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In this paper we deline the concepts of fuzzy random variable and the expec- 
tation of a fuzzy random variable. The new definition of expectation generalizes the 
integral of a set-valued function. We derive bme properties of these new concepts. 
By considering a suitable generalization of the Hausdorff metric, we derive the 
Lebesgue-dominated convergence type theorem. 6 1986 Academic PI~SS, IIIC. 

1. INTRODUCTION 

In practice we are often faced with random experiments whose outcomes 
are not numbers (or vectors in &I”) but are expressed in inexact linguistic 
terms. As an example, consider a group of individuals chosen at random 
who are questioned about the weather on a particular city on a particular 
winter day. Some possible answers would be “cold,” “more or less cold,” 
“very cold,” “ extremely cold,” and so on. A natural question which arises 
with reference to this example is: What is the average opinion about the 
weather in that particular city? 

A possible way of handling situations like this is by using the concepts of 
fuzzy sets and fuzzy functions [24] found useful in many applications, 
notably in pattern recognition, clustering, information retrieval, and 
systems analysis (cf. [ 161). 

Motivated by examples of the type given above and related problems 
(especially concerning group opinions), we introduce fuzzy random 
variables and their expectations, and we investigate some of their proper- 
ties. 
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Fuzzy random variables (or fuzzy variables) generalize random variables 
and random vectors; they also generalize random sets [ 151. The expected 
value of a fuzzy variable is a natural generalization of the integral of a set- 
valued function [2]. 

Kwakernaak [ 143 introduced the notion of a fuzzy random variable as a 
function F: 52 -+ 9( [w) (subject to certain measurability conditions), where 
(Q, d, P) is a probability space, and P([w) denotes all piecewise con- 
tinuous functions U: (w -+ [0, 11. 

F&on [8] defined a fuzzy random set as a measurable function 
F: 52 + 9(X), where X is a topological space, F(X) = {u: ?X + [0, l] }, 
and {xE%: F(w)(x)>a} are closed subsets of !Z for each 06a6 1, ~ESZ. 

Relationships between fuzzy sets and random sets were studied by Fortet 
and Kambouzia [9] and by Goodman [lo]. 

However, in the work of the authors mentioned above, no attempt is 
made to define the expected value of a fuzzy variable and to study its 
properties. Our definition of the expected value is new and it provides a 
natural generalization of the set valued function (that is, random set) set- 
ting. 

In Section 2, we briefly state some results related to the integral calculus 
for set-valued functions. These results will be frequently referred to in the 
subsequent sections. 

In Section 3, we introduce the notion of a fuzzy random variable slightly 
different than that of Kwakernaak [ 143. We define it as a function (subject 
to certain measurability requirements) X: 52 -+ PO( IV), where (Q, ,aul, P) is a 
probability space, and YO([Wn) denotes all functions (fuzzy subsets of IY) 
U: IF!” --t [0, l] such that {x E IV’: U(X) 2 a} is nonempty and compact for 
each 0 < a < 1. In this setting we define the expected value E(X) of a fuzzy 
variable X. 

In Section 4 we study some properties of this expected value. To this end, 
we first define a metric in &(I?‘) which generalizes the Hausdorff metric in 
the space of compact subsets of [w”. We show that, under certain conditions 
E(X) is a fuzzy convex set. The main result of this section is a Lebesgue- 
dominated convergence type theorem. This generalizes the corresponding 
results of Aumann [2] and Debreu [6]. Some of the results of this section 
can possibly be extended to Banach space valued fuzzy variables, that is, 
functions X: 0 -+ 4(g), where (Q, &, P) is a probability space, ?Y is a 
Banach space, and Y,(g) denotes all functions (fuzzy sets) u: CY -+ [0, 11 
whose levels ( y E $Y: u(y) > a}, a # 0 are closed, bounded, and convex sub- 
sets of ?Y. However, this generalization will not be carried out in this paper. 

Finally, in Section 5 we state some problems of further research interest. 
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2. INTEGRAL CALCULUS FOR SET-VALUED FUNCTIONS 

The concept of an integral of a set-valued function was first introduced 
by Kud6 [12] in connection with the theory of experiments in statistics. 
Later, using Kudii [12] and Richter [23], this concept of an integral was 
extended by Aumann [2] who proved some important convergence 
properties. Debreu [6] delined another concept of an integral of a set- 
valued function in a more general context, studied its properties, and 
showed that under suitable hypotheses, it coincided with the integral of 
Aumann [a]. 

