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Abstract

We show that, under some mild conditions, a bialgebra in an abelian and coabelian braided monoidal
category has a weak projection onto a formally smooth (as a coalgebra) sub-bialgebra with antipode; see
Theorem 1.14. In the second part of the paper we prove that bialgebras with weak projections are cross
product bialgebras; see Theorem 2.12. In the particular case when the bialgebra A is cocommutative and
a certain cocycle associated to the weak projection is trivial we prove that A is a double cross product, or
biproduct in Madjid’s terminology. The last result is based on a universal property of double cross products
which, by Theorem 2.15, works in braided monoidal categories. We also investigate the situation when the
right action of the associated matched pair is trivial.
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Introduction

Hopf algebras in a braided monoidal category are very important structures. Probably the
first known examples are Z-graded and Z2-graded bialgebras (also called superbialgebras), that
already appeared in the work of Milnor–Moore and MacLane. Other examples, such as bialge-
bras in the category of Yetter–Drinfeld modules, arose in a natural way in the characterization
as a double crossed product of (ordinary) Hopf algebras with a projection [Ra]. Some braided
bialgebras have also played a central role in the theory of quantum groups.

The abundance of examples and their applications explain the increasing interest for these ob-
jects and the attempts in describing their structure. For example in [BD1,BD2,BD3,Scha] several
generalized versions of the double cross product bialgebra in a braided monoidal category M,
generically called cross product bialgebras, are constructed. All of them have the common fea-
ture that, as objects in M, they are the tensor product of two objects in M. Let A be such a cross
product, and let R and B the corresponding objects such that A � R ⊗ B . Depending on the
particular type of cross product, the objects R and B may have additional properties, like being
algebras and/or coalgebras. These structures may also satisfy some compatibility relations. For
example, we can look for those cross product bialgebras A � R ⊗ B such that there are a bialge-
bra morphism σ :B → A and a right B-linear coalgebra map π :A → B satisfying the relation
πσ = IdB (here A is a B-module via σ ). For simplicity, we will say that A is a bialgebra (in M)
with weak projection π on B . In the case when M is the category of vector spaces, the problem
of characterizing bialgebras with a weak projection was considered in [Scha].

The purpose of this is two fold. We assume that M is a semisimple abelian and coabelian
braided monoidal category (see Definition 1.1) and that σ :B → A is morphism of bialgebras
in M. First, we want to show that there is a retraction π of σ which is a right B-linear morphism
of coalgebras, provided that B is formally smooth as a coalgebra and that the B-adic coalgebra
filtration on A is exhaustive (see Theorem 1.14). Secondly, assuming that a retraction π as above
exists, we want to show that A is factorizable and to describe the corresponding structure R that
arises in this situation. For this part of the paper we use the results of [BD3], that help us to prove
that A is the cross product algebra R � B where R is the ‘coinvariant’ subobject with respect
to the right coaction of B on A defined by π (see Theorem 2.12). Several particular cases are
also investigated. In Theorem 2.16, under the additional assumption that A is cocommutative and
a certain cocycle is trivial, we describe the structure of A as a biproduct bialgebra of a certain
matched pair (see Theorem 2.15).

We would like to note that some applications of the last mentioned result and its corollaries
(see Proposition 2.19) are given in [AMS3]. As a matter of fact, our interest for the problems that
we study in this paper originates in our work on the structure of cocommutative Hopf algebras
with dual Chevalley property from [AMS3]. In particular, [AMS3, Theorem 6.14] and [AMS3,
Theorem 6.16] are direct consequences of the main results of this article.

Let K be a field. A trivial example of semisimple braided monoidal category is the category
of vector spaces over K . Typical examples of nontrivial semisimple braided monoidal categories
are the category MH of right comodules over a cosemisimple coquasitriangular K-Hopf algebra
H and the category MH of right modules over a semisimple quasitriangular K-Hopf algebra H .
Note that an algebra or a coalgebra in these categories are ordinary algebras and coalgebras with
an extra compatible structure. Examples of semisimple braided monoidal categories where this
situation does not occur in general are the category MH of right comodules over a cosemisimple
coquasitriangular K-quasi-Hopf algebra H and the category MH of right modules over a semi-
simple quasitriangular K-quasi-Hopf algebra H (see [Ka, Definition XV.2.1, p. 371]). Therefore
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our approach applies to these categories and can be seen as a way to reconstruct a meaningful
class of braided bialgebras therein via a bosonization type procedure.

1. Hopf algebras in a braided category M

Definition 1.1. An abelian monoidal category is a monoidal category (M,⊗,1) such that:

(1) M is an abelian category;
(2) both the functors X ⊗ (−) :M → M and (−)⊗X :M → M are additive and right exact, for

every object X ∈ M.

A coabelian monoidal category is a monoidal category (M,⊗,1) such that:

(1) M is an abelian category;
(2) both the functors X ⊗ (−) :M → M and (−) ⊗ X :M → M are additive and left exact, for

every object X ∈ M.

Definitions 1.2. A braided monoidal category (M,⊗,1, c) is a monoidal category (M,⊗,1)

equipped with a braiding c, that is a natural isomorphism

cX,Y :X ⊗ Y → Y ⊗ X

satisfying

cX⊗Y,Z = (cX,Z ⊗ Y)(X ⊗ cY,Z) and cX,Y⊗Z = (Y ⊗ cX,Z)(cX,Y ⊗ Z).

For further details on these topics, we refer to [Ka, Chapter XIII].
A bialgebra (B,m,u,Δ, ε) in a braided monoidal category (M,⊗,1, c) consists of an algebra

(B,m,u) and a coalgebra (B,Δ, ε) in M such that the diagrams in Fig. 1 are commutative.

1.3. For any bialgebra B in a monoidal category (M,⊗,1) we define the monoidal category
(MB,⊗,1) of right B-modules in M as in [BD1]. The tensor product of two right B-modules
(M,μM) and (N,μN) carries a right B-module structure defined by:

μM⊗N = (μM ⊗ μN)(M ⊗ cN,B ⊗ B)(M ⊗ N ⊗ Δ).

Moreover, if (M,⊗,1) is an abelian monoidal category, then (MB,⊗,1) is an abelian monoidal
category too. Assuming that (M,⊗,1) is abelian and coabelian one proves that (MB,⊗,1) is
coabelian too.

Fig. 1. The definition of bialgebras in M.
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Obviously, (B,Δ, ε) is a coalgebra both in (MB,⊗,1) and (BMB,⊗,1). Of course, in both
cases, B is regarded as a left and a right B-module via the multiplication on B .

