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Abstract-h thii paper, we consider the effect of diffusion on the species that live in changing 
patches environment. Different from the former studies [l-4], we pay attention to the more important 
situation in co nservation biology that species live in a weak patches environment, in the sense that 
species in some of the isolated patches will be extinct without the contribution from other patches. 
We obtain an interesting result: the identical specie can persist for some diiusion rates, and can 
also vanish for another set of restriction on diffusion ratea. @ 1998 Elsevier Science Ltd. All rights 
reserved. 
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1. INTRODUCTION 

One of the most important challenges facing ecologists over the next decades is to help with 
the conservation of endangered species and ecosystems. As has been recognized increasingly 
within ecology, in general, and in conservation, in particular, meeting these challenges will require 
including the role of spatial structure in the models that are used. 

Recently, some authors studied the influence of diffusion on the time dependent single species 
dynamics (see [l-3]). Mahbuba and Chen [l] considered the following system: 

lii = Xi {hi(t) - Ug(t)Xi} + .Di(t)(Xj - Xi), i,j = 1,2. (*) 

If hi(t) and oi(t) (i = 1,2) are all positive periodic functions, then system (*) possesses a 
globally stable positive periodic solution for any positive diffusive rates Di(t) and &(t). 

In [2], Wang and others studied the global stability of system (*) under the assumption that 
the functions oi(t) and hi(t) (i = 1,2) are continuous and bounded above and below by positive 
COIlSt8nt8, Di(t) (i = 1,2) continuous, nonnegative, and bounded by positive constants. 
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In [1,2], the authors always suppose that the species has positive intrinsic growth rates &(t) 
(i = 1,2) in each patch. But the most endangered species live in a weak patches environment, in 
the sense that in some of the isolated patches, the species will vanish without the contribution 
from other patches. This fact urged us to consider the effect of diffusion on the permanence and 
extinction of single species living in a weak environments. As we shall see later, the species can 
persist for some diffusion rates and can also vanish for another set of diffusion rates. These results 
can be used for explaining the biologically interesting problem: to what extent does diffusion lead 
to the permanence or extinction of species which could not persist within some isolated patches. 

On the studies of the giant panda protection projects [5-71, we often face the fact that giant 
pandas sometimes migrate from one patch to another for finding food, mating, etc. In order to 
protect the rare species, we should investigate the circumstance of every patch and control the 
diffusive rates among different patches. 

The organization of this paper is as follows. In the next section, a model is given, its permanence 
and extinction are both considered. We obtain that the system can be made either permanent or 
extinct under different appropriate diffusion conditions, even if the corresponding isolated patches 
are not persistent. 

In Section 3, it is shown to have a unique globally asymptotically stable positive periodic 
solution provided that the system is permanent. The biological meaning of the results obtained 
in Sections 2 and 3 are discussed in Section 4. 

2. MODEL, PERMANENCE, AND DISTINCTION 

We consider the system as composed of patches connected by discrete diffusions, each patch is 
assumed to be occupied by a single species as follows: 

& = xi {b$) - ai(t)xi} + 2DiJ@)(Xj -Xi), (i,j = 1,2 (..., n), (1) 
j=l 

where xi (i = 1,2,. . . , n), defined in R; = ((~1, ~2,. . . , zc,) E R” ( x1 2 0, 22 L 0,. . . ,zn L 0) 
is the number of species x in patch i. Functions hi(t), ai( and Dij(t) (i = 1,2,. . . ,n) are 
all continuous functions of time t E (--00, +oo) and are assumed to be periodic with common 
period w > 0. &(t) is the intrinsic growth rate for species z in patch i; ai (positive) represents 
the self-inhibition coefficient; and Dij(t) (positive) is the diffusion coefficient of species x from 
patch j to patch i. 