Applications of these integrals are found in economics [3], control 
theory [ 111, and probability theory [ 1,5,20]. 

We define two different types of convergence for sequences of sets. Let A 
and B be two nonempty bounded subsets of (w”. The distance between A 
and B is defined by the Hausdorff metric, 

d&4 B) = maxC:py ,j$ lb - WI, ;yt $f, lb - 4 I, (2.1) 

where I(. II denotes the usual euclidean norm in [w”. 
We denote the Hausdorff semimetric by p(A, B) = supoeA infbGB Ila - 611. 

It is clear that 

p(A, B)=OoAcB (2.2) 

and 

~(4 Cl G ~(4 B) + ~(4 ‘7, (2.3) 

where A, B, C are nonempty bounded subsets of Iw”, and B denotes the 
closure of B. 

Also d,(A, B) = max[p(A, B), p(B, A j] and 

d&4, B)=OoA=B. (2.4) 

If Q(lR”) denotes the set of all nonempty, compact subsets of R”, it is 
clear that (Q(rW’), dH) becomes a metric space. The following theorem gives 
a more precise result. 

THEOREM 2.1. The metric space (Q(W), dN) is complete and separable. 

Another type of convergence for a sequence of sets was defined by 
Kuratowski [13]. 

We say that a sequence of sets { Ck}k, Ck c Iw”, converges to a set Cc R”, 
denoted by C = lim, Ck, if 

C = lim inf Ck = lim sup Ck, (2.5) 
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where 

lim inf Ck = {x 6 [w”: x = lim xk, xk E Ck >, (2.6) k - rm 

limsupC,= fi 
k=l 

(2.7) 

We mention that for sequences of closed sets, convergence in the 
Hausdorff metric implies convergence in the sense of Kuratowski. On 
Q(rW”), both types of convergence are equivalent provided the limit set is 
nonempty, that is, the sequence is bounded (cf. [ 151). 

Now, let (s2, .G!, P) be a probability space where the probability measure 
P is assumed to be nonatomic. 

A set-valuedfunction is a function 8’1 s2 -+ 9(&Y) such that F(o) # @ for 
every own. By L’(P) (or by L’(P, I??)) we denote the space of P-in- 
tegrable functions f: 52 + [w”. We denote by S(F) the set of all L’(P) selec- 
tions of F, that is, 

S(F)= {f’~L’(P):f(co)~ F(o) a.e.> (2.8) 

The Aumann integral of F is defined by 

(A) $ f’={[ 
n 

fdP:fW)} (2.9) 

For easy reference, we state the following results due to Richter [23], 
Aumann [2], and Debreu [6]. 

THEOREM 2.2. Zf F: Q --* I is a set-oaluedfunction, then (A) f F is a 
convex subset 0fR". 

Observe, however, that (A) j F may be empty in general. 
A function F: s2 --t 9(&Y’) is called measurable if its graph { (0, x): 

x E F(o)} belongs to d x 98 (where ~8 denotes the Bore1 subsets of R”). A 
function F: Sz -+ 9( IR”) is called integrably bounded if there exists a function 
h: L2 + Iw, h E L’(P, [w) such that I1xJI <h(o) for all x, o with x E F(w). 

THEOREM 2.3 [Z]. If F: Q + Y(W) is measurable and integrably 
bounded, then (A) f F # @. 

Another result about the structure of (A) l F is given by 

THEOREM 2.4 [2]. If F: Q -+ Y(W), F(o) is closed for every o E a, and 
if F is integrably bounded, then (A) j F is a compact subset of R". 
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The following theorem is a generalization of the Lebesgue dominated 
convergence theorem. 

THEOREM 2.5 [2]. Zf Fk: Q + 9( [W”) are measurable and if there exists 
hEL’(P, [w) such that sup,, 1 IIfk(w)(I <h(w) for eoev .fiEWk), and if 
F,Jw) --, F(o) (in the sense of Kuratowski), then (A)jF, + (A) J F. 

In Debreu [6], a concept of an integral is defined for more general set- 
valued functions F 52 + K(%), where .!Z is a Banach space and K(Z) 
denotes all nonempty compact convex subsets of X. The key result used in 
defining the Debreu integral is an embedding theorem for K(X) due to 
Radstrom (1952). 

Without going through the details of this construction here, we may 
mention that the Aumann integral can also be defined in this more general 
setting and it is possible to prove the equivalence of the Aumann and 
Debreu integrals without assuming that X is reflexive (see Byrne [4]). 

