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1. INTRODUCTION

The main purpose of this paper is to prove in answer to a question of
B. H. Neumann [7]:

TueoreM 1. If Gis a finite group, then there is a finite basis for the identical
relations holding in G.

It will be recalled that a factor of a group G is a quotient group H/K, where
1 < K< H<G, and this is proper unless K =1 and H = G. A critical
group 1s a finite group which does not belong to the variety generated by its
proper factors, while a Cross variety is a variety 8 which satisfies:

(i) 9 has a finite basis for its identical relations;
(ii) finitely generated groups in ¥ are finite;
(ii1) B contains only a finite number of critical groups.

Professor Higman has pointed out that in order to prove Theorem 1
it 1s sufficient to prove:

THEOREM 2. If B is a finite group, and W is a Cross variety containing all
factors of B, then the variety U generated by U and B is Cross.

For, since a subvariety of a Cross variety is itself Cross, a simple induction
argument gives:

TueorEM 3. A wariety of groups is Cross if and only if it is generated by a
finite group.

Theorem 1 is an immediate consequence of this.

Theorem 2 is trivial if B is contained in %A and, in particular, if B is not
critical. If B is critical, then it has a unique minimal normal subgroup M,
and the proof divides into two according as M is or is not abelian. In either
case, it is sufficient to prove that U satisfies the conditions for a Cross
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variety, where U is the variety satisfying the identical relations of U which
involve n or fewer variables. By a result of Neumann [7], U always has a
finite basis for its identical relations, so it remains to prove that it satisfies
the other two conditions for a Cross variety.

If M is not abelian, the main difficulty lies in showing that # can be chosen
so that finitely generated groups in U™ are finite; it is then relatively easy
to show that U™ contains only a finite number of critical groups. The main
concept here is that of an M-subgroup of a group G; roughly, this is a sub-
group isomorphic to M, and such that the automorphisms induced in it by
conjugation by elements of its normalizer include the restrictions to M of the
inner automorphisms of B. The key result is that, for large enough », a
finitely generated group G in U has a normal subgroup N which is a
direct product of normal M-subgroups such that G/N belongs to 9.

If, on the other hand, M is abelian, it is easy to choose # so that finitely
generated groups in U are finite, but much harder to choose n so that
U™ contains only a finite number of critical groups. For this purpose we
make the following definitions:

The absolute p-rank (for a given prime p) of a finite group is the maximum
dimension of an absolutely irreducible component of any chief factor of G
of p-power order, and the p-measure of G is the maximum of the p-ranks of
its factors (epimorphic images of subgroups).

The S-rank (for a given nonabelian simple group S) of a finite group G
is the maximum number of isomorphic copies of S which occur as direct
factors of a chief factor of G, and the S-measure of GG is the maximum of the
S-ranks of its factors.

We then prove:

TurorEM 4. The order of a critical group can be bounded in terms of its
exponent, the maximum of its p-measures and S-measures, the maximum of the
classes of its Sylow subgroups, and the maximum of the orders of its composition
factors.

Theorem 2 for the case in which B is a critical group with abelian minimal
normal subgroup then follows.

Section 2 consists of notation, definitions, and preliminary results, and in
Section 3, Theorem 2 is proved for the nonabelian case. Theorem 4 is proved
in Section 4.

2. NotaTtioN, DEFINITIONS, AND PRELIMINARY RESULTS

2.1. 'The reader is referred to [&] for the definitions of a variety, the variety
defined by a set of relations, and the variety generated by a class of groups.
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Throughout, groups are denoted by upper case Roman letters, and varieties by
upper case Gothic letters. Group elements are denoted by lower case Roman
letters. As in [&], the variety generated by a group G is denoted by ®, and
the variety defined by those relations of G involving at most n variables is
denoted by G,

If G, H are groups, then H < G, H < G, and H <] G mean respectively
that /7 is a subgroup of G, that H is a proper subgroup of G, and that H is a
normal subgroup of G. The normalizer of H in G is written N (), or more
frequently N(H), and its centralizer is written Cg(H), or C(H). The center
of H is denoted by Z(H), and its Frattini subgroup by ®(H). If S is any
subset of H, {S} denotes the subgroup of H which is generated by S.

For any two elements g, & of a group, the element A~lgh is written g,
The commutator h~'g—thg is written [4, g]. Higher commutators are defined
inductively by the rule [g;, =, g,, 80 = {81, " &)y gna)- 1f Hy, Hy
are subgroups of G, then {H,, H,] denotes the subgroup of G generated
by all commutators [#, , &,] with /, in H, and A, in H, . As with commutators
of group elements, [H,, -, H, , H, ;] is defined to be [[I{,, -, H,], H, ;)

If (v, -+, x,) is a word in the free variables x,, -~ x,, then w(G)
denotes the subgroup of G generated by all elements of the form (g, , -+, g,)
where g, -+, g, € G.