Throughout this paper, we assume that ai > 0, Dij(t) > 0 (i # j), and Di+(t) = 0 (i, j = 
1,2,. . . ,n) 

We call system (1) persistent if all solutions of (1) with positive initial values satisfy limt+oo 
inf xi(t) > 0 (i = 1,2,. . . , n). System (1) is said to be permanent if there exists a compact set K 
in the interior of R;, such that all solutions starting in the interior of R3 ultimately enter K. 

To simplify writing, we introduce the following notations: if g(t) is a continuous w-periodic 
function defined on (-co, +oo), we set 

Lg] = w-l Lug(t)&, gM = m,axs(t), gL = m)ns(t). 

To prove the permanence of system (l), we need information on the well-known time dependent 
logistic model 

IQ = N{b(t) - a(t)N}, (2) 

where b(t) and a(t) (positive) are continuous periodic functions with common period w > 0. 

LEMMA. 

(i) Suppose that [b] > 0, then (2) has a unique positive, globally asymptotically stable 
w-periodic solution. 
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(ii) Suppose that [b] < 0, then all solutions N(t) of (2) with positive initial values satisfy 
link, N(t) = 0. 

This result can be seen by direct integration (or see [8]). 

THEOREM 1. Given any & > 0 (i = 1,2,. . . , n), the initial v&e problem 

ki = xi{bi(t) - ai(t)xi} + 2 D$j(t)(xj - Xi), 
j=l (3) 

Xi(O) = Ei, i,j = 1,2 ,*a*, n, 

has a unique solution z(t) = (sl(t),zz(t), . . . ,xn(t)) 
exists M > 0, T > 0, such that 

0 < q(t) 5 M, 

the region D = { (q,z2, . . . , z,) 1 0 < ZQ I M, i 
respect (1). 

PROOF. Define 

which exists for all t 2 0. Moreover, there 

for t > 7, (4 

= 1,2,... ,n} is positively invariant with 

(5) 

Calculating the upper-right derivative of V(z(t)) along the positive solution of (3), we have 

Denote M = max~<~<,{(~b~~+l)/a~}. If V 2 M, then D+V L -V. Hence, there exists 
7 = 7(21(0),22(O), . .: - ,zn(0)) > 0, such that V(t) I M, for all t 2 7, which means that 
z%(t) 5 M (i = 1,2,. . . , n), for all t > 7 if z(t) exists. But, the ultimately boundness implies 
that z(t) exists for all t > 0. Furthermore, 

&lzi=M,xi2zj < M (by - $‘M) < 0. 

Hence, all solutions of (3) initiating in boundary of D enter the region D for t 2 0, so D is 
positively invariant with respect (1). This completes the proof. 

REMARK 1. Suppose that hi(t) < 0 (i = 1,2,. . . ,n), then by < 0 and 

for any positive number 6. From the proof of above theorem, we have xi(t) + 0 as t + 00. 
Therefore, system (1) will be extinct for any diffusion rate Dij(t) 2 0 (i, j = 1,2,. . . , n). 

A consequence of Theorem 1 is that for & > 0 (i = 1,2, . . . , n), the solution of (3) is ultimately 
bounded above. We will show that this solution is also ultimately bounded below, away from 
zero, provided that the one of the following conditions is satisfied. 

(Hl) There exists io (1 5 io 5 n), such that [hi,(t)] > [~~=, Dw(t)]. 
(H2) [9(t)] > 0, where 4(t) = minl<i<,{bi(t) - & oij(t) + CyZ1 oji(t>}* -- 

THEOREM 2. Suppose that (Hl) or (H2) holds, then there exists bi, 0 < 6i < M, and r 2 0, 
such that the solution of (3) satisfies 

%(t) 2 4, (6) 

fori = 1,2,... , n and t 2 7, where & (i = 1,2, . . . , n) depend on the various Assumptions (Hl) 
and (H2). 
PROOF I. Suppose that (Hl) holds, we have 

Li& > xi0 {( h(t) - 5 Dioj(t) 
j=l 
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by the lemma, the logistic equation 

, (7) 

has a unique positive globally asymptotically stable w-periodic solution G(t) c [&, , ki,] (0 < &, c 

&,). Let u(t) be the solution of (7) with u(O) = zi,, (0), by comparison theorem of differential equa- 
tion, q,(t) > u(t) > 0. Take ciO = (&,)/2, then there exists Ti,, = T~o(sl(0),z~(O), . . . ,zn(0)), 
such that 

lu(t) - G(t)/ < Go, for t 2 Ti,,. 