1.4. To each coalgebra (C,Δ, ε) in (M,⊗,1, a, l, r) one associates a class of monomorphisms

CIC := {
g ∈ CMC

∣
∣ ∃f in M s.t. fg = Id

}
.

Recall that C is coseparable whenever the comultiplication Δ cosplits in CMC . We say that C is
formally smooth in M if CokerΔC is CIC -injective. For other characterizations and properties
of coseparable and formally smooth coalgebras the reader is referred to [AMS2] and [Ar2]. In
the same papers one can find different equivalent definitions of separable functors.

1.5. Let (F,φ0, φ2) : (M,⊗,1, a, l, r) → (M′,⊗′,1′, a′, l′, r ′) be a monoidal functor between
two monoidal categories, where φ2(U,V ) :F(U ⊗V ) → F(U)⊗′ F(V ), for any U,V ∈M and
φ0 : 1′ → F(1). If (C,Δ, ε) is a coalgebra in M then (C′,ΔC′ , εC′) := (F (C),ΔF(C), εF(C)) is
a coalgebra in M′, with respect to the comultiplication and the counit given by

ΔF(C) := φ−1
2 (C,C)F (Δ), εF(C) := φ−1

0 F(ε).

Let us consider the functor F ′ : CMC → C′M′C′
that associates to (M,CρM,ρC

M) the object

(F (M),C′
ρF(M), ρ

C′
F(M)), where

C′
ρF(M) := φ−1

2 (C,M)F
(

CρM

)
, ρC′

F(M) := φ−1
2 (M,C)F

(
ρC

M

)
.

The proposition below is a restatement of [Ar2, Proposition 2.21], from which we have kept
only the part that we need to prove Theorem 1.7.

Proposition 1.6. Let M, M′, C, C′, F and F ′ be as in (1.5). We assume that M and M′ are
coabelian monoidal categories.

(a) If C is coseparable in M then C′ is coseparable in M′; the converse is true whenever F ′ is
separable.

(b) Assume that F preserves cokernels. If C is formally smooth as a coalgebra in M then C′ is
formally smooth as a coalgebra in M′; the converse is true whenever F ′ is separable.

Now we can prove one of the main results of this section.

Theorem 1.7. Let B be a Hopf algebra in a braided abelian and coabelian monoidal category
(M,⊗,1, c). We have that:

(a) B is coseparable in (MB,⊗,1) if and only if B is coseparable in (M,⊗,1).
(b) B is formally smooth as a coalgebra in (MB,⊗,1) if and if B is formally smooth as a

coalgebra in (M,⊗,1).

Proof. We apply Proposition 1.6 in the case when M := (MB,⊗,1) and M′ := (M,⊗,1),
which are coabelian categories. We take (F,φ0, φ2) : (MB,⊗,1) → (M,⊗,1) to be the forgetful
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functor from MB to M, where φ0 = Id1 and, for any U,V ∈ MB , we have φ2(U,V ) = IdU⊗V .
We also take F ′ to be the forgetful functor from BMB

B to BMB . Since (M,⊗,1) is an abelian
monoidal category, then the functor (−) ⊗ B :M → M is additive and right exact. Hence F

preserves cokernels, see [Ar1, Theorem 3.6]. Thus, in view of Proposition 1.6, to conclude the
proof of the theorem, it is enough to show that F ′ is a separable functor.

For each (M,BρM,ρB
M) ∈ BMB we define (Mco(B), iMco(B) ) to be the equalizer of the maps

ρB
M :M → M ⊗ B and (M ⊗ uB)r−1

M :M → M ⊗ B.

Since B is right flat (M is an abelian monoidal category), we can apply the dual version of
[Ar1, Proposition 3.3] to show that (Mco(B), iMco(B) ) inherits from M a natural left B-comodule
structure BρMco(B) :Mco(B) → B ⊗ Mco(B). As a matter of fact, with respect to this comodule
structure, Mco(B) is the kernel of ρB

M − (M ⊗uB)rM
−1 in the category BM. We obtain a functor

F ′′ : BMB → BM defined by:

F ′′(M,BρM,ρB
M

) = (
Mco(B), BρMco(B)

)
.

Then F ′′ ◦F ′ associates to (M,μB
M,BρM,ρB

M) the left B-comodule (Mco(B), BρMco(B) ) in M. By
the dual version of [BD1, Proposition 3.6.3], it follows that F ′′ ◦ F ′ is a monoidal equivalence.
Therefore F ′′ ◦ F ′ is a separable functor and hence F ′ is separable too. �
Remark 1.8. By applying Theorem 1.7 to the category of vector spaces, we recover (4) ⇔ (5)

in [AMS1, Theorem 2.26] and (a) ⇔ (b) in [Ar1, Proposition 7.27].
The formal smoothness or coseparability of B in the category of right modules over itself

plays a fundamental role in the construction of a weak projection in Theorem 1.14.

A convenient way to check that a Hopf algebra B is coseparable in BM is to show that B has
a total integral in M. This characterization of coseparable Hopf algebras will be proved next.

Definition 1.9. Let B be a Hopf algebra in a braided abelian and coabelian monoidal category
(M,⊗,1, c). A morphism λ :B → 1 in M is called a (left) total integral if it satisfies the rela-
tions:

rB(B ⊗ λ)Δ = uλ, (1)

λu = Id1. (2)

1.10. In order to simplify the computation we will use the diagrammatic representation of mor-
phisms in a braided category. For details on this method the reader is referred to [Ka, XIV.1]. On
the first line of pictures in Fig. 2 are included the basic examples: the representation of a mor-
phism f :V → W (downwards, the domain up) and the diagrams of f ′ ◦ f ′′ , g′ ⊗ g′′ and cV,W .

The last four diagrams denote respectively the multiplication, the comultiplication, the unit and
the counit of a bialgebra B in M. The graphical representation of associativity, existence of unit,
coassociativity, existence of counit, compatibility between multiplication and comultiplication,
the fact that ε is a morphism of algebras and the fact that u is a morphism of coalgebras can be
found also in Fig. 2 (second line). The last two pictures on the same line are equivalent to the
definition of a total integral. The fact that the right-hand side of the last equality is empty means
that we can remove the left-hand side in any diagrams that contains it.
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Fig. 2. Diagrammatic representation of morphisms in M.

Fig. 3. The proof of relation (3).

