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I. INTRODUCTION 

The main purpose of this paper is to prove in answer to a question of 
B. H. Neumann [7]: 

THEOREM 1. If G is a$nitegroup, then there is a$nite basis for the identical 
relations holding in G. 

It will be recalled that a factor of a group G is a quotient group H/K, where 
1 < k’ 4 H < G, and this is proper unless K = 1 and H = G. A critical 
group is a finite group which does not belong to the variety generated by its 
proper factors, while a Cross variety is a variety 23 which satisfies: 

(i) 3 has a finite basis for its identical relations; 

(ii) finitely generated groups in 3 are finite; 

(iii) % contains only a finite number of critical groups. 

Professor Higman has pointed out that in order to prove Theorem 1 
it is sufficient to prove: 

THEOREM 2. If B is a finite group, and % is a Cross variety containing all 
factors of B, then the variety U generated by 91 and B is Cross. 

For, since a subvariety of a Cross variety is itself Cross, a simple induction 
argument gives: 

THEOREM 3. A variety of groups is Cross if and only ;f it is generated by a 
finite group. 

Theorem 1 is an immediate consequence of this. 
Theorem 2 is trivial if B is contained in ‘u and, in particular, if B is not 

critical. If B is critical, then it has a unique minimal normal subgroup M, 
and the proof divides into two according as M is or is not abelian. In either 
case, it is sufficient to prove that U(n) satisfies the conditions for a Cross 
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variety, where U (n) is the variety satisfying the identical relations of U which 
involve n or fewer variables. By a result of Neumann [7], 11(n) always has a 
finite basis for its identical relations, so it remains to prove that it satisfies 
the other two conditions for a Cross variety. 

If A1 is not abelian, the main difficulty lies in showing that n can be chosen 
so that finitely generated groups in 11’“) are finite; it is then relatively easy 
to show that llcn) contains only a finite number of critical groups. The main 
concept here is that of an M-subgroup of a group G; roughly, this is a sub- 
group isomorphic to M, and such that the automorphisms induced in it bl 
conjugation by elements of its normalizer include the restrictions to M of the 
inner automorphisms of R. The key result is that, for large enough n, a 
finitely generated group G in 21 cn) has a normal subgroup A’ which is a 
direct product of normal M-subgroups such that G,‘N belongs to ?I. 

If, on the other hand, M is abelian, it is easy to choose n so that finitely 
generated groups in 1l(n) are finite, but much harder to choose IZ so that 
1I(n) contains only a finite number of critical groups. For this purpose we 
make the following definitions: 

The absolute p-rank (for a given prime p) of a finite group is the maximum 
dimension of an absolutely irreducible component of any chief factor of G 
of p-power order, and the p-measure of G is the maximum of the p-ranks of 
its factors (epimorphic images of subgroups). 

The S-rank (for a given nonabelian simple group S) of a finite group G 
is the maximum number of isomorphic copies of S which occur as direct 
factors of a chief factor of G, and the S-measuse of G is the maximum of the 
S-ranks of its factors. 

We then prove: 

THEOREM 4. The order of a critical group can be bounded in terms of its 
exponent, the maximum of its p-measures and S-measures, the maximum of the 
classes of its Sylow subgroups, and the maximum of the orders qf its composition 
factors. 

Theorem 2 for the case in which B is a critical group with abelian minimal 
normal subgroup then follows. 

Section 2 consists of notation, definitions, and preliminary results, and in 
Section 3, Theorem 2 is proved for the nonabelian case. Theorem 4 is proved 
in Section 4. 

2. NOTATION, DEFINITIONS, ANU PRELIMINARY RESULTS 

2.1. The reader is referred to [8] for the definitions of a variety, the variety 
defined by a set of relations, and the variety generated by a class of groups. 
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Throughout, groups are denoted by upper case Roman letters, and varieties by 
upper case Gothic letters. Group elements are denoted by lower case Roman 
letters. As in [8], the variety generated by a group G is denoted by 6, and 
the variety defined by those relations of G involving at most n variables is 
denoted by %(“). 

If G, H are groups, then H < G, H < G, and H d G mean respectively 
that II is a subgroup of G, that H is a proper subgroup of G, and that H is a 
normal subgroup of G. The normalizer of H in G is written N,(H), or more 
frequently N(H), and its centralizer is written C,(H), or C(H). The center 
of H is denoted by Z(H), and its Frattini subgroup by D(H). If S is any 
subset of H, {S} denotes the subgroup of H which is generated by S. 

For any two elements g, h of a group, the element h-lgh is written gh. 
The commutator h-‘g-l& is written [h, g]. Higher commutators are defined 

inductively by the rule [g, , -“,g, ,gll+J = [k , *~*,gnl,g,~+J. If HI , Hz 
are subgroups of G, then [ZZ1, Hz] denotes the subgroup of G generated 
by all commutators [h, , h,] with h, in HI and h, in HA . As with commutators 
of group elements, [Hi , *.., H,, , H+J is defined to be [[II,, ..., H,,], H7,+J. 

If zC(X1 , *.* , &vn) is a word in the free variables .x1 , ... X, , then w(G) 
denotes the subgroup of G generated by all elements of the form w(g, , 3-e) gll) 
where g, , ..., g, E G. 

The reader is reminded that the Frattini subgroup of a finite group G is 
the intersection of its maximal subgroups. It is also the subgroup which 
consists of the set of nongenerators of G. The Fitting subgroup of G is its 
greatest normal nilpotent subgroup. The subgroup T is said to be a partial 
complement to the normal subgroup H of G if G = TH and Tn H is a 
proper subgroup of H. Throughout, “simple ” is taken to mean “nonabelian 
simple.” 

2.2. The following results of R. Remak [9] about direct products are 
required. 

DEFINITION 2.2.1. Let G < H x K; then any element g of G is uniquely 
expressible in the form g4g#, where gb, E ZZ, g# E K. The mappings c#+ # are 
called the projections from G to H, K, and the images G4, G# are called the 
projections of G on H, K. 

LEMMA 2.2.2. Zf Gn H = G#, then G = (Gn H) x (Gn K). 

LEMMA 2.2.3. GnHa G+, GnKa G#, G/(GnH)EG#, 
G/(Gn K) ‘V G+, and G+/(Gn H) ‘V G$/(Gn K). 
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LEMMA 2.2.4. A normal subgroup oj a direct product of simple groups is a 
(possibly empty) direct product of a number of the factors (where xe make the 
conaention that the direct product of the empty set ojgvoups i.7 the tvizialgvoup). 
The decomposition of u direct product of simple groups is unique, and any normal 
subgroup qf such a direct product has a unique rvorvnal complement. 

hUMA 2.2.5. Let Hi 4 G (i 1, I... I.), and let D = n’z,, H, , then 
G/D z G? < (G/H,) x ... x (G/H,.). 

Other facts about direct products \vhich are needed are: 

LEMMA 2.2.6. If N a G :; H x K, and C,,(:V+) = 1, then l\;n H = 1 
ijandonlyijG~H=1. 

Pyooj. If G n 11 = I, then trivially Nn H -= I. C:onversely, suppose 
& E G n 11, g$ f 1, and let n = t#n# E N. Since 1V 4 G, (g$)-lv$n$g+ EN, 
and so 

But this is also an element of H, and so belongs to Nn H. It cannot be 1 for 
all n, since C,,(N+) = 1 and g4 # 1. 

LEMMA 2.2.7. If G = {Dl , ...,Dr:, z-here each D, is a direct product of 
simple groups and i.s normal in G, and Di n Dj = I (i f j), then 

G = D, x ..a x I), . 

Proof. By induction on Y, the lemma being certainly true for Y = 1. 
By assumption, then, 

{Dz , ***, D,.] = I), x -*' x /,,a G. 

NOW D,n (n, x **a x D,) is normal in JJ), :< .** s D,. , a direct product 
of simple groups, and so must be a direct product of a number of the factors. 
But D,nDi=l (i=2,-.*,r) and so D,n(D, x ... ,: D,)=l. Thus 
D, and D, x a** x D, generate their direct product; i.e., 

G = D, x ... x D,. , 

as required. 