The reader is reminded that the Frattini subgroup of a finite group G is
the intersection of its maximal subgroups. It is also the subgroup which
consists of the set of nongenerators of G. The Fitting subgroup of G is its
greatest normal nilpotent subgroup. The subgroup 7' is said to be a partial
complement to the normal subgroup H of G if G = TH and TN H is a
proper subgroup of /. Throughout, “simple” is taken to mean “nonabelian
simple.”

2.2. The following resuits of R. Remak [9] about direct products are
required.

Derinition 2.2.1. Let G <X H X K; then any element g of G is uniquely
expressible in the form gégifs, where gb € H, gy € K. The mappings ¢, i are
called the projections from G to H, K, and the images G¢, G are called the
projections of G on H, K.

Lemvia 2.2.2. If GO H = Gé, then G = (G H) x (GN K).

Lemwva 2.2.3. GNH <1Gp, GNKAGYy, GHGN H) ~ Gy,
GI(GN K) ~ G, and Gp/(GN H) ~ G/(GN K).



14 OATES AND POWELL

Lemma 2.2.4. A normal subgroup of a direct product of simple groups s a
(possibly empty ) direct product of a number of the factors (where we make the
convention that the direct product of the empty set of groups is the trivial group ).
The decomposition of a direct product of simple groups ts unique, and any normal
subgroup of such a divect product has a unique normal complement.

Lemma 2.2.5. Let H, <A G (@ = 1,.r), and let D=0} H,, then
GID ~ G < (GH,) x = X (GIH,).

Other facts about direct products which are needed are:

Lemma 2.2.6. If N<I G << H X K, and C;(N$) = 1, then NN H = 1
if and only if G H = 1.

Proof. If G H =1, then trivially NN H = 1. Conversely, suppose
ghe GN H,gp + 1, and let n = némfp € N. Since N <] G, (gp) ndmigp € N,

and so
(ndmby=! (gd) ndnpgd = [ne, gd] € N.

But this is also an element of H, and so belongs to N N H. It cannot be 1 for
all n, since CG¢(N¢>) = 1and g +# 1.

Levma 2.2.7. If G={D,, -, D,}, where each D, is a direct product of
simple groups and is normal in G, and D; "\ D; = | (¢ # j), then

G=D; x - xD,.
Proof. By induction on 7, the lemma being certainly true for » = 1.
By assumption, then,
{Dy, D} =D, x - xD<G.
Now Dy N (D, % +++ x D,) is normal in D, x --» x D,, a direct product
of simple groups, and so must be a direct product of a number of the factors.

But D, D, =1 (=2,++7) and so DyN (D, x -~ = D,) = 1. Thus
D, and D, X -+ x D, generate their direct product; i.e.,

G=D x - xD,,
as required.
LemMva 2.2.8. Let GIN ~H, X - x H,, where N is abelian, and each

H,; is a direct product of stmple groups. Let F; be the subgroup of G such that
FIN~H, If F,=D, x N(D;~H),) fori =1, v, then

G =D, x = x D, X N.
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Proof. Certainly G = {D,, =--, D, , N}. Now, F'; <| G, being the inverse
image of a normal subgroup of G/N; thus, for any g in G,

oD < F, = D, x N.

But the projection of g7'D,g on N is an abelian homomorphic image of
£7'D,p, which is a direct product of simple groups, and so this projection
must be 1. Hence g'D;g = D,, and D,;<1 G. Also F;NF; = N (since
(F,/NYN(F;/N)=1) and so D;,n D; = 1. It follows from Lemma 2.2.7
that the D, generate their direct product, which is also normal in G. But
NN (D x ++ X D,) is an abelian normal subgroup of a direct product of
simple groups, and so is 1. Hence G = D x --- x D, x N, as required.

Lemya 2.29. If G is a finite group with a set of non-nilpotent normal
subgroups M, , -+, M, which together generate their direct product, then there
1s a subgroup L, of G such that:

(1) G is generated by L, together with M, , -+, M ;
(i1) G is not generated by L, together with any proper subset of M, , -+, M,

S

Proof. By induction on s. If s == 1, then L; may be chosen to be any
maximal subgroup of G not containing M, . Such a group exists because M,
cannot be contained in @(G), which is nilpotent.