Proposition 1.11. A Hopf algebra B in an abelian and coabelian braided monoidal category M

is coseparable in MB if and only if it has a total integral. In this case, B is formally smooth as a
coalgebra in MB .

Proof. We first assume that there is a total integral λ :B → 1. Let us show that:

lB(λm ⊗ B)(B ⊗ S ⊗ B)(B ⊗ Δ) = rB(B ⊗ λm)(B ⊗ B ⊗ S)(Δ ⊗ B). (3)

The proof is given in Fig. 3. The first equality follows by relation (1) and the definition of u. The
second relation is a consequence of the fact that B is a bialgebra in M, so Δm = (m ⊗ cB,B ⊗
m)(Δ ⊗ Δ). The third equation follows by the fact that the antipode S is an anti-morphism
of coalgebras, i.e. ΔS = (S ⊗ S)cB,BΔ. For the fourth equality we used that the braiding is
a functorial morphisms (thus m, S and λ can by pulled along the string over and under any
crossing). The last two equalities follow m(S ⊗ B)Δ = uε and the properties of ε and u.

We now define θ :B ⊗ B → B by θ(x ⊗ y) = lB(λm ⊗ B)(B ⊗ S ⊗ B)(B ⊗ Δ). We have to
prove that θ is a section of Δ in the category of B-bicomodules in MB. Note that the category
of B-bicomodules in MB is BMB

B. An object M ∈ M is in BMB
B if it is a right B-module and a

B-bicomodule such that M is a Hopf module both in BMB and MB
B.

Let us show that θ is a B-bicolinear section of Δ. Taking into account relation (3), we prove
that θ is left B-colinear in the first equality from Fig. 4. The fact that θ is right B-colinear is
proved in the second equality of the same figure. In both of them, we used that Δ is coassociative
and that the comodule structures on B and B ⊗ B are defined by Δ, B ⊗ Δ and Δ ⊗ B . To show
that θ is a section of Δ we use that λu = Id1, see the last sequence of equalities from Fig. 4.

It remains to prove that θ is right B-linear. This is done in Fig. 5. The first equality was
obtained by using the fact that Δ is a morphism of algebras and that S is an anti-morphism of
algebras, i.e. mS = (S ⊗S)cB,Bm. To get the second equality we pulled S and Δ under a crossing
(this is possible because the braiding is functorial). For the third equality we used associativity
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Fig. 4. The map θ is a B-bicolinear section of Δ.

Fig. 5. The map θ is B-linear.

and coassociativity. The fourth and the fifth equalities follow by the definitions of the antipode,
unit and counit. To deduce the sixth equality we pulled m and λ over the crossing.

Conversely, let θ :B ⊗ B → B be a section of Δ, which is a morphism of B-bicomodules
in MB. Let λ := εθ(B ⊗ u)r−1

B . Since θ is a morphism of right B-comodules it follows that

Δθ(B ⊗ u)r−1
B = [

θ(B ⊗ u)r−1
B ⊗ u

]
r−1
B .

Then, by applying ε ⊗ B, we get θ(B ⊗ u)r−1
B = uλ. As θ is B-colinear, we have:

Δθ(B ⊗ u)r−1
B = (B ⊗ θ)(Δ ⊗ u)r−1

B .

Therefore, by the definition of λ, we get (1). Since θ is a section of Δ we deduce that
λu = Id1. �
Definition 1.12. Let E be a bialgebra in a braided monoidal category ((M,⊗,1), c). Let H be
a Hopf subalgebra of E. Following [Scha, Definition 5.1], we say that π :E → H is a (right)
weak projection (onto H ) if it is a right H -linear coalgebra homomorphism such that πσ = IdH ,

where σ :H → E is the canonical morphism.

1.13. Let C be a coalgebra in a coabelian monoidal category M. Following [AMS2, 4.7], as in
the case of vector spaces we can introduce the wedge product of two subobjects X, Y of C in M:

(
X ∧C Y, iCX∧Y

) := Ker
[
(pX ⊗ pY ) ◦ �C

]
,

where pX :C → C/X and pY :C → C/Y are the canonical quotient maps.
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We will simply write ∧ instead of ∧C if there is no danger of confusion.
Let δ :D → C be a monomorphism which is a coalgebra homomorphism in M. Denote by

(L,p) the cokernel of δ in M. Regard D as a C-bicomodule via δ and observe that L is a
C-bicomodule and p is a morphism of bicomodules. Let

(
D∧n

, δn

) := Ker
(
p⊗nΔn−1

C

)

for any n ∈ N \ {0}. Note that (D∧1
, δ1) = (D, δ) and (D∧2

, δ2) = D ∧C D. In order to simplify
the notations we set (D∧0

, δ0) = (0,0).

Now, since M has left exact tensor functors and since p⊗nΔn−1
C is a morphism of C-bico-

modules (as a composition of morphisms of C-bicomodules), we get that D∧n
is a coalgebra and

δn :D∧n → C is a coalgebra homomorphism for any n > 0 and hence for any n ∈ N.

Direct systems of Hochschild extensions in coabelian monoidal categories were defined in
[AMS2, Definition 4.11].

Theorem 1.14. Let (M,⊗,1, c) be a braided monoidal category. Assume that M is semisimple
(i.e. every object is projective) abelian and that both the functors X ⊗ (−) and (−) ⊗ X from M

to M are additive for every X ∈ M. Let A be bialgebra in M and let B be a sub-bialgebra
of A in M. Let σ :B → A denote the canonical inclusion. Assume that A is the direct limit
(taken in M) of (B∧n

)n∈N, the B-adic coalgebra filtration. If B has an antipode (i.e. it is a Hopf
algebra in M) and B is formally smooth as a coalgebra in M (e.g. B is coseparable in M), then
A has a right weak projection onto B .