LEMMA 2.2.8. Let G/N Y H, x ..’ x H, , where N is abelian, and each 
Hi is a direct product of simple groups. Let Fi be the subgroup of G such that 
F,/N ‘v H, . If Fi = Di x N (Df ‘v Hi) for i = 1, ..., Y, then 

G=D,x -a- x D, x N. 



IDENTICAL RELATIONS IN FINITE GROUPS 15 

Proof. Certainly G == {Dl , .‘., D, , -1:). Now, F, Q G, being the inverse 

image of a normal subgroup of G/N; thus, for any g in G, 

g-lD,g < Fi = D; x N. 

But the projection of g-‘/jig on l\’ is an abelian homomorphic image of 
gplD,g, which is a direct product of simple groups, and so this projection 
must be 1. Hence g ..lD,g == D; , and Di 4 G. Also Fin Fj = N (since 
(Fi/nT)~ (F,!lV) = 1) and so I); n Dj = 1. It follows from Lemma 2.2.7 
that the Di generate their direct product, which is also normal in G. But 
Nn (D, < ... x D,.) is an abelian normal subgroup of a direct product of 
simple groups, and so is 1. Hence G = I>, x ... i: D,. x N, as required. 

~~EMJIA 2.2.9. If G is a finite group with u set of non-nilpotent normal 
subgroups M, , “a, MS which together generate their direct product, then there 
is a subgroup I,,, of G such that: 

(i) G is generuted by L, together with M, , ..., M,<; 

(ii) G is not generated by L,q together with any proper subset of M, , *.*, MS . 

Proof. By induction on s. If s := 1, then L, may be chosen to be any 
maximal subgroup of G not containing Ml . Such a group exists because Ml 
cannot be contained in Q(G), which is nilpotent. 

If s > 1, let 1- = M, x .*. i( MP, , and consider the normal subgroup 
YM,qjM> of GIJ~Z,~. By induction, there is a subgroup L,-, of G, which 
contains M, , and is such that L,5mm,/M, and MIM,sjMq , *.., N’~lMS~illS 
satisfv conditions (i) and (ii) with respect to G/:12,$ . If X = L,S+,n I, then 
in L,-, , M, and S generate their direct product and so MYX/X ‘v MS . 
As !VS-Y,‘X is not nilpotent, there is a subgroup L,? of G, containing X, such 
that L,‘X is a proper subgroup at L,?-,/S, and such that: 

(i) L,M,‘X = L,-,/X; 

(ii) 31,: ,X7 $ L,JX. 

Evidentlv L,iUFs = L,-, , since L, 3 X. Thus G = (L, , M, , ..+, MS). On 
the other hand, if Mj ( j f s) is omitted from the set, G is not generated by 
the remaining groups, because G/M, is not generated by their homomorphic 
images. If :W, is omitted, the group generated by the remaining subgroups is, 
modulo l’, simpl!- 

L,<Yi17 ‘V L,<;(L,n I’) = L,!(L,-, n Y) C$ G/Y. 

Thus L, has the required properties, and the truth of the lemma follows. 
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2.3 L7urieties and identical Relations 

In [7], Neumann proves the following lemmas: 

LEMMA 2.3.1. Any variety is generated by its jkitely generated groups. 

LEMMA 2.3.2. Those identical relations of a jinite group which involve ut 
most n variables possess a Jinite basis. 

Now, the variety generated by a set of groups X is obtained by repeated 
applications of the operations of taking subgroups, homomorphic images, 
and unrestricted direct products, but it is shown by Higman [S] that these 
operations need each be applied once only; in fact, one has: 

LEMMA 2.3.4. A group which belongs to the variety generated by a set of 
groups X is a homomorphic image of a subgroup of a direct product of groups 
isomorphic to groups in E. 

Moreover, if X is a finite set of finite groups. Higman proves the refinement: 

LEMMA 2.3.5. If G is a Jinitely generated group belonging to the variety 
generated by a jinite set of jinite groups X then G is a homomorphic image of a 
subgroup of a direct product of a jinite number of copies of groups in X. 

As a corollary, one has: 

LEMMA 2.3.6. A jinitely generated group in a variety generated by a 
jkite set of finite groups is$nite. 

2.4. Critical Groups 

It has already been mentioned that a critical group has a unique minimal 
normal subgroup. In this section two further lemmas about critical groups 
are proved. 

LEMMA 2.4.1. A Jinite simple group is critical. 

Proof. In a variety generated by a finite set of finite groups all of whose 
composition factors have order less than k, the composition factors of any 
finite group have order less than K. But the order of any composition factor 
of a proper factor of a simple group (which is its own only composition 
factor) must be less than that of the group itself, and so a simple group 
cannot belong to the variety generated by its proper factors. 

LEMMA 2.4.2. If the group G has a set of normal subgroups MI , *.., iVs 
and a subgroup L such that: 
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(i) G is generated by L together with the subgroups Ml , .*I, IV,, ; 

in (4 G is not generated by L together zuith any proper subset of the subgroups 
. . . 

;iJi) ’ ~~~1~ , ..*, Mm,,q,] = 1 fey allpermutations cr of the integers 1, 2, .*., s; 

then G is not critical. 

Proof. For each j, (,j = 1, ..., s) let Sj be a set whose elements are in 
one-one correspondence with the nontrivial elements of Mj . Let S,, be a set 
whose elements are in one-one correspondence with the nontrivial elements of 
L, and assume that the sets S, , S, , ..., S,? are so chosen that they are mutually 
disjoint in pairs. Let F be the free group freely generated by the elements 
of S” , s, ) . ..) s,q, and let I’ be the set of all conjugates of these elements. 
The notion of a commutator in the elements of Y is defined inductively; 
y and y-l are commutators for all y in Y; if y, x are commutators, so is 
[y, z]; and nothing else is a commutator. The commutator u involves S, 
if it is either a conjugate of a generator of F which belongs to Sj , the inverse 
of such an clement, or is of the form [y, z] where y or 2 involves Sj . The 
endomorphism of F which maps each element of Sj onto 1 and leaves S, 
(k f j) invariant is denoted by rj . Let K = n”. kcr .r, . By a trivial modi- i-1 

fication of Lemma 3.2 of [5], K .< y,(F) (the sth term of the lower central 
series of F). Thus each k in K may be written K = uluz ... u, where each u, 
is of the form [yr , yn , . . ..y.] (yj E Y). Now, if ui+r involves Sj , and ui 
does not, we may write uiui+r = u~+,u~ , where 21: = z$ruiu,_i . In this 
way, it is seen that the above expression for k may be rearranged so as to 
take the form 

k = c,,cl ... c,~ 

where cO is a product of powers of commutators involving each Sj; c, is a 
product of powers of commutators not involving S, but involving S, , S, , ***, 
s,_, (Y = 1, 2, . . . . s). But now kms = k7~,<_~ = ... kr, = 1, and so cr = 
c2 = ... = c,~ = I. Hence every element of K may be written as a product 
of powers of commutators which involve each S, (j = 1, 2, ..., s). Since G 
is generated by L and the Mj , it is an epimorphic image of F under the 
natural homomorphism OL induced by S,,U = L, Sja: = &I, (j = I, ..., s). 
Taken in conjunction with the hypothesis (iii) of the theorem, u-hat we have 
just proved implies that K is in the kernel of a, so that we can write n: = ~6, 
where y is the natural map of F on F/K, and 6 is a homomorphism of F/K 
on G. The proof of the theorem is now precisely analogous to that of Theorem 
3 of [S]. By trivially modifying Lemma 3.4 of [5], one deduces that there are 
endomorphisms ,8r , ..., & of F such that each element g of F may be written 

g = K&&) k”‘PJ ... (R%) (4 



where k E K, and each Xj -. -& I independently of g. From hypothesis (ii) 
each of the subg~ou~~~~~~ (.j = I, -*I, I) is a proper subgroup of G. By means 
of the identity (A), it ma)- be verified that the mapping B which maps each 
element x(y of Fy on the element ivith canl~onent ,@E in FpJtx in the ctircct 

product t 1 :....i ~~jn is a I~orno~~orph~sI~l of’ Fy, and that the mapping 8 may be 
factored through 0. This demonstrates that G is an e~imorphic image of a 
subgroup of a direct product of its proper tktors, thereby proving the result. 
The reader is referred to [8] for details. 

concept of the absolute rank of :I finite soluble group iiltrodl~ced by 
G. I-&man. A full account of this may he found in [c!?], as may proofs of 
the results quoted in this subsection. Here \ve give fuller definitions than 
those given in the introduction. 