If s>1,1et Y =M, x - x M., and consider the normal subgroup
YM, M, of G/M,. By induction, there is a subgroup L., of G, which
contains M, and is such that L _ /M, and MM /M,, -, M,_,M/M,
satisfv conditions (i} and (ii) with respect to G/M,. If X =L_,;N Y, then
in L, M, and X generate their direct product and so M X/ X ~ M,.
As M X/X is not nilpotent, there is a subgroup L, of G, containing X, such
that L,/X is a proper subgroup at L.,_,/X, and such that:

i) LMJX =L,_,/X;

(iy MJX ¢LJX.
Evidently LM, =L, ,, since L, D X. Thus G ={L,, M,, -, M}. On
the other hand, if M; (j + s) is omitted from the set, G is not generated by
the remaining groups, because GG/M, is not generated by their homomorphic

images. If A, is omitted, the group generated by the remaining subgroups s,
modulo Y, simply

LYY ~LAL,NY)=LJL, ;N Y)~ G/Y.

Thus L, has the required properties, and the truth of the lemma follows.
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2.3 Varieties and ldentical Relations
In [7], Neumann proves the following lemmas:
Lemva 2.3.1.  Any variety is generated by its finitely generated groups.

Lemma 2.3.2.  Those identical relations of a finite group which involve at
most n variables possess a finite basis.

Now, the variety generated by a set of groups X is obtained by repeated
applications of the operations of taking subgroups, homomorphic images,
and unrestricted direct products, but it is shown by Higman [5] that these
operations need each be applied once only; in fact, one has:

Lemma 2.3.4. A group which belongs to the variety generated by a set of
groups X is a homomorphic image of a subgroup of a divect product of groups
isomorphic to groups in X.

Moreover, if X is a finite set of finite groups. Higman proves the refinement:

Lemma 2.3.5. If G is a finitely generated group belonging to the variety
generated by a finite set of finite groups X then G is a homomorphic image of a
subgroup of a divect product of a finite number of copies of groups in X.

As a corollary, one has:

Levma 2.3.6. A finitely generated group in a variety generated by a
finite set of finite groups is finite.

2.4. Critical Groups

It has already been mentioned that a critical group has a unique minimal
normal subgroup. In this section two further lemmas about critical groups
are proved.

Lemma 2.4.1. A finite simple group is critical.

Proof. 1In a variety generated by a finite set of finite groups all of whose
composition factors have order less than k&, the composition factors of any
finite group have order less than k. But the order of any composition factor
of a proper factor of a simple group (which is its own only composition
factor) must be less than that of the group itself, and so a simple group
cannot belong to the variety generated by its proper factors.

Lemma 2.4.2. If the group G has a set of normal subgroups M, , -, M,
and a subgroup L such that:
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(1) G is generated by L together with the subgroups M, , -, M ;

(i) G is not generated by L together with any proper subset of the subgroups
M, M

(i) (M, , -0 My = 1 for all permutations o of the integers 1,2, -+, s;

hEd

then G is not critical.

Proof. For each j, (j=1, -, 5) let S; be a set whose elements are in
one-one correspondence with the nontrivial elements of M, . Let .S, be a set
whose elements are in one-one correspondence with the nontrivial elements of
L, and assume that the sets S, , S, --*, S, are so chosen that they are mutually
disjoint in pairs. Let F be the free group freely generated by the elements
of Sy, 51, -, S,, and let Y be the set of all conjugates of these elements.
The notion of a commutator in the elements of Y is defined inductively;
y and y~! are commutators for all ¥ in Y} if y, & are commutators, so is
[¥, ¢]; and nothing else is a commutator. The commutator # involves S
if it is either a conjugate of a generator of F which belongs to §;, the inverse
of such an element, or is of the form [y, 2] where y or = involves S;. The
endomorphism of F' which maps each element of S; onto 1 and leaves S
(k £ j) invariant is denoted by =; . Let K =Nj_, ker =; . By a trivial modi-
fication of Lemma 3.2 of [5], K < y(F) (the sth term of the lower central
series of F). Thus each k in K may be written & = uu, -+ 4, where each u,
is of the form [yy,¥s, ", ¥,] (¥;€Y). Now, if #,, involves S;, and u;
does not, we may write #u;,, = #;,u;, where u; = ujuu; . In this
way, it is seen that the above expression for & may be rearranged so as to
take the form