Proof. Clearly each additive functor T :M → M preserves split short exact sequences. Since
M is semisimple, every short exact sequence is split so that T is an exact functor. In particular
(M,⊗,1) is both an abelian and a coabelian monoidal category. Let Δ and ε be respectively
the comultiplication and counit of A. We denote B∧n+1

by An, where A0 = B. We will denote
the canonical projection onto A/An by pn. One can regard B and A as a coalgebras in MB,

the latter object being a right B-bimodule via σ. By induction, it follows that An ∈ MB, for
every n ∈ N, as An+1 = Ker[(pn ⊗ p0)Δ] and by induction hypothesis pn is B-linear (of course
Δ is a morphism of right B-modules, since σ is a bialgebra map). Therefore, (B∧n+1

)n∈N is
the B-adic filtration on A in MB. We want to prove that the canonical injections An → An+1
split in MB so that (An)n∈N is a direct system of Hochschild extensions in MB . Indeed, it
is enough to show that the canonical projection An+1 → An+1/An has a section in MB. By
[AMS3, Lemma 2.19] it follows that An+1/An = (An ∧ B)/B has a canonical right comodule
structure ρn :An+1/An → An+1/An ⊗ B, which is induced by the comultiplication of A. If
μn :An+1/An ⊗ B → An+1/An denotes the right B-action then An+1/An is a right–right Hopf
module, that is:

ρnμn = (μn ⊗ mB)(M ⊗ cM,B ⊗ B)(ρn ⊗ ΔB).

The structure theorem for Hopf modules works for Hopf algebras in abelian braided categories,
thus MB

B � M. In fact, the proof of [Sw, Theorem 4.11] can be easily written using the graphical
calculus explained above, so it holds in an arbitrary abelian braided category (note that a similar
result, in a braided category with splitting idempotents can be found in [BGS]). The equivalence
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of categories is established by the functor that associates to V ∈ M the Hopf module V ⊗ B

(with the coaction V ⊗ ΔB and action V ⊗ mB ). We deduce that there is a V ∈ M such that
An+1/An � V ⊗ B (isomorphism in MB

B). Thus, to prove that the inclusion An → An+1 splits
in MB, is sufficient to show that V ⊗ B is projective in MB , for any object V in M. But, by
[AMS2, Proposition 1.6], we have the adjunction:

HomMB
(V ⊗ B,X) � HomM(V ,X), ∀X ∈ MB.

Since, by assumption, M is semisimple, we deduce that V ⊗ B is projective in MB, and hence
that (An)n∈N is a directed system of Hochschild extensions in MB. As B is formally smooth as
a coalgebra in M, by Theorem 1.7, it is also formally smooth as a coalgebra in MB . Since A is
the direct limit of (An)n∈N, we conclude the proof by applying [AMS2, Theorem 4.16] to the
case M = MB . �

As a consequence of Theorem 1.14 we recover the following result.

Corollary 1.15. (See [Ar2, Theorem 9.16].) Let K be a field and let A be a bialgebra in MK

(ordinary bialgebra). Suppose that B is a sub-bialgebra of A with antipode. Assume that B is
formally smooth as a coalgebra and that Corad(A) ⊆ B . Then A has a right weak projection
onto B .

Recall that, for a right H -comodule (M,ρ), the subspace of coinvariant elements Mco(H) is
defined by setting Mco(H) = {m ∈ M | ρ(m) = m ⊗ 1}. If A is an algebra in MH then Aco(H) is
a subalgebra of A.

When H is a cosemisimple coquasitriangular Hopf algebra, then MH is a semisimple braided
monoidal category. Note that bialgebras in MH are usual coalgebras, so we can speak about the
coradical of a bialgebra in this category.

Corollary 1.16. Let H be a cosemisimple coquasitriangular Hopf algebra and let A be a bialge-
bra in MH . Let B denote the coradical of A. Suppose that B is a sub-bialgebra of A (in MH )
with antipode. If B ⊆ Aco(H) then there is a right weak projection π :A → B in MH .

Proof. Since B ⊆ Aco(H) it follows that cB,B is the usual flip map and B is an ordinary
cosemisimple Hopf algebra. A Hopf algebra is cosemisimple if and only if there is λ :B → K

such that (1) and (2) hold true (see e.g. [DNR, Exercise 5.5.9]). Obviously λ is a morphism of
H -comodules, as B ⊆ Aco(H). The conclusion follows by Theorem 1.14. �
2. Weak projections onto a braided Hopf algebra

Our main aim in this section is to characterize bialgebras in a braided monoidal category with
a weak projection onto a Hopf subalgebra.

2.1. Throughout this section we will keep the following assumptions and notations.

(1) (M,⊗,1, c) is an abelian and coabelian braided monoidal category;
(2) (A,mA,uA,ΔA, εA) is a bialgebra in M;
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(3) (B,mB,uB,ΔB, εB) is a sub-bialgebra of A that has an antipode SB (in particular B is a
Hopf algebra in M);

(4) σ :B → A denotes the canonical inclusion (of course, σ is a bialgebra morphism);
(5) π :A → B is a right weak projection onto B (thus π is a morphism of coalgebras in MB ,

where A is a right B-module via σ , and πσ = IdB );
(6) We define the following three endomorphisms (in M) of A:

Φ := σSBπ, Π1 := σπ, Π2 := mA(A ⊗ Φ)ΔA.

Our characterization of A as a generalized crossed product is based on the work of Bespalov
and Drabant [BD3]. We start by proving certain properties of the operators Φ , Π1 and Π2. They
will be used later on to show that the conditions in [BD3, Proposition 4.6] hold true.

Lemma 2.2. Under the assumptions and notations in (2.1), Π1 is a coalgebra homomorphism
such that Π1Π1 = Π1 and

mA(Π1 ⊗ Π1) = Π1mA(Π1 ⊗ Π1). (4)

Proof. Obviously Π1 is a coalgebra homomorphism as σ and π are so. Trivially Π1 is an idem-
potent, as πσ = IdB . Furthermore, we have

mA(Π1 ⊗ Π1) = mA(σπ ⊗ σπ) = σmB(π ⊗ π) = σπ
[
σmB(π ⊗ π)

] = Π1mA(Π1 ⊗ Π1),

so the lemma is proved. �
Lemma 2.3. Under the assumptions and notations in (2.1) we have:

ΔA ◦ Π2 = (mA ⊗ A) ◦ (A ⊗ Φ ⊗ Π2) ◦ (A ⊗ cA,A ◦ ΔA) ◦ ΔA. (5)

Proof. See Fig. 6 on p. 189. The first equality is directly obtained from the definition of Π2.
The second equation follows by the compatibility relation between the multiplication and the
comultiplication of a bialgebra in a braided monoidal category. For the third equality we used
the definition of Φ := σSBπ , that π and σ are coalgebra homomorphisms and the fact that
SB is an anti-homomorphism of coalgebras in M, i.e. ΔSB = (SB ⊗ SB)cΔ. The fourth relation
followed by coassociativity, while the last one was deduced (in view of naturality of the braiding)
by dragging down one of the comultiplication morphisms over the crossing and by applying the
definition of Π2. �

Fig. 6. The proof of Eq. (5).
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Fig. 7. The proof of Eq. (8).