Then 
&, zj,(t) > u(t) > ii(t) - et0 2 2 = si,. 

Moreover, for every j # is, we have 

~j~-Q~~+~~-~D~)~~+D~.s.,=i(,), fort>Th. 

The algebraic equation 

gives us one positive root 

Clearly, f(Zj) > 0 for every positive number Xj (0 5 xj < Zj). Choose Sj (0 < Sj < Zj), 
kjjzj=6j > _f(hj) > 0, if xj(Tio) > Sj, then it also holds for t > Ti,,; if xj(Ti,) < Sj, then 

kj(Tio) 2 inf {f(xj) 1 0 2 xj < Sj} > 0, 

there must exist Tj (2 T&), such that xj (t) 2 Sj for t > Tj. Therefore, (6) applies with 
7 = mml<jln Tj* 

PROOF II. Choose function 

calculating the derivative of p along the solution of (l), we have 

bltl, = g hi(t) - ~Djj(t) + kDji(t) Xi - k&(t)X: L P(#(t) - a(t)p)j 
i=l j=l j=l I i=l 

where a(t) = msxr<i<,{ai(t)}. By the lemma and (H2), the logistic equation -- 

i, = v{~(t) - a(t)v} (8) 

has a unique positive globally asymptotically w-periodic solution G(t) C [p, q] (0 < p C q). 

Let v(t) be the solution of (8) with v(0) = C~=rz~(O), by comparison theorem of differential 
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equation, p(t) 2 v(t) > 0. Take c = p/2, then there exists T = T(sl(O),zz(O), . . . , z*(O)), such 
that 

I@) - c(t)1 < c, for t 2: T. 

Then 

Hence, 

zl(t)+sz(t)+***+z*(t) >a-c2; =q, for t 2 T. (9) 

5i = Xi 

i 

hi(t) - t Dij(t) - Ui(t)Xi + 2 Dij(t)Xj 
j=l 1 j=l 

b;-Do-~lqayxi + Doq 
j=l 

or 

for t 2 T and i = 1,2, . . . , n, where Do = miniCi .+ { D&} > 0. 
?& 

The algebraic equation 

ayz:+ ($Df+Do-b+-Don=0 

gives us one positive root 

2 

b;--Do- gD;+ + 4Doqar 

ii = 
j=l 

b,L-Do-eD; 
j=l 

2ay , (i = 1,2 ,...) n). 

An entirely similar argument, as Proof I shows, is that there exists 6i (I& < M, i = 1,2,. . . , n) 
and T’ (2 T) such that (6) holds for r = T’. This completes the proof. 

Applying the above theorem to two patches system, we obtain the following result. 

COROLLARY 1. If n = 2 and one of the following Conditions (Al)-(A4) holds: 

(Al) [bll > P121; 
(~42) [&I > P211; 
(A3) al(t) + &r(t) - k!(t) L k!(t) + &z(t) - &l(t) and [W) + &z(t) - Dzl(t)] > 0; 
(A4) bz(t) + &z(t) - &i(t) 1 bl(t) +&l(t) - &z(t) and [bl(t) + &l(t) - &(t)l > 0. 

Then the result of Theorem 2 holds for i = 1,2. 