k =y, ¢y

where ¢, is a product of powers of commutators involving each S;; ¢, 1s a
product of powers of commutators not involving .S, but involving Sy, S, , **,
S, #=1,2,--+,5). But now kny=Fkms, | = - km =1, and so ¢, =
¢y = -+ = ¢, = 1. Hence every element of K may be written as a product
of powers of commutators which involve each S; (j =1, 2, ---, s). Since G
is generated by L and the M, , it is an epimorphic image of F under the
natural homomorphism « induced by Spo = L, Sja =M, (j =1, -+, 5).
Taken in conjunction with the hypothesis (iii) of the theorem, what we have
just proved implies that K is in the kernel of «, so that we can write « = y3,
where vy is the natural map of F on F/K, and 8 is a homomorphism of F/K
on G. The proof of the theorem is now precisely analogous to that of Theorem
3 of [8]. By trivially modifying Lemma 3.4 of [5], one deduces that there are
endomorphisms 8; , ---, B; of F such that each element g of F' may be written

g = k(g"B) (¢"Ba) -+~ (£"BY) (A)
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where k€ K, and each A; -~ 4 | independently of g. From hypothesis (i)
cach of the subgroups FBjx { j == 1, *+-, 1} is a proper subgroup of G. By means
of the identity (A), it may be verified that the mapping # which maps each
element gy of Fy on the element with component gfx in Ffx in the direct
product Hf;ﬂl FB,x is a homomorphism of Fy, and that the mapping & may be
factored through 8. This demonstrates that G is an epimorphic image of a
subgroup of a direct product of its proper factors, thereby proving the result.
The reader is referred to [8] for details.

Lemva 2.4.3.  If the critical group G has a normal milpotent subgroup N,
partially complemented by a subgroup L and a set of subgroups Ny, -, N, of
N satisfying:

(1) each Ny contains L N and admits L;
(i) G is generated by the subgroups L, Ny, -+, No;

(ii) G is not generated by L together with any proper subset of the subgroups
Ny, N

then ¢ cannot exceed the nilpotency class of N.

This result was proved in [8]. It can, however, be deduced as a special
case of 2.4.2 because the subgroups L, N O(N), -+, N P(N) satisfy the condi-
tions of that proposition whenever ¢ exceeds the nilpotency class of N.

In the particular case where G = N, i.e,, L = |, one may deduce from the
Burnside basis theorem:

LemMA 2.4.4.  If the critical group G is nilpotent of class ¢, then it may be
generated by ¢ elements.
This result was first proved by D. C. Cross [/].

2.5. The p-Measure and S-Measure of a Finite Group

The p-measure and S-measure of a finite group are extensions of the
concept of the absolute rank of a finite soluble group introduced by
G. Higman. A full account of this may be found in [§], as may proofs of
the results quoted in this subsection. Here we give fuller definitions than
those given in the introduction.

If XY is an abelian chief factor of a finite group G, it is an elementary
abelian p-group for some prime p on which G acts as a group of
automorphisms. It may be identified with the additive group of a vector
space V over the prime field %, and the action of G then gives I the structure
of an irreducible representation module for G. If 4", is any finite extension
of .7, , the module ¥, ® V is the direct sum of G submodules which are
irreducible over 2#°, and which are all equivalent under the Galois group



IDENTICAL RELATIONS IN FINITE GROUPS 19

of ", over .# . In particular, if .4, is chosen to be a splitting field for the
representation, it follows that each absolutely irreducible component is of
the same dimension and this common dimension is defined to be the absolute
p-degree of the chief factor .X/Y of G. If the chief factor XY of G is not an
elementary abelian p-group, it is defined to have absolute p-degree zero.

LemMa 2.5.1. If the chief factor X|Y of G is an elementary abelian
p-group and has absolute p-degree d, then the congruence

H{xlla(l)-~-ya(m)}x(0) = ] mod Y

ts valid for all x€ X and all g, -+, g, € G if and only if m > 2d. (Here
g7'xg is written as x?, y is the alternating character, and the product is taken
over all permutations ¢ of the integers 1, ---, m.) This result is a trivial
modification of Lemma 2.2.3 of [6].

The absolute p-rank of a finite group is defined to be the maximum of
the absolute p-degrees of its chief factors. Its p-measure is the maximum of the
absolute p-ranks of its factors (i.e., homomorphic images of subgroups). It
is easy to see that if [ is a homomorphic image of G then the absolute p-rank
of H does not exceed the absolute p-rank of G. On the other hand, by con-
sidering a simple group it is seen that the absolute p-rank of a subgroup may
exceed that of the group.

Leviva 2.5.2. If H, K are finite groups, then the p-measure of H » K
ts equal to the maximum of the p-measures of H and K.