Remark. It is important to observe that Theorem 2.5 can be stated in a 
different form by replacing convergence in the sense of Kuratowski by con- 
vergence in the Hausdorff metric. The statement of the theorem remains 
unchanged provided we assume that all functions take values in Q(P). We 
shall use this version of Theorem 2.5 in Section 4, where we shall generalize 
the Lebesgue dominated convergence theorem to fuzzy variables. 

3. FUZZY VARIABLES AND THEIR EXPECTATIONS 

Let (Q, d, P) be a probability space where P is a probability measure. 
Let FO([Wn) denote the set of fuzzy subsets U: IX” + [0, l] with the following 
properties: 

(a) {x E [w”: u(x) > a} is compact for each a > 0, (3.1) 

(b) {x~[W”:~(x)=l}#@. (3.2) 

DEFINITION 3.1. A fuzzy random variable (or fuzzy variable) is a 
function X: D + FO( I?‘) such that 

{(O,X):XEX,(O)}Edxx (3.3) 

for every a E [O, 11, where X,: 52 -P S(rW”) is defined by 

X,(O) = {xE R”: X(o)(x) 2 a}. (3.4) 

A fuzzy variable X is called integrably bounded if X, is integrably boun- 
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ded for all a E (0, 11, i.e., if for any CI E (0, 11, there exists h, E L’(Q) such 
that J/XII <h,(o) for each x, w  with XE X,(w). 

Here L’(Q) denotes all functions h: Q -+ [w which are integrable with 
respect to the probability measure P. 

Motivated by examples similar to the one given in the introduction, we 
define the expected value E(X) of a fuzzy variable X: Q -+ 9e(Rn) in such a 
way that the following conditions are satisfied: 

E(X) E %tw, (3.5) 

{x~R”:(E(X))(x)>a}=j A’, for each aE[O, 11. (3.6) 

The next theorem shows that under certain assumptions, there is a uni- 
que fuzzy set satisfying these requirements. The proof is based on the 
following lemma. 

LEMMA 3.1. Let M be a set and let (M,: aE [0, l]} be a family of sub- 
sets of M such that 

(i) M,=M, 

(ii) a d /? implies M, E M,, 

(iii) a, <a,< ..., lim,,, a, = a implies M, = n := , MXn. 

Then, thefunction 4: M-+ [0, l] defined by b(~)=sup(a~ [0, 11: XEM,} 
has the property that {x E M: 4(x) > a} = M, for every a E [0, 11. 

Proof. See [16]. 

THEOREM 3.1. If X: Q +2&(W) is an integrably boundedfuzzy variable, 
there exists a unique fuzzy set 0 E &( !W) such that 

{xER”:tl(x)>a}=/X,foreoeryaf5[0,1] (3.7) 

ProoJ: Let M, = j X,, a E [0, 11. Since X, is measurable and integrably 
bounded, it follows from Theorem 2.3 that M, # 0. Since X,(w) = 
(x: X(w)(x)>a} are closed subsets of R” for all ~~52, it follows from 
Theorem 2.4 that M, = 1 X, is compact. 

Consider now the family {M,: a E [0, 1 ] } of subsets of R”. Note that 
X,(o) = {x: X(o)(x) 2 0} = KY, for all w  E Q. Thus J X0 = BY’. If a < fi, then 
clearly X,(w) 2 Xs(w) for w  E Q. Thus M, 2 M,. 

We now apply Lemma 3.1. To do so we have to check that a, Q a, < ., 
lim, + m a, = a, a # 0 implies M, = n,“= , M,“. Observe that f-j;=, XJo) = 
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X,(o) for all w  E Sz. Since XJw) are compact, n E N, it follows by a simple 
argument that 

where converge is in the Hausdorff metric. 
Now X,,(o)~X,,(w)~ .+., and since A’,, is integrably bounded there 

exists h E L’(Q) such that Ilf(o)l/ 6 h(w) for every f~ S(X,,). It follows that 
IIg(o)ll <h(o) for every g E S(XJ, n E N. Thus (Xa,, n 2 1) is bounded by 
the same integrable function, and since the X,” are also measurable, it 
follows from Theorem 2.5 that j XMn + j A’,, (in the Hausdorff metric). 
Observe that { j XUn, n > 1 } is a decreasing sequence of compact sets and so 
it must converge to its intersection. Thus we obtain 

(3.9) 

By Lemma 3.1, the fuzzy set defined by o(x)=sup{cr~ [0, 11: XEM,} 
satisfies 

JXEIWn:u(x)>,a}=M,=jX,, crE[O,l]. (3.10) 

The uniqueness of v is obvious, since if two fuzzy sets u and w  satisfy 
(3.12), then {x: u(x) 2 a} = ( X: w(x) > a} for every a and this implies v = w. 