If ,kjU is an abelian chief factor of a kite group G, it is an eiementary 
abelian p-group for some prime p on which G acts as a group of 
auto~~orph~s~yls, It may be identi~ed with the additive group of a vector 
space 5’ over the prime field .FB and the action of G then gives V the structure 
of an irreducible representation module for G. If .f, is any finite extension 
of .FS, ) the module SF, @ V is the direct sum of C submodules which are 
irred~lcibl~ over :YP and which are all equivalent under the Gaiois group 
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of Xu over .FD . In particular, if X, is chosen to be a splitting field for the 
representation, it follows that each absolutely irreducible component is of 
the same dimension and this common dimension is defined to be the absolute 
p-degree of the chief factor S/Y of G. If the chief factor S/Y of G is not an 
elementary abelian p-group, it is defined to have absolute p-degree zero. 

LEhlhIA 2.5.1. If the chief factor Xi Y of G is an elementary ahelian 
p-,group and has absolute p-degree d, the?! the congruence 

is valid for all x E X and all g1 , .*., g,,, E G if and only ;f m > 2d. (Here 
gm%g is written as XV, x is the alternating character, and the product is taken 
over all permutations CJ of the integers 1, ..., ~1.) This result is a trivial 
modification of Lemma 2.2.3 of [6]. 

The absolute p-rank of a finite group is defined to be the maximum of 
the absolute p-degrees of its chief factors. Its p-measure is the maximum of the 
absolute p-ranks of its factors (i.e., homomorphic images of subgroups). It 
is easy to see that if H is a homomorphic image of G then the absolute p-rank 
of H does not exceed the absolute p-rank of G. On the other hand, bl con- 
sidering a simple group it is seen that the absolute p-rank of a subgroup may 
exceed that of the group. 

LEMV.~ 2.5.2. If II, K are finite gl-oups, then the p-measwe of II > K 
is equal to the maximum of the p-measures of H and K. 

Proqf. Consider a subgroup G of I1 x K. Let 4 and 4 be defined as in 
2.2.1, and let k be the maximum of the p-measures of II and K. Since 
Gd, ^v G/Gn K, the p-measure of GjGn K is at most k. Again, if X/Y- is a 
chief factor of G such that G n K > -y >, Y > 1, then X/I7 is also a chief 
factor of G#, and the representation of G as a group of automorphisms of 
X/I- is isomorphic to that of G#. Thus G has p-measure at most k, and the 
proof of Lemma 2.5.2 is now straightforward. 

If S is a finite simple group, and S/Y is a chief factor of a finite group G, 
S: I7 is defined to have S-degree d if it is a direct product of d groups isomor- 
phic to S. If X;Y is not a direct product of groups isomorphic to S, it is 
defined to have S-degree zero. The S-rank of a finite group is the maximum 
of the S-degrees of its chief factors and its S-measure is the maximum of the 
S-ranks of its factors (i.e., homomorphic images of subgroups). 

LEMMA 2.5.3. If H, K are &ite groups, then the S-measure of H x K 
is equal to the maximum of the S-measures of H and K. 

The proof is as for Lemma 2.5.2. 



In this section we prove: 

Let A be a finite group which generates ‘II (e.g. the direct product of the 
critical groups of 91) and let zcfx, , a**, s,) 11: 1 be a basis for the identical 
relations of %. 

Let the minimal normal subgroup of B be 174. Let m be the minimum 
number of generators of M, and let h be the minimum number of generators 
in a generatitlg set for B which includes a minimum generating set for M. 

~~FI~~~IO~ 3.1.1. A subgroup D of a group G is called an ~~-~ul~~~o~~ if 
D rr~ M, and there exists a subgroup H of G such that I1 (1 H and 
H~C,(D) N B (H is called an ~~-~~~~l~~~~~~ of D). 

If a group G contains a subgroup K which has as a direct factor an RI-suh- 
group D of G, then I> is said to be an ~~-~~c~~r of K (in 6). 

PYOO$ Let N be an M-normalizer of D, so that D <I .H, and ~~~C~~~) N B. 
Under this homomorphism the image of D is a normal subgroup of B, 
isomorphic to D (since L)n C,(D) = l), i.e., isomorphic to A?. Thus it 
must be M itself. Since M is the minimal normal subgroup of B, it follows 
that no proper nonlrivial subgroup of D can be normal in H, and hence 
D n N is D or I,. In the latter case D and Nn N will commute elementwise, 
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and so H n LV < C,( II). NOW, D,V/N N D/(D n N) = D ‘v rll, and 
DN/NU HN/N < G/N. Let 5, an element of C,,JDN/N), be the image 
under the homomorphism from G to G/N of c, an element of H, so that 
dc = c&z, n EN, for any d in D. Thus dplcrldc : n. But dpkldc ED (since 
c E H, and D 4 II), and so d-lc-ldc E D n N = 1. Hence c E C,(D). 
Conversely, if c E C,(D) then certainly its image under the homomorphism 
belongs to C,,:,(DA’/,V); i.e., C,,v,,v(DN’N) = C,(D) N/N. Thus, since 

Hn N < C,(D), 

(ZZ,V~,V)/C,,:,(DNI’N) = (HIV:‘N)I’(C,(D) N/N) 

TV(H/HI-I N)/(C,(D)/C,(D)n N) 
eH/C,(D)eB. 

It follows that DNjN is an M-subgroup of G/N. 

LEMMA 3.1.3. If G > K = D, x ... x D, , where the Dis aye M-sub- 
groups of G, and N a G, then KNIN . as a direct product of M-subgroups of 
GIN. 

Proof. From Lemma 3.1.2 we have that Din N = Di or 1, and, in the 
latter case, D,N/N is an M-subgroup of G/N. Since each Di is a direct 
product of simple groups, so is K, and so any normal subgroup of K is a 
direct product of a number of these. Thus K n N consists precisely of the 
direct product of those Dj with which N has intersection Di . Thus 

where these are the Dis with which N has intersection 1. It follows that 
KA\:,‘N is the direct product of the corresponding D,N/N, and thus has the 
stated form. 

COROLLARY 3.1.4. If in Lemma 3.1.3 each Di is normal in G, then 
KlV = D, x ... x D, x N, where these are the D,s such that Din IV- = 1. 

Proof. This follows immediately from the fact that D, x ..* :< D, and 
;V are normal subgroups of G with trivial intersection. 

LEMMA 3.1.5. Let X and Y be normal subgroups of G, and let D/X be an 
M-subgroup qf G/X, where D < XY. Then (D n Y)/(Xn Y) is an M-sub- 
group of G/(Xn Y). 

Proof. Since X < D < XY, D = X(Dn Y), and so 

M-D/X=X(Dn Y):X?(Dn Y)/((Dn Y)nX)=(Dn Y)j(Xn Y). 
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Let u E li, d t II n I-; then, since u,\’ centralizes l)/Ay, zu ‘du == dx, where 
,L‘ E S. But D 17 I; < H, and so s E II f~ I’, Hence .x E Y n /In I7 =.. SKI 1”. 
But this means that u(Xr\ 1‘) ccntralizcs (U f~ Y)/(Xn I’), and so u E I’. 
Hence L: 2s V. Now let z: E I:, d E I); then (I =L 4x, where dl E f3n k’, 
and s E X. Hence 8‘ Uv = ~-~d,au--?w r-1 d,.x+,v:-?sa, where x1 E S f~ I‘, 
since c(Xn Y) centralizes D n Y. Thus ‘7:. Vv = dx’, where x’ E X (since 
S < G). Hence UX centralizes Dj--I-, and so z: E li, i.e., lr -1; V. ft follows that 
1-i =Z J,‘, and 

Thus (D n k’)/(X n Y) is an M-subgroup of G;(Sn I), with M-normalizer 
Hi(Xn 1’). 

3.2. The Variety 2( 

Throughout this Section G is a finitely generated (and thus finite) group 
in It. 