Proof. Consider a subgroup G of }/ x K. Let ¢ and 4 be defined as in
2.2.1, and let & be the maximum of the p-measures of H and K. Since
Gé ~ G/GN K, the p-measure of G/GM K is at most k. Again, if X/}V is a
chief factor of G such that GN K > X > Y = I, then X/Y is also a chief
factor of Gif, and the representation of G as a group of automorphisms of
XY is isomorphic to that of Gi. Thus G has p-measure at most %, and the
proof of Lemma 2.5.2 is now straightforward.

If S is a finite simple group, and X/Y is a chief factor of a finite group G,
XY is defined to have S-degree d if it is a direct product of d groups isomor-
phic to S. If X/Y is not a direct product of groups isomorphic to S, it is
defined to have S-degree zero. The S-rank of a finite group is the maximum
of the S-degrees of its chief factors and its S-measure is the maximum of the
S-ranks of its factors (i.e., homomorphic images of subgroups).

Lemma 2.53. If H, K are finite groups, then the S-measure of H x K
ts equal to the maximum of the S-measures of H and K.
The proof is as for Lemma 2.5.2.
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Lemwa 2,54, If a variety B is generated by some finite group G, there is
an integer k, depending only on G, such that for each prime p and each finite
simple group S, the p-measure and S-measure of any finite group in B does not
exceed k.

Proof. By Lemmas 2.5.2, 2.5.3, and 2.3.5 it is sufficient to choose % as
the maximum of the p-measures and S-measures of . Only a finite number
of these can be nonzero.

3. Crrricar Grouprs wiTH NONABELIAN MiNivarL NorMAL SUBGROUPS
In this section we prove:

Tueorem 2(A). If B is a critical group whose minimal normal subgroup is
non-abelian, and W is a Cross variety contatning all proper factors of B, then the
variety U generated by U and B is Cross.

{We may assume that B does not belong to ¥, since the theorem is trivial
if it does.)

3.1, Special Notation and Preliminary Results

Let 4 be a finite group which generates ¥ {e.g. the direct product of the
critical groups of ¥) and let w(x,, -+, x,) == | be a basis for the identical
relations of .

Let the minimal normal subgroup of B be M. Let m be the minimum
number of generators of M, and let & be the minimum number of generators
in a generating set for B which includes a minimum generating set for M.

Derinrrion 3.1.1. A subgroup D of a group G is called an M-subgroup if
D =~ M, and there exists a subgroup H of G such that D<{ H and
H|Cy(D)y =~ B (H is called an M-normalizer of D).

If a group G contains a subgroup K which has as a direct factor an M-sub-
group D of G, then D is said to be an M-factor of K (in G).

Lemma 3.1.2. If D is an M-subgroup of G and N<1 G, then DOYN = D
or 1, and, in the latter case, DN|N is an M-subgroup of GIN.

Proof. et H be an M-normalizer of D, so that D <] H,and H]Cy(D) ~ B.
Under this homomorphism the image of I is a normal subgroup of B,
isomorphic to D (since DM Cy(D) = 1), ie., isomorphic to M. Thus it
must be M itself. Since M is the minimal normal subgroup of B, it follows
that no proper nontrivial subgroup of D can be normal in H, and hence
DN Nis D or 1. In the latter case D and H M N will commute elementwise,
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and so HNN < Cu(D). Now, DNIN~D/(DNN)=D~M, and
DN/N <] HN/N < G/N. Let ¢, an element of Cyy \(DN/N), be the image
under the homomorphism from G to G/N of ¢, an element of H, so that
dc = ¢dn, n € N, for any d in D. Thus d~'¢'dc = n. But d~'¢7ldec € D (since
ceH, and D] H), and so dlclddee DN N = 1. Hence c¢e Cy(D).
Conversely, if ¢ € Cy(D) then certainly its image under the homomorphism
belongs to Cppy(DNIN); de., Cypin(DNIN) = Cy(D) N/N. Thus, since
HN N < Cy(D),
(HNIN)/C o (DN]N) = (HNIN)(C(D) NIN)

~ (HIHN N)[(Cy(D)Cpr(D)N N)

~ H|Cy(D) ~ B.
It follows that DNJN is an M-subgroup of G/,

Lemma 3.13. If G> K =D, X - X D,, where the Ds are M-sub-

groups of G, and N<] G, then KN|N is a direct product of M-subgroups of
G|N.

Proof. From Lemma 3.1.2 we have that D; N = D, or 1, and, in the
latter case, D,N/N is an M-subgroup of G/N. Since each D, is a direct
product of simple groups, so is K, and so any normal subgroup of K is a
direct product of a number of these. Thus KN N consists precisely of the
direct product of those D; with which N has intersection D;. Thus

KNIN~K{(KNN)~D, x - x D,
where these are the D;s with which N has intersection 1. It follows that

KN/N is the direct product of the corresponding D,N/N, and thus has the
stated form.