Finally, v E FO(Rn) since {x: u(x) B a} = M, is a compact set and 
{x: v(x) = 1 } = M, = s X, # 0. This completes the proof. 

We use the above theorem to define the expected value of a fuzzy ran- 
dom variable X: D --f &(I??‘) which is integrably bounded. 

DEFINITION 3.2. The expected value of X, denoted by E(X), is the fuzzy 
set o E FO( llY) such that {x E R”: u(x) > a} = j X, for every a E [0, 1-J. 

Note that the existence and uniqueness of u are established in Theorem 
3.1. 

Thus 

(3.11) 

and its level sets are given by 

{X: (E(X))(x) 2 a} = j X,, a E [0, l] (3.12) 



416 PURI AND RALESCU 

4. PROPERTIES OF THE EXPECTATION 

Our aim is to extend the Lebesgue dominated convergence theorem to 
fuzzy random variables. To this end, we first define a metric in 3$(W) 
which generalizes the Hausdorff metric. 

Let U, u E FO( W), and set 

4% ~)=suP d,(uu), J%(u)), 
I>0 

(4.1) 

where d, is the Hausdorff metric, and we denote by L,(U) = {x: U(X) b a}, 
L,(u) = {x: u(x) 2 a}. 

PROPOSITION 4.1. (%o( W), d) is a metric space. 

ProoJ: (i) d(u, u) = 0 implies d,(L,(u), L,(v)) = 0 for each a > 0, and 
this implies L,(U) = L,(u), a > 0, which implies u = u. (Recall that L,(U) and 
L,(u) are compact). 

(ii) Obviously d(u, u) = d(u, u). 

(iii) The triangle inequality d(u, u) d d(u, W) + d(w, v) follows from 
the corresponding inequality for d,. 

Note that if A and B are compact subsets of W, and xa and xe are their 
respective characteristic functions, then d(Xa, xe) = d,(A, B). 

The following result generalizes Theorem 2.1. 

THEOREM 4.1. The metric space (%o(lW’), d) is complete. 

The proof of this theorem is given in the Appendix. 
Theorem 2.2 can easily be extended to fuzzy variables by using the con- 

cept of fuzzy convexity [24]. 
A fuzzy set U: Iw” + [0, l] is called a fuzzy convex set, if 

242x+ (1 -~)y)>min[u(x), u(y)] 

for ever x, y E R”, J. E [0, 11. (4.2) 

THEOREM 4.2. If the probability measure P is nonatomic, and if 
A’: Sz + %J W) is integrably bounded fuzzy variable, then E(X) is a fuzzy 
convex set. 

Proof Let v = E(X). Since {u 3 a) = j X,, it follows from Theorem 2.2 
that {v 2 a} is a convex set, a E [0, 11. The proof now follows by noting 
that (4.2) is equivalent to the convexity of {U > a} for every a E [0, 11. 
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The following theorem extends the Lebesgue dominated convergence 
Theorem 2.5 (see the remark at the end of Section 2). We assume that the 
probability measure P is nonatomic. 

THEOREM 4.3. Let {X,, k > 1) and X be integrably bounded fuzzy 
variables such that X,(w) +d X(w) for almost every w E Q. Suppose there 
exists an h E L’(0) such that SUP.~~~~,.(~) l/x/l 6 h(w) for all k b 1 and ct > 0, 
where XkJw) = L,(X,(o)) = {X,(w) 2 a}. Then E(X,) --td E(X). 

ProojI To prove this theorem, we shall use a technique similar to the 
one in Debreu [7, pp. 366; 3671). Assume first that X,, X are such that 
L,(X,(w)) and L,(X(w)) are convex subsets of R” for every a>O. 

Then for every a > 0, 

d,(L,(E(X,)), LWX))) = d,( j L,(X,), j L(X)) 

(4.3) 

d j d,(L(X,), L,(X)) 6 j &f,(w), NW)) @(WI 

implying d(E(X,), E(X)) <J d(XJw), X(w)) dP(w). Now d(X,(w), 
X(w)) + 0, a.e. and also, d(X,(w), X(w)) < d(X,(w), 0) + d(0, X(w)), where 
0 denotes the set (0). It follows that 

W,dw), 0) = sup d,(L,(Xk(w))> 0) 
Or>0 

= sup a,O xc;~cw, II-d d h(w), h E L’(Q). 
.a 

Using now the classical Lebesgue dominated convergence theorem, we 
obtain d(E(X,), E(X)) -0. 