Theorems 1 and 2 have established that, under one of Assumptions (Hl) or (H2), there exist 
positive constants m and M, the solution of (1) with positive initial values ultimately enter the 
rectangular region S-l = {(xi, ~2,. . . ,x,) 1 m 5 xi 5 M, i = 1,2,. . . , n}, therefore, the population 
is permanent. 
REMARK 2. According to the proof of Theorem 2, if species x is permanent in a fixed patch i, 
then species x is also permanent in other patches for any diffusion rates Dji(t) (i, j = 1,2,. . . , n). 
Assumption (Hl) implies that if the average of the sum of diffusion rates from patch j (j = 
1,2,..., n) to patch i is less than the intrinsic growth rate of patch i (i # j), then species x is 
permanent even if the isolated patch j is not persistent. 
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REMARK 3. Let us consider the simplest case where the patches are identical, that is hi(t) = 
b(t), ai(t) = o(t), and Q(t) = Q(t) (i,j = 1,2,. . . , n). In this case, the restriction on &(t) 
has been dropped, Assumption (H2) becomes simply 

[b] > 0. (10) 

This condition ensures that each isolated patch is permanent (by the lemma, each isolated patch 
has a unique globally asymptotically stable positive w-periodic solution). Therefore, the above 
result implies that the system with the identical patch continues to be permanent. 

REMARK 4. Here we discuss a simple example that illustrates the biological consequence of the 
result on Theorem 2: 

xl = 21 
I 
1 + i sint - ai(t)xr 1 f Dr2(t)(x2 - xl), 

$2 = x2 [ -i + t sint - aa( 1 + &(t)(xr - x2), 
01) 

where ai and Qj(t) (i, j = 1,2; i # j) are all positive continuous periodic functions with 
common period 27r. 

If the patches are isolated from each other, it is clear that species x will be permanent in 
patch 1 and will not be persistent in patch 2. Conditions (Al) or (A3) holds for (11) provided 
[Or21 < 1 or l/4 < [&z(t) - &l(t)], &z(t) - &l(t) 5 5/8, respectively. Corollary 1 says 
that system (11) is permanent. This means that by appropriately choosing diffusion coefficient 
[Dr2] < 1 or l/4 c [&2(t) - D2l(t)], l&z(t) -&l(t) 5 5/8, if the stabilizing effect in patch 1 is 
stronger than the destabilizing effect in patch 2, then the dispersal acts as a stabilizing influence 
and causes the overall system (11) to be permanent. 

Next, we will consider the extinction of system (1). Denote 

Nt) = lyyn bj(t) - 2 Dij(t) + 2 Dji(t) . 
-- j=l j-1 

THEOREM 3. Suppose that [$(t)] < 0 holds, then the solution of (3) satisfies 

xi(t) + 0, ast~oo. (12) 

PROOF. Consider the function p = CL1 xi defined in Theorem 2, calculating the derivative of 
function p along the solution of (1) 

@I(l) = 2 hi(t) - 2 Dij(t) + 2 Dji(t) pi - eai(t)zf < @(t)p. 
i=l j=l j=l i=l 

Let u(t) be the solution of the equation 

?i = t)(t)?& 

with u(0) = p(O). By comparison theorem of differential equation, p(t) 5 p(O) exp(Ji Q(t) dt). 

Since [$(t)] < 0, s,’ G(t) dt 4 -00, as t -+ 00. Consequently, p = Czrxi ---) 0, as t ---) 00. So 
xi(t) -+ 0, as t ---) co. This completes the proof. 
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COROLLARY 2. If 12 = 2 and the following Conditions (AS) or (AS) holds, 

(A5) b1(t) + &1(t) - &(t) 1 b2(t) + &2(t) - &1(t) and [b1(t) + &1(t) - &2(t)] < 0; 
(A6) bl(t)+ Da(t) -&2(t) 5 b2(t) + &z(t) - Dzl(t) ad bz(t) +&z(t) - Dzl(t) < 0. 

Then q(t) + 0 (i = 1,2), as t -+ co. 