CoroLLarY 3.1.4.  If in Lemma 3.1.3 each D; is normal in G, then
KN = D, x =+ X D, X N, where these are the D such that DN\ N = 1.
Proof. This follows immediately from the fact that D; X -+ x D, and

N are normal subgroups of G with trivial intersection.

Levma 3.1.5. Let X and Y be normal subgroups of G, and let D|X be an
M-subgroup of G|X, where D < XY. Then (DN Y)(XNY) is an M-sub-
group of GI(XN Y).

Proof. Since X <D< XY, D=X(DNY), and so

M~D|X = X(DN V)X ~ (DN V(DN V)N X) = (DN V(XN Y).
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Let HiX be an M-normalizer of D/X. Then DN Y <G H, since D<=l H,
Y <l G. Buppose Cyp(D/X) = U/X, and Cpyyixnpy({(D N V)X N YY) =
VX Y.

Let ue U, de DN Y; then, since u centralizes 1)).X, u'du == dx, where
yeXN.ButDNY< Hyandsoxe DN Y. Hencexe XN DN Y == XNY,
But this means that (X N Y) centralizes (DN YY(X N Y), and so ue V.
Hence U <L V., Now let ze V, de D; then d == dyx, where d;e DN Y,

since (XM Y) centralizes DN Y. Thus v~ldv = dx’, where »" € X (since
X <¢ G). Hence 2.X centralizes /X, and sov € U, Le., I =L U. It follows that
U=V, and

(HIXN YN Crpixnn DO VXN YY) = HIV
e HIU ~ (H|X)/(Cpy o(D]X)) ~ B.

Thus (DN Y)(X 0 Y)is an M-subgroup of G{(X " Y), with M-normalizer
HI(XN Y.

32. The Variety U

Throughout this Section G is a finitely generated (and thus finite} group
mn 1.

Levvia 3.2.1.  In order to show that a property P holds for G it is sufficient
to show that 1 has P, and that, if all factors of a group U in X have P, then
50 have all factors of U x A, and all factors of U x B,

Proof. By Lemma 2.3.5, G is a homomorphic image of a subgroup of a
direct product of a finite number of groups isomorphic to A and B. Thus it is
sufficient to show that all factors of a direct product 4; X -+ X 4, ¥
B, x - % B, have P. We proceed by induction on #, the basis of the induc-
tion being 7 = O, since we have assumed that 1 has P. Assume all factors of
Ay X X Ay X By X o+ X B,y = U have P, then so have all factors
of U x 4, and thus of U X 4 X B= Ay X - X 4, x By X -+ X B,.

Lemma 3.2.2. In applying Lemma 3.2.1, in order to show that all factors
of U x A, or of U X B, have P, it is sufficient to consider those factors K|N
such that KN A >1,or KN B > 1.

Proof. By Lemma 223, KNnAd =1 or KN B =1 implies K ~ K¢
(its projection on U). Thus K/N is isomorphic to a factor of U and so, by
assumption, has P.



IDENTICAL RELATIONS IN FINITE GROUPS 23

Levma 3.2.3. w(G) is a finite direct product of M-subgroups of G, each
of which is normal in G (and, by Lemma 2.2.4, this expression is unigue ).

Proof. 'This is certainly true for 1, and so it must be shown that if it is
true for all factors of U, where U € U, then it is true for all factors of U x V),
where "~ A4 or V ~ B.

Let G ~ KN, where K <L U x V. Let ¢,  be the projections from K to
U, T; then w(K)¢ = w(K¢p), and w(K)y¢ = w(K). Now, unless
K==V~ B, K € U, and so w(K) p = w(Kp) = 1, and w(K) = w(K) > 1.
If Ky ~ B, then w(Ky) == w(B) >> 1, since B ¢ A. Now w(B)<] B, and so
w(B) >> M. But w(B/M) =1, and so w(B) < M, hence w(B) = M. By
Lemma 3.2.2 it may be assumed that KN B > . But

Cy(w(K) i) = Cy(M) =1,
and so, by Lemma 2.2.6, w(K)N B > 1. But @(K) <] K, and so
w(K)N B<] Ky = B.

Thus w(K)N B = M = w(K) ¢, and so M is a direct factor of w(K). But
Cy(M)=Kn U, and so K/Cx(M) = K|/(KN U)~ Ky = B. Hence M
is an M-subgroup of K. Also M <] Ky, and so M <] K. Thus

w(K) = w(K¢) X M,

where M satisfies the given conditions.