Assume now that X,, X are as in the statement of the theorem. For any 
subset A of R”, denote by Co A its convex hull. For a random set 
F: Sz + Y(Rn), denote by (Co F)(w) = Co(J’(w)), w  E 0. Note that, since P 
is nonatomic, j F = j Co F (provided the integral exists). 

Also, if F and G are random sets (not necessarily convex valued), we 
have d,(J F, j G) = d,(J Co F, s Co G) 6 J d,(Co F, Co G) < j d,(F, G), 
the last inequality following from Price [17]. Now a simple argument 
similar to the one above (see (4.3)) concludes the proof. 

5. COMPUTATION OF E(X) 

In this section, we provide some examples to compute the expected value 
of a fuzzy random variable. 
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EXAMPLE 1. Toss a fair coin. Denote the outcomes “Tail” by T and 
“Head” by H. Suppose a player loses approximately $10 if the outcome is 
T, and wins an amount much larger than $100 but not much larger than 
$1000 if the outcome is H. The fuzzy r.v. then is X: { T, H} + &(R), where 
X(T) = “approximately - 10,” and X(H) = “much larger than 100 but not 
much larger than 1000.” For (intuitively plausible) technical reasons, let us 
write X(T) = u and X(H) = u, where U, u: R + [0, l] are given by, say, 
U(X) = [ 1 - (x + 10)2/4] + and u(x) = [ 1 - (x - 630)2/3802] +, where f ’ = 
max(f, 0). Since u and v are continuous with compact support, it is easy to 
show by using (3.13) that E(X)(x)=sup,.+,=,,min{ [l -(y+ 10)*/4-J+, 
[ 1 - (Z - 630)2/3802] + ). 

In particular, the support of E(X) is included in the interval [ 119, Sol]. 

EXAMPLE 2 (Extension of Example 1). Let A’: 52 + &( IR) be a fuzzy 
variable such that P(X= u,) = p,, i = I,..., r, where ui: R + [0, 1 ] are con- 
tinuous with compact support. Then 

E(X)= i PiU, 
r=l 

(5.1) 

The sum of two fuzzy sets is defined as (U + u)(x) = 
SUP.~+==.~ min[u( y), u(z)], x E R, and the product of a scalar and a fuzzy set 
is defined as 

u(i- ‘x) if %#O 

(hf)(x)= 0 if A=O, x#O 

sup U(Y) if i=O, x=0. 
VElW 

(These definitions generalize the corresponding operations with sets). 

EXAMPLE 3. Consider now a fuzzy r.v. of discrete type, i.e., 
X: Q + FO(tR) such that P(X= ui) = pi, i= 1, 2,..., where ui: R -+ [IO, l] are 
continuous and have compact support. The infinite sum of fuzzy sets is 
defined by (cim_ t u,)(x) = sup infj, , [uj(yj)], where the supremum is taken 
over all sequence {y,, yZ,...} such that x = xi”=, yj. Then by using 
Theorem 3.1 and the fact that v(A) = jA FdP is a set-valued measure for 
every random set F, (see [7]), it is easy to check (as a generalization of 
(5.1)) that 

E(X)= 5 piu,. 
i=l 

(5.2) 
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EXAMPLE 4 (Nondiscrete case). Although the theory developed in Sec- 
tions 3 and 4 applies to fuzzy r.v.‘s of general type, the computation of the 
expected value becomes somewhat complicated in the case of nondiscrete 
r.v. 

Let X denote the diameter of a hole made by a drillpress and, because of 
the errors of measurement, let the values of X be fuzzy sets rather than 
numbers. Let X: !G? + &(Iw) such that X(o) is continuous and has compact 
support, o E G? Then, to compute E(X) we use Example 2 along with 
Theorem 4.3. 

If S = C;= 1 UiXA, is a simple function, USE&, Aim&, then 
E(s) = C;=, u,P(Ai). If X is an integrably bounded fuzzy T.v., then E(X) = 
lim, + m E(s~), where sk is a simple function and sk -+ X, (all these limits are 
in the metric d defined by (4.1)). 