Fig. 8. The proof of Eq. (6).

Lemma 2.4. Under the assumptions and notations in (2.1) we have:

π ◦ Π2 = uB ◦ εA. (6)

Proof. See Fig. 8 on p. 190. By the definition of Π2 we have the first relation. The second one
follows by the fact π is right B-linear (recall that the action of B on A is defined by σ ). To
deduce the third equality we use that π is a morphism of coalgebras, while the last relations
follow immediately by the properties of the antipode, unit, counit and π . �
Lemma 2.5. Under the assumptions and notations in (2.1) we have:

(A ⊗ π) ◦ ΔA ◦ Π2 = (Π2 ⊗ uB) ◦ r−1
A . (7)

Proof. See Fig. 9 on p. 191. For the first equality we used relation (5). The second one follows
by (6), while the third one is a consequence of the compatibility relation between the counit and
the braiding and the compatibility relation between the counit and the comultiplication. The last
equation is just the definition of Π2. �
Lemma 2.6. Under the assumptions and notations in (2.1) we have:

Π2mA(A ⊗ σ) = Π2rA(A ⊗ εB) = rA(Π2 ⊗ εB). (8)

Proof. The proof can be found in Fig. 7 on p. 190. The first and the second equalities are implied
by the definition of Π2 and, respectively, the compatibility relation between multiplication and
comultiplication in a bialgebra. For the next relation one uses the definition of Φ and that σ is
a morphism of coalgebras. The fourth relation holds as π is right B-linear (the B-action on A

is defined via σ ). The fifth and the sixth equalities follow as σ is a morphism of coalgebras and
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Fig. 9. The proof of Eq. (7).

Fig. 10. The proof of Eq. (9).

SB is an anti-morphism of coalgebras and, respectively, by associativity in A. As the braiding
is functorial (so ΔB(B ⊗ σSB) can be dragged under the braiding) and σ is a morphism of
algebras we get the seventh equality. To get the eighth relation we used the definition of the
antipode, while the last one is implied by the properties of the unit and counit in a Hopf algebra,
and the definition of Π2. �
Lemma 2.7. Under the assumptions and notations in (2.1), Π2 is an idempotent such that:

(Π2 ⊗ Π2)ΔA = (Π2 ⊗ Π2)ΔAΠ2. (9)

Proof. Let us first prove that

Π2Π2 = Π2, (10)

that is Π2 is an idempotent. We have

Π2Π2 = mA(A ⊗ σSBπ)ΔAΠ2 = mA(A ⊗ σSB)(A ⊗ π)ΔAΠ2

(7)= mA(A ⊗ σSB)(Π2 ⊗ uB)r−1
A .

Since σ and SH are unital morphism and the right unity constraint r is functorial we get

Π2Π2 = mA(A ⊗ uA)(Π2 ⊗ 1)r−1
A = mA(A ⊗ uA)r−1

A Π2 = Π2.

For the proof of Eq. (9) see Fig. 10 on p. 191. In that figure, we get the first equality by using (5).
The next two relations are consequences of the definition of Φ , relation (10) and relation (8).
Finally, to obtain the last equality we use the properties of the antipode and of the counit, together
with the fact that εBπ = εA. �
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Fig. 11. The proof of Eq. (12).

Lemma 2.8. Under the assumptions and notations in (2.1) we have:

Π1uA = uA and εAΠ2 = εA. (11)

Proof. The first relation is easy: Π1uA = σπuA = σπσuB = σuB = uA. To prove the second
one we perform the following computation:

εAΠ2 = εAmA(A ⊗ σSBπ)ΔA = m1(εA ⊗ εA)(A ⊗ σSBπ)ΔA.

Therefore, by the properties of the counit of a Hopf algebra in braided monoidal category, we get

εAΠ2 = r1(εA ⊗ 1)(A ⊗ εA)ΔA = εArA(A ⊗ εA)ΔA = εA,

so the lemma is completely proved. �
Lemma 2.9. Under the assumptions and notations in (2.1), the homomorphisms mA ◦ (Π2 ⊗Π1)

and (Π2 ⊗ Π1) ◦ ΔA split the idempotent Π2 ⊗ Π1.

Proof. We have to prove that

mA(Π2 ⊗ Π1)(Π2 ⊗ Π1)ΔA = IdA, (12)

(Π2 ⊗ Π1)ΔAmA(Π2 ⊗ Π1) = Π1 ⊗ Π2. (13)

The proof of relation (12) is shown in Fig. 11 on p. 192. The first three equalities are simple
consequences of the fact Π1 and Π2 are idempotents, of the definitions of these homomorphisms
and of (co)associativity in A. For the fourth relation we used the definition of Φ and that π is
a morphism of coalgebras and σ is a morphism of algebras. The last two relations follow by
the definitions of the antipode, unit and counit in a Hopf algebra, together with εBπ = εA and
σuB = uA.

The proof of relation (13) is shown in Fig. 12 on p. 193. The first two equalities immedi-
ately follow by the compatibility relation between multiplication and comultiplication on A, the
fact that Π1 is a coalgebra homomorphism and Π1 = σπ . By using (8) and πmA(A ⊗ σ) =
mB(π ⊗ B), that is π is right B-linear, we get the third relation. The relation εBπ = εA, the
fact that the braiding is functorial and the properties of the counit are used to obtain the fourth
equality. The fifth one is implied by (7), while to prove the last equality one uses Π2Π2 = Π2,
the definition of the unit and the definition of Π1. �
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Fig. 12. The proof of Eq. (13).

Lemma 2.10. Under the assumptions and notations in (2.1), let

(R, i) := Eq
[
(A ⊗ π)ΔA, (A ⊗ uB)r−1

A

]
.

Then there exists a unique morphism p :A → R such that

ip = Π2 and pi = IdR.

Proof. First of all, we have

(A ⊗ π) ◦ ΔA ◦ Π2
(7)= (Π2 ⊗ uH ) ◦ r−1

A = (A ⊗ uH ) ◦ (Π2 ⊗ 1) ◦ r−1
A = (A ⊗ uH ) ◦ r−1

A ◦ Π2.

Thus, by the universal property of the equalizer, there is a unique morphism p :A → R such that
ip = Π2. We have

ipi = Π2i = mA(A ⊗ σSBπ)ΔAi = mA(A ⊗ σSB)(A ⊗ π)ΔAi

= mA(A ⊗ σSB)(A ⊗ uB)r−1
A i = mA(A ⊗ uA)r−1

A i = i.