LEMMA 3.2.1. In order to show that a pyo~eyt~~ P ~o~dsfo~ G it is s~~cient 
to show that I has P, and that, if all factors of a group U in U have P, thm 
so have all factors of C’ x A, and all factors of U x B. 

Pwof. By Lemma 2.3.5, G is a homomorphic image of a subgroup of a 
direct product of a finite number of groups isomorphic to A and B. Thus it is 
sufhcient to show that all factors of a direct product A, x a** x il, x 
R, x -** s B, have P. We proceed by induction on Y, the basis of the induc- 
tion being T -= 0, since we have assumed that 1 has P. Assume all factors of 
Al x **- x A,.-, x B, x -.a x B,-, = U have P, then so have all factors 
of C x -4, and thus of U x 9 x R = A, x es* >: A, x B, >( e.1 x 13,. 

LEMMA 3.2.2. In app~~~~g Lemma 3.2.1, in order to show that all factors 
of U x A, OY of U x B, have P, it is sz@cient to consider those factors K/N 
suck that Kn A > 1, OY Kn B :% 1. 

Proof. By Lemma 2.2.3, K n A = 1 or K r\ B = 1 implies K N Kb, 
(its projection on U). Thus K/N is isomorphic to a factor of U and so, by 
assumption, has P. 
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LEMMA 3.2.3. w(G) is a jnite direct product of M-subgroups of G, each 
of which is normal in G (and, by Lemma 2.2.4, this expression is unique). 

Proof. This is certainly true for 1, and so it must be shown that if it is 
true for all factors of U, where 7.J E U, then it is true for all factors of U x I’, 
where V e d or V Y B. 

Let G ‘u K/N, where K < U x V. Let $, Q!J be the projections from K to 
t), 7’; then w(K)+ = w(K$), and W(K) # -= w(K$). Now, unless 
K# :: I’ 5 B, K4 E ‘11, and so w(K) #J = ZD(K#) = 1, and w(K) = w(K+) x 1. 
If K/J ‘v B, then w(&!J) = w(B) ‘> 1, since B $41. Now w(B) <i B, and so 
w(B) :.> M. But w(B/M) = 1, and so w(B) < M, hence z*?(B) == M. By 
Lemma 3.2.2 it may be assumed that Kn B > 1. But 

G&w(K) #) = C,(Jq = 1, 

and so, by Lemma 2.2.6, W(K) n B > 1. But w(K) 4 K, and so 

w(K)n BaK# = B. 

Thus w(K)n B = M = w(K) 4, and so M is a direct factor of w(K). But 
C,(M) = Kn U, and so K/C,(M) = K/(Kn U) E K# = B. Hence M 
is an M-subgroup of K. Also M Q Kz,b, and so M <i K. Thus 

20(K) = w(K$b) x M, 

where M satisfies the given conditions. 
Now consider w(K#), which we have seen to be a direct factor of zu(K). 

K$ is a factor of U, and so, by hypothesis, w(K+) is a direct product of 
M-subgroups of K+, each of which is normal in K+. Let D be one of these 
factors, and &5 be an M-normalizer of D in K$. Let H be the inverse image 
of H4 in K. Then D Q H, and h E C,(D) if and only if h+ E C,&D). Thus 
H/C,(D) N Hd/C,&D) ‘v B. Also D d K, since Dd K& Thus MU 
is a direct product of M-subgroups of K, and it follows that, in both cases, 
W(R) has the required form. 

No\v consider G rv K/N. If m(K) = D, x ... x D, , by Lemma 3.1.4 
we have w(K) N = D, x ... >; D,s x N, where D, , ..., D, are the M- 
factors of w(K) which have intersection 1 with N. But w(G) = w(K) N/N, 
and, by Lemma 3.1.3, this is a direct product of M-subgroups of G. Clearly, 
each of these, being a homomorphic image of a normal subgroup of K, will be 
normal in G, and the truth of the lemma follows. 

LEMMA 3.2.4. If D is an M-subgroup of G, then D < w(G). 

Proof. D 4 H < G, and H/C,(D) ‘v B. Thus 

DC&W’,(D) = w(fW,(D)) = w(H) C,(DW’,P)~ 



and so 

where D, , .a., D, are the factors of W(N) which have intersection I 
with C,(D). But DC,,(D) = D x C,(D), since 11 has no center, and thus 
s =- 1, and II x C,(n) = D, x C,(I)). iSow, if 1) had a nontrivial com- 
ponent in C,(U) this would necessarily be abelian, but it is a homomorphic 
image of D (-i M), so this is impossible. Thus D = I>, < z~(lf) 5; S(G). 

Proof, As in the above Lemma, L/N is one of the direct factors of wfEI;S) 
and so is of the form ~~V~~~, where D is an M-factor of w(G). But N<l N, 
D (i N, and D n n7 = 1, thus L = D x N, and has the required form, 

PRK$. The lemma is certainly true for I, so we must show that if it is 
true for all factors of Ei (E tt), then it is true for G ‘v K/N, where 
k’ < li x V, and I’ = B or V zz B. 

Let the inverse image of I) in K be L, then, from Lemma X2.5, 
t = D’ x N, where D’ is an M-subgroup of K. If fY has prujection Di or I 
on each ~-factor of W(K), then, since w(G) = (D, x .‘. x D, x N)l:V, 
where D, , ..s, D,s are factors of W(K), and D =- (D’ x N)/N, D will also 
have this property. Hence it is sufficient to prove the lemma for K. Let 4, 
I/J be the projections from K to U, V. As in Lemma 3.2.3, w(K) = w(K+) x 1, 
or w(K+) x 152, the latter holding if K$ I= Y = B. Let H be an M-norma- 
lizer of I) in K, then D n V 13 N, and so is I) or 1. 

(i) If Dn li = D, then, since D &. W(K), we must have Y --: B, and 
I> := ill, so that II is itself an M-factor of 20(K). 

(ii) If D n Cr = 1, then D z L&6, and, as in Lemma 3.1.2, IIk# is an 
M-subgroup of K (with M-normalizer ff#). Thus, by hypothesis, 04 has 
projection I.Ii or 1 on each factor or w(K$>, and thus so has D, It remains to 
consider D4fi. Since D < w(H), this will be I unless E@ = v = B (in which 
case W(K) =1 w(K$) x M). But Dll, d HZ& and D$ < N, Thus D$ = 1 or 
D$ =t M. Hence, in all cases, D has the required properties. 

LEMMA 3.2.7, If D is an N-subgroup of G, then C,(U) 0 G. 

ProoJ From Lemma 3.2.6, II < W(G) = If, x .*. x D, , and has 
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projection Di on D, , .*., D,< , say, and 1 on the other factors. Let d = dr .*a d, 
be an element of D, and let c E C,(D), so that c-i& = d. Since Di a G, 
we have cpldzc = di ED, , and so di ... dl = dl 1.. d,s. Hence di = di . 
But this will hold for any element di of D, (; = 1, ..., s), since D has projection 
I), on these factors, and so c centralizes each of 11,) ..., D,< also. Conversely, 
any element which centralizes each of these groups will certainly centralize D, 
so we have C,(D) = I-l=, C,(D,). But C,(DJ a G, since D, 4 G, and 
so C,(D) <I G, as required. 

LEMMA 3.2.8. If G > SD D x N, where D is an M-subgroup of G, 
then D 4 S. 

Proof. As in Lemma 3.2.6, D < w(G) = D, x **. x D, , having 
projection Di on D, , *‘., D,? , say, and 1 on the other factors. Now, 
N S, C,(D), and so N < C,(Di) (i = 1, ..., s). Thus 

:\:n (D, x ..a x D,J = 1. 

Let d E D, s E S. Since D x NU S, s--Ids = d’n, where td’ E D and n E N, 
i.e., n = d’plsrlds. But, since each D, is normal in G, the right hand side 
is an element of D, x .+. x D, , which has intersection 1 with N. Hence 
n = 1, and D d S, as required. 

LEMMA 3.2.9. If D is an M-subgroup of L < G, then any element of G 
which centralizes D also centralizes every AT-factor of w(L) on which D has 
nontrivial projection. 

Proof. (i) If L = G, then the result has already been proved in the 
course of proving Lemma 3.2.7. 