In fact, Conditions (A5) or (A6) implies $(t) = bl(t) + &l(t) - DE!(~) or $(t) = bz(t) + 
&2(t) - D21($ respectively. By applying Theorem 3, the corollary is true. 

REMARK 5. In the completely identical case of Remark 3, the assumptions of Theorem 3 become 
simply 

[b] < 0. (13) 

By the lemma, this condition ensures that each isolated patch is extinct. Therefore, the identical 
patch continues to be extinct. 

REMARK 6. Consider a simple example, note that the intrinsic growth rate for species z in 
patch 2 is less than that in Remark 4: 

k1 =x1 
[ 
l+ asint -a1(t)zl +D12(t)(x2 -xl), 1 ci2 = x2 [ -2+ asint - a2(t)x2] +Dzl(t)(xl -X2), 

(14 

where ai and Q(t) (i,j = 1,2,i # j) are all continuous positive periodic functions with 
common period 2~. 

System (14) without diffusion (two isolated patches) will be permanent in patch 1 and will 
not be persistent in patch 2 as Remark 4. Condition (A5) holds, if 1 < (&2(t) - 021(t)] and 
012(t) - &l(t) I: 3/2. Theorem 3 implies that system (14) goes extinct. This means that if the 
inherent net birth rate of species x in patch 2 is negative and small enough, then the stabilizing 
effect in system (14) is weaker than the destabilizing influence and causes the overall system (14) 
to go extinct. On the other hand, if [D12] < 1, then (Al) holds. By Theorem 2, system (1) is 
permanent for any diffusion rate &l(t) > 0. 

The above conclusion implies that the diffusion rates play an important role on the determi- 
nation of the permanence and extinction of the species 2 in the patch environment. We can 
choose appropriate diffusion rates causing system (1) either to be permanent or go extinct. The 
arguments here can be used to aid in a discussion of the evolution of dispersal rates. 

3. STABILITY OF POSITIVE PERIODIC SOLUTION 

THEOREM 4. Suppose that Assumptions (Hl) or (H2) holds, then system (1) has at least one 

positive w-periodic solution that lies in R = ((~1~22,. . . ,z,) 1 m I xi < M, i = 1,2,. . . , n}. 

PROOF. By Theorems 1 and 2, any solution of (1) with positive initial values ultimately enters 
the region R, applying Theorem 2 of [9] to assert the existence of positive w-periodic solution 
of (1). 

Let X*(t) = (Xi(t),Xz(t),... , z;(t)) be a positive w-periodic solution of (l), now we consider 
its uniqueness and stability. This treatment incorporates prior results of the book [lo] into the 
present argument. We introduce the following definitions. 

DEFINITION 1. An operator U : D c Rn --t R” is said to be monotonic if X1 = (~11,221, 
***,x7$1) E D, x2 = (x12,x22,.** ,x,2) E D, and X1 < X2 in the sense xl1 < 212,221 < 
x22,. . . , xnl < x,2 implies UX1 < UX2. 

DEFINITION 2. An operator U : D c Rn --) R” is said to be positive with respect to a cone K 
in Rn if U : K ---) K, and is said be strictly positive if UK c interior of K. 



8 J. Cur AND L. CHEN 

DEFINITION 3. An operator U defined on a cone K in Rn is said to be strongly concave, if for 
an arbitrary interior element X E K and any number r E (0,l) there exists a positive number q 
such that 

U(TX) 2 (1+ r])rUX. 

Define a shift operator A : P+ + RT by the formula 

ho = 44 x0), (15) 

where z(t,zu) = (z~(t,zo),z~(t, ZO), . . . ,zn(t,za)) is the solution of (1) with z(O,ze) = 10 = 
(210, X20, * * * ? x,0), w denotes the period of the periodic functions ai( hi(t), and Dij(t). 