Since i is a monomorphism we get pi = IdR so that i and p split the idempotent Π2. �
2.11. Before proving one of the main results of this paper, Theorem 2.12, we introduce some
more notations and terminology. First of all the object R, that we introduced in Lemma 2.10,
will be called the diagram of A. Note that R is the ‘coinvariant subobject’ of A with respect to
the right B-coaction induced by the coalgebra homomorphism π .

We now associate to the weak projection π the following data:

mR :R ⊗ R → R, mR := pmA(i ⊗ i);
uR : 1 → R, uR := puA;

ΔR :R → R ⊗ R, ΔR = (p ⊗ p)ΔAi;
εR :R → 1, εR = εAi;

ξ :R ⊗ R → B, ξ := πmA(i ⊗ i);
BμR :B ⊗ R → R, BμR := pmA(σ ⊗ i);
μB

R :R ⊗ B → R, μB
R := pmA(i ⊗ σ);
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BρR :R → B ⊗ R, BρR := (π ⊗ p)ΔAi;
μR

B :B ⊗ R → B, μR
B := πmA(σ ⊗ i).

Theorem 2.12. We keep the assumptions and notations in (2.1) and (2.11).

(1) The diagram R is a coalgebra with comultiplication ΔR and counit εR , and p is a coalgebra
homomorphism.

(2) The morphisms mA(i ⊗ σ) and (p ⊗ π)ΔA are mutual inverses, so that R ⊗ B inherits a
bialgebra structure which is the cross product bialgebra R � B defined by

mR�B = (R ⊗mB)(mR ⊗ ξ ⊗B)
(
R ⊗ BμR ⊗R ⊗R ⊗mB

)
(R ⊗B ⊗ cR,R ⊗R ⊗B ⊗B)

× (
R ⊗ BρR ⊗ R ⊗ R ⊗ B ⊗ B

)
(ΔR ⊗ ΔR ⊗ B ⊗ B)

(
R ⊗ BμR ⊗ μR

B ⊗ B
)

× (R ⊗ B ⊗ cB,R ⊗ R ⊗ B)(R ⊗ ΔB ⊗ ΔR ⊗ B),

uR�B = (uR ⊗ uB)Δ1,

ΔR�B = (R ⊗ mB ⊗ R ⊗ B)(R ⊗ B ⊗ cR,B ⊗ B)
(
R ⊗ BρR ⊗ B ⊗ B

)
(ΔR ⊗ ΔB),

εR�B = m1(εR ⊗ εB).

Proof. By the previous lemmata, Π1 and Π2 fulfill the requirements of the right-hand version of
[BD3, Proposition 4.6(2)]. Thus (1) and (3) of the same result hold. In our case it can be checked
that:

(B1,p1, i1) = (B,σ,π) and (B2,p2, i2) = (R, i,p).

The explicit form of mR�B and ΔR�B is a right-hand version of the one in the fourth box of
diagrams in [BD3, Table 2, p. 480]. �

We are now going to investigate a particular case of the above theorem. Namely, when A is
cocommutative and ξ is trivial, we will show that A is the double cross product of a matched pair
(see definitions below).

Definition 2.13. Let (R,mR,uR,ΔR, εR) and (B,mB,uB,ΔB, εB) be bialgebras in a braided
abelian and coabelian monoidal category (M,⊗,1, c). Following [Maj, Definition 7.2.1, p. 298],
we say that (R,B) defines a matched pair of bialgebras, if there exist morphisms

� :B ⊗ R → R and � :B ⊗ R → B

satisfying the seven conditions below:

(1) (R,ΔR, εR,�) is a left B-module coalgebra;
(2) (B,ΔB, εB,�) is a right R-module coalgebra;
(3) �(uB ⊗ R) = uBεRlR;
(4) �(B ⊗ uR) = uRεBrB;
(5) mB(� ⊗ B)(B ⊗ � ⊗ �)(B ⊗ ΔB⊗R) = �(mR ⊗ B);
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(6) mR(R ⊗ �)(� ⊗ � ⊗ R)(ΔB⊗R ⊗ R) = �(B ⊗ mR);
(7) (� ⊗ �)ΔB⊗R = cR,B(� ⊗ �)ΔB⊗R .

In this case, for sake of shortness, we will say that (R,B,�,�) is a matched pair of bialgebras
in (M,⊗,1, c).

2.14. Let (R,B,�,�) be a matched pair. By [BD2, Corollary 2.17], we get that:

mR�B = (mR ⊗ mB)(R ⊗ � ⊗ � ⊗ B)(R ⊗ B ⊗ cB,R ⊗ R ⊗ B)(R ⊗ ΔB ⊗ ΔR ⊗ B),

uR�B = (uR ⊗ uB)Δ1,

ΔR�B = (R ⊗ cR,B ⊗ B)(ΔR ⊗ ΔB),

εR�B = m1(εR ⊗ εB)

defines a new bialgebra R � B , that is called the double cross product bialgebra. It can be
obtained as a particular case of the cross product bialgebra R � B by setting BμR = �, μR

B = �
and taking ξ , BρR and μR

B to be trivial in (2.11).

Theorem 2.15. Let σ :B → A and i :R → A be bialgebra morphisms in a braided monoidal
category (M,⊗,1, c) such that Φ := mA(i ⊗ σ) is an isomorphism in M. Let Ψ := Φ−1Θ ,
where Θ :B ⊗ R → A is defined by Θ := mA(σ ⊗ i).

Consider the homomorphisms � :B ⊗ R → R and � :B ⊗ R → B defined by:

� := rR(R ⊗ εB)Ψ, � := lB(εR ⊗ B)Ψ. (14)

Then (R,B,�,�) is a matched pair and A � R � B .