(ii) In the general case, let D, , *a*, D, be the M-factors of w(G), and 
E, , ..‘, E,< the M-factors of w(L). E, is an M-subgroup of G, so we may 
suppose it to have projection Di on Di for i = 1, ..*, t, and 1 otherwise. 
Then, for j ,b 1, Ej centralizes E, , and so, by (i), centralizes D, , *.., D, , 
so that its projection on Di must be 1 for i = 1, ..., t. It follows that we can 
calculate the projection of an element of w(L) on Di (i = 1, ..., t) by first 
projecting on E, , and then projecting the result. Thus, if D has projection 
E, on E, , it has projection Di on Di (i = 1, ..., t). By (i), an element which 
centralizes D also centralizes D, x **a x D1 , and so centralizes E, , which is 
contained in D, x .** x D, . 

3.3. The Variety Utn) 

In this section G is a finitely generated group in Utn), where 

n 3 n, = max (a, 2b + 1). 
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LEMMA 3.3.1. w(G) is generated by a jinitc number of Al-subgroups qf G. 

Proof. G/w(G) E \I[, and is finitely generated, and so finite. It follotvs 
that w(G) is finitely generated, and so is generated by a finite numher cf 
elements of the form w(g, , ...,x~~,). Let L ~mm [,r, , . . ..g.,] then L has at most 
n, generators, and so belongs to II. From Lemma 3.2.3 we have that w(L) 
is a finite direct product of M-subgroups of L. But these will also be M-sub- 
groups of G, and so each of the finite number of generators of zc;(G) is con- 
tained in the direct product of a finite number of L1f-subgroups of G, lvhich is 
itself contained in w(G). It follows that the totality of such subgroups gener- 
ates w(G). 

LEMMA 3.3.2. Let D be an M-subgroup of G, then there is an M-normalizer 
H of D in G having only b generators, and D < w(H) < w(G). 

Proof. Let H’ be an M-normalizer of D in G, and let a,, ..., urn be gener- 
ators of D. Consider H’/CW(D). A set of generators aIC,r(D), ... a&‘,.(D) 
for this can be chosen so that the first nz correspond to the generators of D 

(b ecause D n C,.(D) = 1). Let H :=- {aI , ..., al,]. Then Dd H, 
H’ = HC,,(D), and 

B ‘u H’:‘C&D) = HC,.(D);C,>(D) ‘v II,‘(EZn C,(D)) = H/C,,(D). 

Thus His also an M-normalizer of D in G, and had only b generators. Fly the 
choice of n, , HE 11, and so, by Lemma 3.2.4 D < w(H) < w(G). 

LEMMA 3.3.3. If D is an M-subgroup qf G, then C,(D) <1 G. 

Proof. Let H he an M-normalizer of D with b generators, and let g E G, 
c~C,(D).IfL={H,c,g},thensinceb$2<2b-1 I,LEU.ButDisan 
M-subgroup of L, and so, by Lemma 3.2.7, C,-(D) 4 I,. But c E C,(I)), and 
so g-kg E C,(D) >Z C,(D). Thus C,(D) 4 G, as required. 

LEMMA 3.3.4. If G 4 S D D x N, where D is an M-subgroup qf G, then 
D a S. 

Proof. Let H be an M-normalizer of D with b generators, and let s E S. 
If L =-m (H, s}, then L E 11. But D is an M-subgroup of I,, and 

LnSDLn(D x X)=D x (LnLV). 

Thus the conditions of Lemma 3.2.8. are satisfied, and D <1 L n 5’. i.e, 
srlDs = L). Thus D a S. 

LEMMA 3.3.5. If G D IV, where N is abelian, and K,‘,V is a direct product 
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of ,%I-subgroups of G/N, then K = E x N, where E is a direct product of 

M-subgroups of G. 

Proof. Let J/,V be one of the M-factors of kJN, and H’j-V an M-normal- 
izer of J/N having b generators, n,N, *.., a,N. Let H = {al , a.., ub) Then 
H/(H n :V) ‘v HdVj;V = HI/N. Hence 1I must contain a subgroup L such 
that L;(Hn -V) is an M-subgroup of H,(Hn N), corresponding to J/N 
under this isomorphism. But H, having only b generators, belongs to U, 
and so, by Lemma 3.2.5, we have L = D x (H n N), where D is an M-sub- 
group of H (and thus of H’ and G). Also LN = DN, and so DNjN = J//V. 
SOW suppose H’ contains two &f-subgroups, D, , D, such that D,N;‘N = 
D.&i:% = J,‘AT. Let Hl , IS2 be M-normalizers of D, , D, each having b 
generators; then, if P = {HI, H,}, P E U, and so, by Lemma 3.2.4, 
{Dl , D,) 5; z(P). Now, w(P), as a direct product of M-subgroups of P, 
has no nontrivial abelian normal subgroup, so that w(P) n N = 1. Thus 
w(P) is isomorphic to its image w(P)N/;V in the natural map of H’ on ZI’;‘:V. 
But J;;V is the image in this map of both D, and D, . It follows that D, =- D, . 
Now, for any 11 in ;V, n-lD?z will be an M-subgroup of of H’ such that its 
image in E-l’(N is J/A’. Hcncc we have ?lr’Dn = D, i.e., D Q DN. But 
D n Jk’ = 1, and so D,V = D x :V. This will hold for each M-factor of 
K/,V, and so, by Lemma 2.2.8, K = D, x ... j: D,. x X, where the Dj 
are M-subgroups of G. 

LEMMA 3.3.6. Let D be an M-subgroup of G, and put X = C,(D), 
I; = C,(X), then XY contains every M-subgroup of G. 

Proof. XL7 certainly contains D itself. Let D’ be any other M-subgroup 
of G, and let H, H’ be M-normalizers of D and D’ respectively, each having 
only b generators. Let L = {H, II’}; then L E U, and {D, D’} < w(L). By 
Lemma 3.2.6, D has projection Di or 1 on each M-factor, Di of w(L). If D 
has projection 1 on Di then Di < X. If it has projection Di , then Di -< Y; 
for, let x E X, and consider the group P = {L, x>. P E U, and D, L and P 
satisfy the conditions of Lemma 3.2.9. But s E C,(D), and so x E C,(Di). 
But this will hold for every x in X, and so Di < C,(X) = Y. Hence 
w(L) < {X, Y] = XY (since, by Lemma 3.3.3, X 4 G). Thus D’ < XY. 

LEMMA 3.3.7. If I is an M-subgroup of G, and J is a jinite direct product 
of M-subgroups of G, then the subgroup {I, J} which they generate is contained 
in a finite direct product of M-subgroups of G. 

Proof. Let J be the direct product of s M-subgroups. We proceed by 
induction on s. Ifs = 1, let H and H’ be M-normalizers of I and J respectively 
each having b generators. Then L = {H, H’} E U, and (1, J} < w(L), a finite 
direct product of M-subgroups of L, and thus of G. 



Kow suppose s 1 1, and assume the lemma to be true when J is a direct 
product of fewer than s M-subgroups. Then .[ == II), :< J2 , say, and 
(I, II,} r: K, , (I, J2) .I XI, , where K, and K, are finite direct products of 
M-subgroups. Let S ~~ C,(D,), I- C,(.\-), so that, by I,emma 3.3.3, 
X< G, and thus Y CJ G. Also Jz *‘_ .V, D, 1 I-, so that, if K = :I, J), 
then K .: K,S, and K -: k’,Y-. But, I,!; 1,emma 3.3.6, cvcry M-subgroup 
of G is contained in ,y17, so that K, ’ .l’J-, K, 1 SIT, and K .’ SY-. By 
Lemma 3.1.3, K,X,‘X is a direct product of ;Wsubgroups of G/S. If K:ay 
is one of these factors, then it corresponds in the natural isomorphism between 
K,X/X and (K,Xn I’);(Xn Y) to (R n k);(Xn I), and, by Lemma 
3.1.5, this is an M-subgroup of G/(X n Y). Thus (Ki<Y n r’);(;un I), and, 
by symmetry, (K,E’n X)/(A7n I’), are direct products of M-subgroups of 
G/(Xn Y). But these groups, being contained respectively in I-;(Sn I’) 
and Xi(Xn Y), generate their direct product. That is 

((KJn 1’) (K,E-n X)):‘(Xn I-) 

is a direct product of M-subgroups of G;(Xn Y). By Lemma 3.3.5, since 
Xn Y, being the intersection of a group with its centralizer, is abelian, 

(K,Xn Y) (KzT/n X) = E x (Xn I’), 

where E is a direct product of M-subgroups of G. Finally, from K :< SL’, 
K < K,X, K < K,Y, we have that K 5: (K,Xn 1’) (li,I’n X). Thus 
K < E x (Xn Y). But K, being generated by simple groups, is its own 
derived group, so that its projection on Xn 1’ is 1. Hence K < R, a group 
of the required form. 