Now consider w(K¢), which we have seen to be a direct factor of w(K).
K¢ is a factor of U, and so, by hypothesis, w(K¢) is a direct product of
M-subgroups of K¢, each of which is normal in K¢. Let D be one of these
factors, and Hé be an M-normalizer of D in Ké. Let I be the inverse image
of Hé in K. Then D <\ H, and h € Cy(D) if and only if hp € Cyy(D). Thus
H|Cy(D) ~ Hp/Cyxy (D) ~ B. Also D<K, since D<]K¢. Thus w(K¢)
1s a direct product of M-subgroups of K, and it follows that, in both cases,
2(K') has the required form.

Now consider G~ K/N. If w(K) =D, x -+ x D,, by Lemma 3.1.4
we have w(K)N = D, x -+ x D, x N, where D;, -+, D, are the M-
factors of w(K) which have intersection 1 with N. But @(G) = w(K) N/N,
and, by Lemma 3.1.3, this is a direct product of M-subgroups of G. Clearly,
each of these, being a homomorphic image of a normal subgroup of K, will be
normal in G, and the truth of the lemma follows.

Lemma 3.2.4. If D is an M-subgroup of G, then D < w(G).

Proof. D<JH < G, and H|/Cyx(D) ~ B. Thus
DCy(D)/Cy(D) = w(H|Cy(D)) = w(H) Cx(D)[Cy(D),
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and so

DCy(D) = D, x = x D, % Cy(D),

where Dy, -, D, are the factors of w(H) which have interscction |
with Ch(D). But DCL(D) = D x Cy(D), since I has no center, and thus
s= 1, and D x Cyx(D} = D; x Cy(D). Now, if D had a nontrivial com-
ponent in Cp(D) this would necessarily be abelian, but it is a homomorphic
image of D (=~ M), so this is impossible. Thus 1 = D, < w{H) < «(G).

Levma 3.2.5. If NG, and LIN is an M-subgroup of GIN, with
M-normalizer HIN, then L = D X N, where D is an M-subgroup of H (and
thus of G ).

Proof. As in the above lemma, L|N is one of the direct factors of w(H|N)
and so is of the form DN/N, where D is an M-factor of #(G). But N <] H,
D<G{H, and DN N =1, thus L = D x N, and has the required form,

Lemma 3.2.6. If D is an M-subgroup of G, then the projection of D on
any D; which is an M-factor of w(G) is either D, or 1.

Proof. 'The lemma is certainly true for 1, so we must show that if it is
true for all factors of U{(el), then it is true for G~ K/N, where
KL UxV,andV~Ador Ve~B.

Let the inverse image of D in K be L, then, from Lemma 3.2.5,
L = D" x N, where D' is an M-subgroup of K. If )’ has projection D; or |
on each M-factor of w(K), then, since w(G) = (Dy x -+ x D, x N)/N,
where D, , .-+, D, are factors of w(K), and D = (D' x N)/N, D will also
have this property. Hence it is sufficient to prove the lemma for K. Let ¢,
i be the projections from K to U, V. Asin Lemma 3.2.3, w(K) = w(K¢) x 1,

lizerof Din K, then DN V<1 H, and sois D or 1.

(1) If DNV = D, then, since D < w(K), we must have V = B, and
D == M, so that D is itself an M-factor of w(K).

) If DNV =1, then D~ D¢, and, as in Lemma 3.1.2, D¢ is an
M-subgroup of K (with M-normalizer H¢). Thus, by hypothesis, D¢ has
projection D, or 1 on each factor or w{K¢), and thus so has D, It remains to
consider Dih. Since D <C w(H ), this will be 1 unless H = V' = B (in which
case w{K) = w{Ké) x M). But D¢ <] Hy, and Dip << M. Thus Dif =1 or
Dy == M. Hence, in all cases, I has the required properties.

Levma 3.2.7. If Dis an M-subgroup of G, then C(D) <4 G.
Proof. From Lemma 3.2.6, D < w(G)= D X - x D,, and has
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projection D, on Dy , *++, D, say, and 1 on the other factors. Letd = d, - d,
be an element of D, and let ¢ € Cy(D), so that ¢7'de = d. Since D; <] G,
we have ¢ldec=d,eD,, and so d|--d,=d, - d,. Hence d; =d;.
But this will hold for any element d; of D; (£ = 1, --+, 5), since D has projection
D, on these factors, and so ¢ centralizes each of D, , -+, D, also. Conversely,
any clement which centralizes each of these groups will certainly centralize D,
so we have Cy(D)= N._; Cx(D;). But Cy(D,)<1G, since D;<]G, and
so Co(D) <1 G, as required.