Proof. We will follow the proof of [Maj, Theorem 7.2.3]. It is easy to see that the proofs of
relations [Maj, (7.10)] and [Maj, (7.11)] work in a braided monoidal category, as they can be
done in a diagrammatic way. Therefore, we have:

(R ⊗ mB)(Ψ ⊗ B)(B ⊗ Ψ ) = Ψ (mB ⊗ R), Ψ (B ⊗ uR)r−1
B = (uR ⊗ B)l−1

B , (15)

(mR ⊗ B)(R ⊗ Ψ )(Ψ ⊗ R) = Ψ (B ⊗ mR), Ψ (uB ⊗ R)l−1
R = (R ⊗ uB)r−1

R . (16)

For example the first relation in (15) is proved in Fig. 13. The first equivalence there holds since
Φ = mA(i ⊗ σ) is by assumption an isomorphism. The second and the third equivalences are
consequences of associativity in A and of relation ΦΨ = Θ . Since the last equality is obviously
true by associativity in A, the required relation is proved. The second relation in (15) follows by
the computation performed in Fig. 14. The first equality holds since ΦΨ = Θ , while the second
follows by the fact that i and σ are homomorphisms of algebras and by the definition of the unit
in an algebra. To get the second relation in (15) we use the fact that Φ is an isomorphism.

As in the proof of [Maj, Theorem 7.2.3], by applying lB(εR ⊗B) and rR(R ⊗εR) respectively
to (16) and (15), we get that � defines a left action of B on R and � defines a right action of R

on B . Indeed, by applying εR ⊗ B to the second relation in (15) it is easy to see that � is unital.
The second axiom that defines a right action is checked in Fig. 15.



196 A. Ardizzoni et al. / Journal of Algebra 318 (2007) 180–201
Fig. 13. The proof of the first equation in (15).

Fig. 14. The proof of the second equation in (15).

Furthermore, by applying lB(εR ⊗ B) and rR(R ⊗ εR) respectively to (15) and (16), we get

�(mB ⊗ R) = mB(� ⊗ B)(B ⊗ Ψ ), (17)

�(B ⊗ mR) = mR(R ⊗ �)(Ψ ⊗ R). (18)

For the proof of (17) see Fig. 16. We now want to check that Θ :B ⊗ R → A is a coalgebra
homomorphism, where the coalgebra structure on B ⊗ R is given by:

ΔB⊗R := (B ⊗ cB,R ⊗ R)(ΔB ⊗ ΔR), εB⊗R := m1(εB ⊗ εR).

Indeed, we have

ΔAΘ = (mA ⊗ mA)(A ⊗ cA,A ⊗ A)(ΔA ⊗ ΔA)(σ ⊗ i)

= (mA ⊗ mA)(A ⊗ cA,A ⊗ A)(σ ⊗ σ ⊗ i ⊗ i)(ΔB ⊗ ΔR)

= (mA ⊗ mA)(σ ⊗ i ⊗ σ ⊗ i)(B ⊗ cB,R ⊗ R)(ΔB ⊗ ΔR)

= (Θ ⊗ Θ)(B ⊗ cB,R ⊗ R)(ΔB ⊗ ΔR) = (Θ ⊗ Θ)ΔB⊗R,

Fig. 15. B is a right R-module with respect to �.
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Fig. 16. The proof of Eq. (17).

Fig. 17. The proof of Eq. (20).

and εAΘ = m1(εA ⊗ εA)(σ ⊗ i) = m1(εB ⊗ εR) = εB⊗R. In a similar way, by interchanging B

and R, we can prove that Φ is a homomorphism of coalgebras. Thus Ψ = Φ−1Θ is a coalgebra
homomorphism too, so

ΔR⊗BΨ = (Ψ ⊗ Ψ )ΔB⊗R and εR⊗BΨ = εB⊗R. (19)

By applying lB(εR ⊗ B) ⊗ lB(εR ⊗ B) to both sides of the first equality in (19) we get the first
relation in Fig. 17. By the properties of εB and εR we get the second relation in the same figure,
that is we have:

ΔB� = (� ⊗ �)ΔB⊗R. (20)

As εB� = εBlB(εR ⊗ B)Ψ = εR⊗BΨ = εB⊗R we have proved that (B,ΔB, εB,�) is a right
R-module coalgebra. Similarly one can prove that (R,ΔR, εR,�) is a left B-module coalgebra.

By applying rR(R ⊗ εH ) ⊗ lH (εR ⊗ H) and lH (εR ⊗ H) ⊗ rR(R ⊗ εH ) respectively to both
sides of the first equality in (19) (see e.g. Fig. 18) one can prove the relations:

Ψ = (� ⊗ �)ΔB⊗R and cR,BΨ = (� ⊗ �)ΔB⊗R. (21)

By the two relations of (21) we deduce

cR,B(� ⊗ �)ΔB⊗R = (� ⊗ �)ΔB⊗R. (22)

By applying εR ⊗B to the both sides of (15) we get the first equation in Fig. 19. By the definition
of the right action of R on B we get the relation in the middle of that figure. By using the first
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Fig. 18. The proof of Eq. (21).

Fig. 19. The proof of Eq. (23).

equation in (21) we get the last equality in Fig. 19. Therefore we have proved the following
equation:

mB(� ⊗ B)(B ⊗ � ⊗ �)(B ⊗ ΔB⊗R) = �(mR ⊗ B). (23)

The relation (6) from Definition 2.13 can be proved similarly. Finally, by composing both sides
of (16) by εR ⊗ B to the left and by uB ⊗ B ⊗ uR to the right we get:

�(uB ⊗ R) = uBεRlR. (24)

The details of the proof are given in Fig. 20. Analogously one can prove relation (4) from Def-
inition 2.13. In conclusion, we have proved that (R,B,�,�) is a matched pair and that Φ is a
morphism of coalgebras.

It remains to prove that Φ is an isomorphism of algebras. Obviously Φ is an unital homomor-
phism. By (21) it follows that mR�B = (mR ⊗ mB)(R ⊗ Ψ ⊗ B). Since i and σ are morphisms
of algebras and mA is associative we get

ΦmR�B = mA(i ⊗ σ)(mR ⊗ mB)(R ⊗ Ψ ⊗ B) = mA(mA ⊗ A)
[
i ⊗ mA(i ⊗ σ)Ψ ⊗ σ

]

= mA(mA ⊗ A)(i ⊗ ΦΨ ⊗ σ) = mA(mA ⊗ A)(i ⊗ Θ ⊗ σ)

= mA(mA ⊗ A)
[
i ⊗ mA(σ ⊗ i) ⊗ σ

] = mA(Φ ⊗ Φ).

Trivially ΦuR�B = uA since i and σ are unital homomorphism and mA(uA ⊗ uA)Δ1 = uA, so
the theorem is proved. �
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Fig. 20. The proof of Eq. (24).

