbounded, strongly measure zero subgroup $G \subseteq \mathbb{Z}^{\mathbb{N}}$ which satisfies

$$G \cap \{g: \forall_n^{\infty} | g(n) | \leq n\} = \{\mathbb{O}\}. \quad \Box$$

Next we combine methods from Lemma 9.12 in [4] and from Theorem 2 above. Let $\eta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be any bijection that satisfies $\eta(m,n) \ge m,n$, for every $m,n \in \mathbb{N}$. We may assume for example that η is a function defined by $\eta(m,n) = \frac{1}{2}(m^2 + 2mn + n^2 + 3m + n)$. Let us put $\Psi(f,g)(n) = \eta((f,g)(n))$. Clearly, $\Psi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a homeomorphism, and $\Phi : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ defined by $\Phi(h) = \pi_1 \Psi^{-1}(h)$, where π_1 denotes the projection onto the first coordinate, is a continuous function.

Lemma 11. (See Machura and Tsaban [4].) Assume that $\aleph_1 = \mathfrak{b} = \operatorname{cov}(\mathcal{M})$. Then there exists a subgroup D of the Cantor group $\{0, 1\}^{\mathbb{N}}$ which has cardinality \aleph_1 , and satisfies the following two conditions.

(1) *D* is generated by τ[*B*], where *B* is an unbounded and well ordered by ≤_{*} subset of N^{N↑} of cardinality ℵ₁,
(2) *D* ⊆ [N]^ω ∪ {0} and Φ ∘ e[D \ {0}] is a family of size ℵ₁ that witnesses cov(*M*) = ℵ₁.

Proof. See Lemma 9.12 in [4]. □

Lemma 12. The subgroup $\langle \tau[B] \rangle \subseteq \mathbb{Z}^{\mathbb{N}}$ does not have the Rothberger property.

Proof. Define as in Lemma 8.1 from [4] the continuous group homomorphism $\overline{\Phi} : \mathbb{Z}^{\mathbb{N}} \to \{0, 1\}^{\mathbb{N}}$ by $\overline{\Phi}(f)(n) = f(n) \mod 2$. Then,

 $\overline{\Phi}[\langle \tau[B] \rangle] = \overline{\Phi}[\langle D \rangle] = D.$

By Lemma 12, we know that D does not have the Rothberger property. Thus, $\langle \tau[B] \rangle$ is not a Rothberger set either.

Let $G_1 = \langle \tau[B] \rangle$ and $H = \overline{Q} \cup B$. Since $\langle \tau[H] \rangle$ is a strongly measure zero subgroup with the Hurewicz property, we obtain that $\widetilde{G} = G + G_1$ is an unbounded and strongly measure zero subgroup of $\mathbb{Z}^{\mathbb{N}}$ without the Rothberger property. Clearly, \widetilde{G} is of cardinality $\aleph_1 < \mathfrak{d}$, hence it is a Menger subgroup as was required. \Box

Remark 13. Notice that Theorems 2 and 10 prove that the settings (2.b) and (3.c) of Fig. 1 in [4] are consistent with ZFC.

Acknowledgements

We thank Roman Pol and Boaz Tsaban for making useful remarks on this paper.

References

- [1] T. Bartoszyński, H. Judah, On the Structure of the Real Line, A.K. Peters, Massachussets, 1995.
- [2] T. Bartoszyński, B. Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz conjectures, Proc. Amer. Math. Soc. 134 (2) (2006) 605–615.
- [3] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241-266.
- [4] M. Machura, B. Tsaban, The combinatorics of the Baer-Specker group, Israel J. Math., in press.
- [5] M. Scheepers, Finite powers of strong measure zero sets, J. Symbolic Logic 64 (3) (1999) 1295–1306.
 [6] B. Tsaban, o-Bounded groups and other topological groups with strong combinatorial properties, Proc. Amer. Math. Soc. 134 (2006) 881–891.
- [0] D. Isabah, o-bounded gloups and other topological gloups with strong combinational properties, Proc. Amer. Math. Soc. 154 (
- [7] B. Tsaban, L. Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc. 10 (2008) 837-866.