LEMMA 3.3.8. Let G > K = {D,, ..., D,}, where the Iii are M-subgroups 
of G; then K is a subgroup of a jinite direct product of M-subgroups qf G. 

Proof. We proceed by induction on s. The lemma is certainly true for 

s = 1. Assume true for s - 1, then K == (I, L}, where I = D, , and 
L = (II,, . . . . II,} < J, a finite direct product of M-subgroups of G. By 
Lemma 3.3.8 {I, J>, and thus R, is contained in a finite direct product of 
M-subgroups of G. 

LEMMA 3.3.9. w(G) is a finite direct product of M-subgroups of G, each 
of which is normal in G. 

Proof. Bv Lemma 3.3.1, w(G) is generated by a finite number of M-sub- 
groups of d, and thus, by Lemma 3.3.8, it is contained in a finite direct 
product of M-subgroups of G. But, by Lemma 3.3.2, each such M-subgroup 
is itself contained in w(G), and so w(G) must actually be equal to this direct 
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product. The normality of each factor follows from Lemma 3.3.4, since 
w(G) <. G. 

3.4. Proof of Theorem 2(il) 

It must now be shown that 11(?~), where n I,-- n,, = max (u, 26 Jo- I), 
satisfies conditions (ii) and (iii) for a Cross variety. 

From Lemma 3.3.9 we have that, if G is a finitely generated group in 
U(12), then W(G) is a finite direct product of M-subgroups of G, each of which 
is normal in G. Since G/w(G) is finite, it follows that G is finite, and hence 
condition (ii) is satisfied. 

If G is critical, then either W(G) = 1, in which case G E ‘II, which, by hypo- 
thesis, is Cross, and so possesses only a finite number of critical groups, or, 
since a critical group has a unique minimal normal subgroup, w(G) ‘v M. 
In the latter case, since w(G) n C,(w(G)) = 1 and C,(zu(G)) 4 G, we must 
have C,(w(G)) = 1, and so G is isomorphic to a subgroup of the full auto- 
morphism group of M. Only a finite number of such groups exist, and the 
truth of the theorem follows. 

4. CRITICAL GROUPS WITH ABELIAN MINIMAL NORMAL SUBGROUPS 

In this section, we prove: 

THEOREM 2(B). If B is a critical group whose minimal normal subgroup is 
abelian, and X is a Cross variety containing all proper factors of B, then the 
variety U generated by 41 and B is Cross. 

It is assumed that the reader is familiar with the concept of the upper 
p-series of a p-soluble group. Frequent use is made of the facts that if NiPi , 
P, , and Ni are consecutive terms of the upper p-series, such that Pi/N,-, is a 
p-group and NJP, has order prime to p, then for i > 1, C(P,/N-,) < Pi 
and C(LVzjP,) < Ni . Moreover, ifFj/NP1 is the Frattini subgroup of PJN-, , 
then for i > 1, C(P,,IF,) = Pi . 

THEOREM 4. The order of a critical group G is bounded in terms of its 
exponent, the maximum of the classes of its Sylow subgroups, the maximum of 
its various p-measures and S-measures, and the maximum of the orders of its 
composition factors. 

Let n, c, K, and a respectively denote the exponent, the maximum of the 
classes of the Sylow subgroups, the maximum of the p-measures and the 
S-measures, and the maximum of the orders of the composition factors of G; 
and let N be its unique minimal normal subgroup. If N is not abelian, its 
order cannot exceed ak, while C(N) n N = 1. This means that C(N) = 1, 
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and that G can be fa~thfuIJ~ represented as a subgroup of the autol~lorph~sln 
group of a group whose order is not greater than n”‘. Thus when S is non- 
abclian, Theorem 4 is immediate, and so it is assumed throughout the 
remainder of this section that 3’ is abelian, Ji G is nilpotent, ir is of class c 
and exponent II, ard by Lemma 2.4.4 it can be Sgenerated 1~3~ c clcments. 
In this case also, Theorem 4 is immediate, so we assume that G is not nil- 
potent. 

The proof of the theorem is conveniently divided into five stages. M’e begin 
with an esamination of the structure of C. 

4.1. The Fitting subgroup of G is nontrivial because :V is abelian. Each 
of its Sylow subgroups is characteristic, and so normal in G. As these intersect 
trivially, there can only be one such subgroup, otherwise G would not have a 
unique minimal normal subgroup. Hence the Fitting subgroup is a p-group; 
for some prime p, and it is clearly the greatest normal p-subgroup of G. Also 
G has no nontrivial normal p’-subgroup (i.e., one whose order is coprime top). 

I,et DiP he the greatest normal ~‘-s~lb~roup of G/P (this may be trivial) 
and let K be the normal subgroup of G such that K/P is the centralizer of 
D:P in G;P. By the Schur-Zassenhaus theorem, I> may be written as QP, 
where Q is a p’subgroup of G. Evidently, K f? $?P - Z(Q) P. Let X be h 
normal subgroup of G generated by all normal subgroups U of G which 
are contained in k” and arc such thzzt I’%(Q) P;Z(Q) P is a minimal normal 
subgroup of G/Z(Q) P. Again, it is possible that X:Z(Q> P is trivial, as is the 
case when K -= Z(Q) P. However, as G is assumed not to be nilpote~~t, 
QPiP and M/Z(Q) P cannot both he trivial. 

(ii) laPaM,Q 

respectively. The first possibility cannot occur because 

QP/P g Ml/P < C(~~~~). 

The second cannot occur because QP/P is the greatest normal $-subgroup 
of G/P. 
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It follows from Lemma 4.1.1 that 

(4.1.2) 

where each direct factor is a non-abelian minimal normal subgroup of 
G/Z(Q) P with nontrivial Sylow p-subgroup. 

4.2. In the paper [8], many lemmas are proved about soluble critical 
groups, which do not really make use of the full power of the solubility. 1l’ith 
very minor modifications, these proofs can be applied to yield lemmas about 
the critical group G in question. Where such lemmas are needed, the proof 
is either omitted or only briefly sketched. The reader is then referred to the 
corresponding lemma of [S]. 

LEhIhIA 4.2.1 There is a subgroup L of G such that (i) G = LP, 
(ii) Ln P < C(Q), and (iii) Ln P .< Q(L). 

Proof. If Q f 1, it is a Hall complement to P in QP. Any two such 
complements are conjugate in QP, and by the usual Frattini argument, 
G = K(Q) P. This is obviously true if Q = 1. The proof now proceeds as 
for Lemma 5.2.2 of [J], and L is chosen to he a subgroup of A’(Q) which has 
minimal order with respect to the property G = LP. 

COROLLARY 4.2.2. (cf. Lemma 5.2.3 of [S]). [f 0 f 1, L is a partial 
complement to P in G. 

If R = (Ln P) Q(P), R admits P because D(P) < R. It admits L because 
both Ln P and a(P) do. Thus R is normal in G, contains Q(P), and is 
contained in P. 

COROLLARP 4.2.3. Jf 0 f 1, R is a proper s&group qf P. 

LEMMA 4.2.4. If LT, , ..., U,, are subgroups of P containing R and admitting 
L, and which together generate P, then some subset of them, consisting of at most c 
members, also generates P. 

If R = P, the lemma is trivial. Otherwise the proof is as in Lemma 5.2.4 
of [S]. 