THEOREM 5. Suppose that Assumptions (ID) or (H2) holds. Then the shift operator A corre- 
sponding to (1) is monotonic, strictly positive, and strictly concave with respect to the cone R”+. 
Moreover, operator A has unique flxed point in R”+ and the corresponding positive periodic 
solution is globally asymptotically stable. 

PROOF. We rewrite system (1) in the form 

ki = fi(&X1,~2,. * * ,~n), i=1,2 )...) 71, 

then 

f&, Xl, * * * , 2%1,O,~i+1,*.* , G> = 2 Dij(t)xj 2 0, for Xj 2 0. 
j=l 

In addition, the functions Fi defined by 

n 

4(&x1,x2,. . . , Xn)=fi(t,X1,X2,...,X~)-_x’- 

j=l 

3 if. = a&f(t) 
I 

are strictly positive in the sense that Fi(t,xl,xs, . . . ,z,) > 0 for xi > 0 (i = 1,2,. . . , n) and 
t 1 0. Thus, the shift operator A is monotonic, strongly positive, and strongly concave, follows 
from Theorem 10.2 and Lemma 4.1 of [lo]. 

Moreover, it is known by Theorem 10.1 of [lo] and Theorem 4 of our present paper that 
operator A has exactly one positive fixed point in R3, and hence, the periodic solution z*(t) 
corresponding to the fixed point of A is unique. The globally asymptotically stability of x*(t) 
follows from the Theorem 10.6 of [lo] and lim+,oox(t) = x*(t) for every solution of (1) with 
x(0) E RT\(O,O) [lo, pp. 2131. This completes the proof. 

4. DISCUSSION 

Takeuchi [4] showed that in a general autonomous system composed of several patches con- 
nected by diffusion and occupied by a single species, if the species is able to survive at a globally 
stable equilibrium point when the patches are isolated, then it continues to do so for any diffusion 
rate at a different equilibrium. Mahbuba and Chen [l] obtained the similar result as [4] for sys- 
tem (l), for any diffusion rate Dij (t) > 0 (i # j), system (1) possesses a unique positive periodic 
solution that is globally asymptotically stable under the assumption that hi(t) > 0 (i = 1,2), 
this ensures that the corresponding system without diffusion (Dij(t) = 0, i, j = 1,2) has a unique 
globally asymptotically stable positive periodic solution. 

Different from the above consideration, this paper focus on the more interesting cases in biology, 
that the species living in a weak environment in the sense that species x in some of the isolated 
patches will be extinct without the contribution from other patches. Dispersal can make the 
species x either permanent or distinct in every patch depending on the choice of the diffusion 
rates. 
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For example in Remark 4, if the patches are isolated from each other, then species z will be 
permanent in patch 1 and extinct in patch 2. If we restrict the diffusion rate from patch 2 to 
patch 1 small enough, that satisfies [Drz] < 1 or the diffusion coefficients varying in the narrow 
region l/4 < [&(t) - &r(t)] and &s(t) - &i(t) 2 5/8, then the species z will maintain 
permanence in the sense that there exists a unique globally asymptotically stable positive periodic 
solution. This implies that dispersal increases the degree of stability of the system. 

Another interesting example emerges from Remark 6, the death rate of species z in patch 2 
is larger than that in the above example. If the dispersal coefficients vary in the narrow region 
1 < [&s(t) - &i(t)], &z(t) - &i(t) I 3/2, then species z cannot survive in any patch. 
This implies that dispersal does not always increase population stability. If population density 
strongly suppresses birth rate @z(t) = -2 + (l/4) sin t), obligate individuals dispersal ([&z(t) - 
l&(t)] > 1) can actually reduce stability. On the other hand, small dispersal from patch 2 to 
patch 1 actually causes species 2 to be permanent provided that [Di2] < 1. Hence, dispersal plays 
an important role on the weakly population system, it can make the species either permanent or 
distinct by the appropriate choice of the diffusion rates. 
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