Remark. In the above examples, we have made a somewhat restrictive 
assumption that the fuzzy r.v.‘s take on values which have compact sup- 
port. If this assumption is dropped, then the addition of fuzzy sets defined 
in Example 2 (and the corresponding formula (5.1)) should be replaced by 
a different operation defined as follows: (U + u)(x) = sup{a E [0, 11: 
X~w4+Lw)9 where U, VEF~([W), L,(U)= {xER: u(x)>a}, L,(u)= 
{x~ [w: u(x) >a}. For details see Puri and Ralescu [lS, 211. 

6. CONCLUDING REMARKS 

Motivated by the study of asymptotic or limiting opinion (see the exam- 
ple in the Introduction), it is desirable to explore different limit theorems 
for sequences of independent fuzzy random variables. Of particularly great 
interests would be the theorems which generalize the classical law of large 
numbers and the central limit theorem. (See Artstein and Vitale [ 11, 
Cressie [S], and Puri and Ralescu [20] for generalizations of some of 
these theorems to random sets.) 

7. APPENDIX 

Proof of Theorem 4.1. Let {u,, n 2 1) be a Cauchy sequence in &( KY’). 
Consider a fixed IX> 0. Then {L,(u,), n > 1 } is a Cauchy sequence in 
(Q(W), dH) where Q(W) denotes all nonempty compact subsets of Iw”. 

Since (Q(W), dH) is complete (Theorem 2.1), it follows that 

4l 
L(%) - Ma E Q(‘W. 
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Actually, from the Definition (4.1) of d and from the continuity of d,, it 
is easy to see that f.,(u,,) +d” M,, uniformly in c( E [0, 11. 

Consider now the family {M,: CY E [0, 1 ] }, where M, = R”. Take c( 6 fl 
and denote by p the Hausdorff semimetric in Q(5Y’) (see Sect. 2). We then 
have 

PUG, Mm) G P(J+$> LB(u,,)) + PV&,), Uu,,)) + p(L,(u,), M,). 

Since Lp(u,) G L,(u,), it follows that p(L&u,), L,(u,)) = 0. Thus 
p(M,, M,) dp(M,, L,(u,)) + p(L,(u,), M,) <E if n is large enough. Hence 
p(M,, M,) = 0, and since M,, M, are closed, we have M, s M,. 

Now take LI > 0, a,,?, and lim,,, r ~1, = a. We have to show that 
M,=f-C=, M,fi. 

It is clear that 

M,E i, Mxn. (7.1) 
n=l 

Using again the Hausdorff semimetric, we get 

P 

+ P(Lcc(uj), Ma) for fixed j. 

But p( n,“=, &(Uj), L,(u,)) = 0. Consequently, for every E > 0, there exists j, 
such that 

fi M,“, fi L,“(u~) 
II=1 n=L 

for j 3 j,, since L,(uj) --t M, . 
Now 

+ P(K,,, L&q)) 

L&j) for anypal. 

Since f);=, M,” G Mrp, we obtain 

P ( IT Mxn' fi LE"(ui))<P(M,, Lmr(Ui))+ P (L,,,(ui), [ Lx"(uj)). 
n=I ,1= I n= I 
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Now p(MTn, +,,(uj)) <E for j>j,. Note that (since the convergence 
&(u,) + M, IS uniform in cr) j, does not depend on p. Since { L,(u,), p 3 1 } 
decreases to f-j;=, L,,(uj), if follows that p(&Ju,), n,4=, L,,(uj)) <E for 
some p,, (depending on j). Thus p( n;= 1 MRn, fl,“=, L,“(u,)) < 2e, if j is 
large. 

Finally, by taking j large enough, we obtain 

P fi Men, M, 6 3~ 
( ) 

i.e., fi M,” E M,. (7.2) 
n= 1 n=l 

Equations (7.1) and (7.2) yield n;==, Man= M,. Thus Lemma 3.1 is 
applicable and there exists u E Po( W) with L,(U) = M, for every a E [0, 11. 
It follows that L,(u,) --f dH L,(U). It remains to show that u,, -+ u in 
(%lPY, 4. 

Let E > 0. Then, since {u,} is Cauchy, there exists n, such that n, m > n, 
implies d(u,, u,) < E. 

Let n( >n,) be fixed. Then 

Thus sup,, o dH( L,( u,), L,(U)) 6 E, i.e., d( u,, , U) 6 F for n > n,, implying that 
U, + u in the metric d. The proof terminates. 
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