4.3. \I’e now begin the task of bounding the order of G. In this part, the 
third stage of the proof of Theorem 4, we indicate how 1 Q 1 can be bounded 
in terms of n, k and c. If Q is trivial, there is nothing to prove, and it is assumed 
in this part that Q f 1. In this case P/R is nontrivial by Corollary 4.2.3. We 
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therefore obtain a representation of G as a group of automorphisms of Z_‘:li 
bq’ conjugation. 

In Theorem S.3.6 of [8], it is stated that if G is a soluble critical group, and 
L, I’, 0, Ii, 11, and c are defined as above, then / Q j can be hounded in terms 
of II, c and the absolute rank of G. It may be verified that: 

(i) the proof, as it stands, actually sho\+s that / (I / can bc bounded in 
terms of n, c and the maximum of the absolute p-degrees of the chief factors 
of G between P and R, 

(ii) the solubility of G is not required but only that the representation of 
G as a group of automorphisms of P/R represents Q faithfully and that the 
image of Q is normal in that of G. 

If then C is the kernel of this representation, the bounding of j Q / in terms 
of the stated invariants becomes equivalent to proving. 

I,FxmIA 4.3.1. cn QZ’ I= P. 

Progf. Clearly, this intersection contains P. Assume therefore to the 
contrary that this intersection strictly contains P. Then there is a normal 
subgroup X/P of QPjP which induces trivial a~~tolnorpl~isms of P/R. Using 
the Schur- Zassenhaus theorem, write X = Q<$, where 0,) a< Q. By Lemma 
4.2.1, L n P < C(Q), so that LA P < C(QJ. IIence the elements of Q,, 
induce trivial automorpl~is~~s of ~~~(~}, and so Q, acts trivially on both 
P;‘N and ~~~(~). Since Q, is a Pf-group, this implies that Q. acts trivially 
on P/@(P) and that, in turn, implies that C,,(P) > QO. This is impossible 
unless Q,, = 1, contrary to assumption. 

4.4. Next, we show that j M/Z(Q) P / can be bounded in terms of rr, k, c, 
and a. \;C‘e assume that it is nontrivial, othertvise there is nothing to prove. 

Kow (4.2.2) 

where each ~~~~Z(~} P is a direct product of isomorphic simple groups with 
nontrivial Sylow p-subgroups. Each ~~~~(~) P is a chief factor of G(Z(Q) P 
and its order cannot exceed n IL. Thus it is sufficient to prove that the 
number s of direct factors is bounded in terms of n, k, and c. 

For each i (i = 1, 2, *.a, S) let Nj be a normal subgroup of G which is 
minimal with respect to the conditions, (i) N, D P, (ii) NjZ(Q) I’ = ~$2~ . 

LEMMA 4.4.1. XJP is a minimal normai compbment to Z(Q)P/P in 
MjJP. 
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For otherwise, Nj could not be minimal with respect to the above condi- 
tions. 

LEMMA 4.4.2. If H is any normal subgroup of G, then either Nj n H == AVj 
or N, n H < Z(Q) P. 

For Z(Q) P < (Njn ZZ)Z(Q) P < N$(Q) P = Mi , and Mj/Z(Q) P is 
a chief factor of G. 

LEMMA 4.4.3. If also H 3 P, and is such that Nj n H < Z(Q) P 
(j = I, . . . . t), then N1N2 . . . N, n H < Z(Q) P. 

Proof. Let U = N,N, ..* N, n ZZ. Now, 

u UZ(Q) P ~ Iv,N, ... NJ(Q) P - __- 
un Z(Q) P Z(Q) p Z(Q) p 

Hence UZ(Q) P/Z(Q) P is either trivial or contains at least one of the 
normal subgroups lMj/Z(Q) P. In the latter case, it follows that for such j, 
each nj in Nj may be written nj = zh for x in Z(Q) P and h in H, and because 
,V,jP < C(QP/P), z~~%qz~ = zniplhnj (mod P) for all n; in Nj . Thus 

[n, > vi] E H, for all nj , ni E N,i , and as it is assumed that H n Nj < Z(Q) P, 
this implies that [nj, nJ] = 1 (mod Z(Q) P). By the very nature of iVj , 
this is a contradiction. Hence UZ(Q) P/Z(Q) P is trivial and the lemma is 
proved. 

LEMMA 4.4.4. Suppose that s > [log, n’“k!]. Let t be an integer such that 
s 3 t > [log, n”k!], and let A, B be normal subgroups of G such that 
1 < B < A < P and such that A/B is elementary abelian and central in P/B. 

If n 17 n2 > ..., nt is a sequence qf elements of G such that nj E nTj and each nj 
has PI-order module N, n P, then fey all h E A 

P, nl, n, , --a, n,] = 1 (mod B). 

Pf,oof. The group A/B may be identified with the additive group of a 
vector space 6’ over the field .FD of p elements. By conjugation, G acts as a 
group of automorphisms of A/B, and this action gives V the structure of a 
representation module for G. We choose Xp to be a finite extension field of 
YP such that every irreducible G-submodule and G-factor module of 
X, @ 5’ is absolutely irreducible (e.g., .YP may be chosen as the extension 
field obtained by the adjunction of the / G ]th roots of unity). Let J be the 
subgroup of G generated by n, , n, , .*a, n, , then J/Jn Z(Q) P is a direct 
product of t cyclic groups of p/-order, and J/Jn P is therefore a p/-group. 
In the usual manner, g is used to denote both the element of the group and 
the transformation of J?, @ Vthat it induces. 

3 
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Each chief factor of G between il and B has absolute p-degree at most k. 
Consequently the space X1, @ I’ has a G-composition series 

in which each composition factor is of dimension at most k. As [,4, P] < B, 
the spaces Yi (i = 0, 1, **., v) may be regarded as G/P-modules and there- 
fore, a fortiori, as JPIP-modules. But /P/P is a p’-group, and so for each i, 
a JP/P-module Uj can be found such that I*,-, -= Ui 3) Yi . In this way, 
cK1, @ V may be written as 

CJ, @ u, e;) . . . ‘$j 0’ 1 

where each Ui is a JP/P-module of dimension at most k. 
Suppose now that the lemma is false. Then for at least one value i 

Ui( - I -I- n,) (-- 1 + ?z‘J ... (- 1 -/- nt) # 0 

and so Ui( - 1 $ nj) # 0 for j = I, 2, ..., t. Thus each nj acts nontrivially 
on Ui and cannot therefore centralize Yi-i/Yi . If H is the normal subgroup 
of G which centralizes Yi-,/Yi, H contains P but not Nj (j = 1, 2, a**, t). 
By Lemma 4.4.2, Hn Nj < Z(Q) P, and by Lemma 4.4.3, 

Thus 

N,hJ, . . . N, n H -< Z(Q) P. 

N, N, H 
H I I 

= $!!L;iH- 3 p-m-hL 
1 t I I N1 . . ..~&P4=lQ$4 

Now as M,/Z(Q) P is not a p-group, it contains a p’-subgroup of order at 
least 2 and Il=, MJZ(Q) P contains one of order at least 2$ > n”k! . Hence 
G/F1 has exponent dividing n, has a p’-subgroup of order exceeding 

n”‘k! and acts faithfully on a vector space of dimension at most k over a field 
of characteristic p. By Theorem 5 of [6], this is impossible. 

The assumption that Lemma 4.4.4 is false thus leads to a contradiction. 
Hence the lemma is true. 

LEMMA 4.4.5. Suppose s > [log, n/Sk!]. Let the integer t and the sub- 
groups -4, B be as in the previous lemma. Jf i, , i, , ..., i, be any sequence of 
distinct integers between 1 and s, then 

Proof. Clearly it is sufficient to consider the case where i, = j ( j = 1, 
2, ..-, t). 
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As A’j(Nj n Z(Q) P ‘v M/Z(Q) P, i is a direct product of isomorphic t 
simple groups, Nj therefore has a normal generating set Sj in which 
every element has p’-order modulo IV, r\ P. By the previous lemma, 
[A, s, , s, ) . ..) S,] = 1. The proof of the lemma is now a consequence of the 
relation 

[A, AT1 , N, , ..., IV,] :-; [A, S, , S, , ..a, S,] mod B, 

a proof of which may be found in [j]. 
The group P is a p-group, so its lower central series may be refined to a 

series 

P=P,DP,D...DP,=l, 

whose length is not greater than rzc, and is such that each factor Pi/PI+, is 
elementary abelian and central in P/Pz+I. 