Theorem 2.16. We keep the assumptions and notations in (2.1) and (2.11). We also assume that
A is cocommutative and ξ is trivial, i.e. cA,AΔA = ΔA and ξ = uBm1(εR ⊗ εR). Then

(R,B,�,�)

is a matched pair of bialgebras such that A � R � B , where

� := BμR = pmA(σ ⊗ i) :B ⊗ R → R and � := μR
B = πmA(σ ⊗ i) :B ⊗ R → B.

(25)

Proof. Since ξ is trivial, by [BD3, Proposition 3.7(5)] it follows that R is an algebra and i :
R → A is an algebra homomorphism. Our aim now is to show that i : R → A is a coalgebra
homomorphism too. In view of [BD3, Proposition 3.7(8)] it is enough to prove that

BρR = (uB ⊗ R)l−1
R and (π ⊗ π)ΔAi = (uB ⊗ uB)Δ1εR. (26)

Since π is a coalgebra homomorphism, the second equality follows by [BD3, Proposition 3.7(6)].
Let us prove the first one. Indeed, as R is the equalizer of (A⊗π)ΔA and (A⊗uB)r−1

A , we have

(p ⊗ π)ΔAi = (p ⊗ B)(A ⊗ π)ΔAi = (p ⊗ B)(A ⊗ uB)r−1
A i = (R ⊗ uB)(p ⊗ 1)r−1

A i

= (R ⊗ uB)r−1
R pi = (R ⊗ uB)r−1

R .

Therefore

BρR = (π ⊗ p)ΔAi = (π ⊗ p)cA,AΔAi = cA,A(p ⊗ π)ΔAi = cA,A(R ⊗ uB)r−1
R

= (uB ⊗ R)cR,1r
−1
R = (uB ⊗ R)l−1

R .

Hence (26) is proved and, in consequence, it follows that i is a morphism of bialgebras. By
Theorem 2.12(2) the morphisms Φ = mA(i ⊗ σ) and (p ⊗ π)ΔA are mutual inverses. Thus we
can apply Theorem 2.15. In our case

Ψ = Φ−1Θ = (p ⊗ π)ΔAmA(σ ⊗ i).

In view of (14), it follows that

� = rR(R ⊗ εB)(p ⊗ π)ΔAmA(σ ⊗ i) = prA(A ⊗ εB)ΔAmA(σ ⊗ i) = pmA(σ ⊗ i).
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In a similar way we get

� = πmA(σ ⊗ i). �
Remark 2.17. By applying Theorem 2.16 to the category of right comodules over a cosemisim-
ple coquasitriangular Hopf algebra, one can prove [AMS1, Theorem 6.14] and hence [AMS1,
Theorem 6.16] which is a generalization of the so-called Cartier–Gabriel–Kostant Theorem.

2.18. We keep the assumptions and the notations in (2.1) and (2.11). We take A to be a cocommu-
tative bialgebra in M with trivial cocycle ξ . Thus, by our results, A is the double cross product
of a certain matched pair (R,B,�,�), where the actions � and � are defined by relations (25).
Our aim now is to investigate those bialgebras A as above which, in addition, have the prop-
erty that the right action � :B ⊗ R → B is trivial. We will see that in this case the left action
� :B ⊗ R → R is the adjoint action. More precisely, we have i� = ad, where ad is defined by:

ad = mA(mA ⊗ A)(σ ⊗ i ⊗ σSB)(B ⊗ cB,R)(ΔB ⊗ R).

Moreover, A can be recovered from R and B as the ‘bosonization’ R#B , that is A is the smash
product algebra between R and B , and as a coalgebra A is isomorphic to the tensor product
coalgebra R ⊗ B . Recall that the multiplication and the comultiplication on R#B are given:

mR#B = (mR ⊗ mB)(R ⊗ � ⊗ R ⊗ B)(R ⊗ B ⊗ cB,R ⊗ B)(R ⊗ ΔB ⊗ R ⊗ B),

uR#B = (uR ⊗ uB)Δ1,

ΔR#B = (R ⊗ cR,B ⊗ B)(ΔR ⊗ ΔB),

εR#B = m1(εR ⊗ εB).

Proposition 2.19. We keep the assumptions and notations in (2.1) and (2.11). We also assume
that A is cocommutative and ξ is trivial.

(a) The action � :B ⊗ R → B is trivial if and only if π is left B-linear.
(b) If � is trivial then the left action � :B ⊗ R → R is the adjoint action.
(c) If � is trivial then A � R#B , where B acts on R by the left adjoint action.

Proof. Since (R, i) is the equalizer of (A ⊗ π)ΔA and (A ⊗ uB)r−1
A we get

(A ⊗ π)ΔAi = (A ⊗ uB)r−1
A i.

By applying εR ⊗ B to the both sides of this relation we get πi = uBεR . Now we can prove (a).
If we assume that π is left B-linear, i.e. πmA(σ ⊗ A) = mB(B ⊗ π), then it follows that

� = πmA(σ ⊗ i) = mB(B ⊗ πi) = mB(B ⊗ uBεR) = rB(B ⊗ εR).

This means that � is trivial. Conversely, let us assume that πmA(σ ⊗ i) = rB(B ⊗ εR). In order
to prove that πmA(σ ⊗ A) = mB(B ⊗ π) we compute πmA(σ ⊗ Φ). We get
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Fig. 21. The proof of i� = ad.

πmA(σ ⊗ Φ) = πmA

[
σ ⊗ mA(σ ⊗ i)

] = πmA(σ ⊗ i)(mB ⊗ R) = rB(B ⊗ εR)(mB ⊗ R)

= mB

[
B ⊗ πmA(σ ⊗ i)

] = mB(B ⊗ πΦ).

Since B ⊗ Φ is an isomorphism we deduce the required equality.
(b) The proof of i� = ad is given in Fig. 21. The definition of the action � together with

ip = mA(A⊗Φ)ΔA and Φ = σSBπ yield the first equality. The next one is obtained by applying
the compatibility relation between mA and ΔA and the fact that σ is a morphism of coalgebras.
By the first part of the proposition, π is left B-linear. Thus we have the third equality. By using
πi = uBεR and the properties of the unit and counit we conclude the proof of i� = ad.

(c) We already know that � is induced by the left adjoint action. Obviously, if the right action
� is trivial then mR�B = mR#B , where mR#B is defined in (2.18). �
Remark 2.20. An occurrence of the situation described by Proposition 2.19 is contained in
[AMS1, Lemma 6.16] where again the category is that of right comodules over a cosemisim-
ple coquasitriangular Hopf algebra.
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