LEMMA 4.4.6. If s > nc([log, &k!] -I- 1) -k 3, then for all permutations 
u of the integers 1, 2, .a., s 

Pyoof. The groups Not,, 9 Nncpj g enerate their direct product modulo 
IS contained in K/P which is the centralizer of QP/P ~Qw$ a;~ndN&d& . 

011) 9 Iv G(2) , Nacs,] < P. IVriting u for [log, n%!] + 1, 
it follows from Lemma 4.4.5 that 

[N,,,, , TV,,,) , ... ~~o~u+3J = 1 mod f’, 

and inductively that 

Wgcl, , Noc2, , ..., ~V,,cius3J = 1 mod Pi. 

As P,,, = I, this completes the proof of the lemma. 

LEMMA 4.4.7. The order of M/Z(Q) P can be bounded in terms of n, k, c 
and a. 

Proof. By Lemma 2.2.9, there is a subgroup T of G such that 

(9 Z(Q) < T, 

(ii) the group G/Z(Q) P is generated by T/Z(Q) P together with the 
subgroups MJZ(Q) P (j = 1, 2, ..., s), 

(iii) the group G/Z(Q) P is not generated by T/Z(Q) P together with any 
proper subset of the groups MJZ(Q) P (j = 1, 2, **a, s). 
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AS LR’i = :VjZ(Q) P, we see from this that in G 

(i) G is generated by T together with I\:, , X2 , ..., ;I’, 

(ii) G is not generated by 7’ together with any proper subset of the sub- 
groups !V, , :\‘? , .‘., 1V, , 

i.e., the subgroups T, X1 , Nz , ... , L\‘, of G satisfy the first two of the hypo- 
theses of Lemma 2.4.2. As G is critical, it must fail to satisfy the third, and by 
Lemma 4.4.6, this can only happen if s < nc[log, nkh!] + 1) + 3 Hence 
M/Z(Q) P = ll.=, Mi,iZ(Q) P where each izlJZ(Q) P has order at most (lb, 
and where the value of s is at most “c([log, &/z!] -!- I) -~ 3. 

4.5. So to the final stage of the proof of Theorem 4. VVe first show how 
the bound for / Q /, obtained in Section 4.3, and the bound for j M/Z(Q) P /, 
obtained in Section 4.4, lead to a bound for 1 KQ/P / in terms of n, k, c, and u. 

LEMMA 4.5.1, 1 KQIP 1 is bounded in terms of n, k, c and a. 

Proof. Let X/Z(Q) P be the centralizer of M/Z(Q) P in K,/Z(Q) P. 
Clearly XQ G. Now M/Z(Q) P is g enerated by all minimal normal sub- 
groups of G/Z(Q) P in K/Z(Q) P, and so, if X/Z(Q) P is nontrivial it has 
non-trivial intersection with M/Z(Q) P. On the other hand, M/Z(Q) P is a 
direct product of non-abelian chief factors of G/Z(Q) P and is without center. 
Hence X/Z(Q) P is trivial, and K/Z(Q) P may be faithfully represented as a 
group of automorphisms of iv/Z(Q) P. Since j M/Z(Q) P / can be bounded 
in terms of n, k, c, and a (Lemma 4.4.7) so then can 1 K/Z(Q) P 1, and com- 
bining this bound with the bound for 1 Q j of 4.3, the lemma follows. 

LEMMA 4.5.2. GIKQ j is bounded in terms of n, k c, and a. 

For GiK acts faithfully as a group of automorphisms of QPi;P by conjuga- 
tion, and 1 Q 1 has been shown to be bounded in terms of these invariants. 

COROLLARY 4.5.3. , G/P 1 is bounded in terms of n, k, c, and a. 

LEMMA 4.5.4. 1 I’ 1 is bounded in terms of n, k, c and a. 

Proof. / P I is b ounded in terms of TZ, c, and / P/@(P) 1 because it is a 
p-group. We need only bound 1 P/@(P) / therefore. We first bound I P/R 1, 
then j R,‘@(P) j. 

Consider P/R. If this is not trivial, define for each g (6 E P, g $ R) the sub- 
group U, as the intersection of all subgroups of P which admit L and contain g 
and R. Since G = LR and P/R is elementary abelian, it is clear that / U,/R ( 
divides P”‘~‘, for each U,, . The set of all such subgroups generate P and so, 
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by Lemma 4.4.2, some subset of them, containing at most c members also 
generates P. Hence ) P/R ) divides pclG’P1, and by Lemma 4.5.3, this is a 
number which is bounded in terms of n, k, c, and a. 

Next, consider RI@(P). Since G/P N LjLn P, 1 L/Ln P 1 is of bounded 
order. By Lemma 4.2.1 (iii), Ln P < Q(L), and so ( L/@(L) ( is of bounded 
order. This means that L can be generated by a bounded number of elements. 
The subgroup L n P is of bounded index in L, and so this, too, may be gener- 
ated by a bounded number of elements, But it is nilpotent of class at most c 
and its exponent divides n. Thus it has bounded order, and as 

R = (Ln P)@(P), 

so then has R/@(P). 
This completes the proof of Theorem 4. 

4.6. Using Theorem 4, it is possible to prove Theorem 2(B). As before, 
let 4 be a finite group which generates ‘u and let w = w(xr , .2-“? , .*a x,) be a 
basis for the defining relations of 91. Let C = A x B, and choose c to be the 
maximum of the classes of the Sylow subgroups of C, and k to be the maxi- 
mum of its various p-measures and S-measures. Let 

Y > max (2a, c + 1, a + 2k). 

The aim is to show that GT) is a Cross variety, as this immediately implies 
that 0 = U is a Cross variety. We observe that as w(C) is an elementary 
abelian p-group of aboslute p-degree at most k, the variety Kcr) includes 

(i) 201’ = 1 

(ii) [20(x1 , ..*, x,), zu(x.,,.r , *a*, xzO)] = 1 

(iii) n {w~Ua(l)“‘“,(2~))%(0) = 1 (Lemma 2.5.1) 

among its defining relations. 
Because of Theorem 4, we need to verify that 

(a) there is a finite basis to the relations of Ccr) 

(b) Jinitely generated groups in Efr) aye jinite, 

(c) groups in KcT) have some common finite exponent, 

(d) there is a bound to the order of the $nite simple groups in Kcr). 

(e) nilpotent groups in KtT) aye of class at most c. 

(f) every jinite gvoup in (5 tT) has p-measure and S-measure at most k, for 
each prime p and each finite simple group S. 



That CC(?) satisfies (a) is the statement of Lemma 2.3.2, while (b) and (c) 
are true because of the relations (i) and (ii). The factor group G/w(G) of any 
group G in C(r) belongs to 91 which contains only a finite number of critical 
groups and, a fortiori (Lemma 2.4.1), only a finite number of finite simple 
groups. Hence, as w(G) is abelian, (d) is true. For (e), suppose on the con- 
trary that 6(r) contains a nilpotent group of class greater than r. It must then 
contain such a group which can be generated by e -:- I elements. .As 
T > c -j- I, this would belong to K, which is a contradiction, by Lemma 2.3.5. 

We have already remarked that if G belongs to K(r) then G/w(G) belongs 
to % and w(G) is an elementary abelian p-group. By Lemmas 2.5.2 and 
25.3, this means that for all primes q other than p, and for all finite simple 
groups S, the y-measure and S-measure of the finite group G cannot exceed 
the corresponding q-measure or X-measure of B. As for the prime p itself, 
because of the relation (iii), we may apply Lern~l~a 2.5.1 to give that the 
absolute p-degree of any chief factor of G between w(G) and 1 is at most K. 
Since the p-rank of G/w(G) is not greater than that of A, we have that the 
p-rank of any finite group G in &CT) is at most K. Hence, for all primes p, 
and for all finite simple groups S, the p-measure and S-measure of any 
finite group in fll(‘r) is at most k. 

This completes the proof that 6(Y) is a Cross variety and so Theorem Z(B) 
is proved. Theorems 2(A) and Z(B) g ive Theorem 2, from which Theorems 1 
and 3 follow. 
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