Levva 3.2.8. If G = SI>D x N, where D is an M-subgroup of G,
then D <] S.

Proof. As in Lemma 3.2.6, D < w(G)= D, x - X D,, having
projection D; on Dy, -+, D,, say, and 1 on the other factors. Now,
N < Cy(D), and so N << Ce(Dy) (£ =1, -+, 5). Thus

NN (D X xDy)=1.

Let de D, se.S. Since D x N<1S, s'ds = d'n, where d'€ D and n e N,
ie., n = d s 'ds. But, since each D, is normal in G, the right hand side
is an element of D, x --- x D,, which has intersection 1 with N. Hence
n =1, and D < S, as required.

Lemwva 3.2.9. If D is an M-subgroup of L << G, then any element of G
which centralizes D also centralizes every M-factor of w(L) on which D has
nontrivial projection.

Proof. (i) If L = G, then the result has already been proved in the
course of proving Lemma 3.2.7.

(i) In the general case, let Dy, -+, D, be the M-factors of @(G), and
E,, -, E, the M-factors of w(L). E; is an M-subgroup of G, so we may
suppose it to have projection D; on D; for i =1, ---, ¢, and | otherwise,
Then, for j > 1, E; centralizes £, and so, by (i), centralizes Dy, ---, D, ,
so that its projection on D, must be 1 for 7 = 1, -+-, £. It follows that we can
calculate the projection of an element of w(L) on D, (i =1, ---, t) by first
projecting on E,, and then projecting the result. Thus, if D has projection
E, on E, , it has projection D; on D; (i = 1, -+, t). By (i), an element which
centralizes D also centralizes D, X -+ x D, and so centralizes E; , which is
contained in Dy X -+ X D,.

3.3. The Variety U™

In this section G is a finitely generated group in U, where
n = ny, = max (a, 2b + 1).
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Lemma 3.3.1. w(G) s generated by a finite number of M-subgroups of G.

Proof. Gjw(G)e, and is finitely generated, and so finite. It follows
that =(G) is finitely generated, and so is generated by a finite number of
elements of the form w(g,, -+, ¢,). Let L == {g,, .-+, g,} then L has at most
ny generators, and so belongs to U. From Lemma 3.2.3 we have that w(L)
is a finite direct product of }M-subgroups of L. But these will also be M-sub-
groups of G, and so each of the finite number of generators of 2(G) is con-
tained in the direct product of a finite number of M-subgroups of G, which is
itself contained in w(G). It follows that the totality of such subgroups gener-

ates w(G).

Lemma 3.3.2. Let D be an M-subgroup of G, then there is an M-normalizer
H of D in G having only b generators, and D < w(H) < w(G).

Proof. Let H' be an M-normalizer of D in G, and let 4, -+, a,, be gener-
ators of D. Consider H'/Cy(D). A set of generators a,Cp.(D), - a,C (D)
for this can be chosen so that the first m correspond to the generators of 1
(because DN Cyx(D)y=1). Let H ={a,, -, a}. Then D<H,
H’' = HCy(D), and

B~H'[Cy(D) = HCyx(D)/Cyi{D)y ~ H{(HN Cgx(D)) = H/Cy(D).
Thus H is also an M-normalizer of D in G, and had only 6 generators. By the
choice of n,, H e, and so, by Lemma 3.2.4 D << w(H) < w(G).

Lemwma 3.3.3. If D is an M-subgroup of G, then Co(D)<]G.

Proof. Let H be an M-normalizer of D with b generators, and let g € G,
cc Cy(D). I L ={H, ¢, g}, then since b + 2 < 2b -{- |, L € U. But D is an
M-subgroup of L, and so, by Lemma 3.2.7, C,(D)<]L. But ¢ € C;(D), and
50 g7 leg € C1(D) << Cy(D). Thus Cy(D) <] G, as required.

Levva 3.3.4. IfG = S>D x N, where D is an M-subgroup of G, then
D<S.

Proof. Let H be an M-normalizer of D with b generators, and let s € S.
If L == {H, s}, then L € 1. But D is an M-subgroup of 1., and

LASSLA(D X N)y=D x (L N).

Thus the conditions of Lemma 3.2.8. are satisfied, and D<JL N S. i.e,
s1Ds = D. Thus D<] S.

Lemma 3.3.5. If GD> N, where N is abelian, and KN is a direct product
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of M-subgroups of GIN, then K == E X N, where E is a direct product of
M-subgroups of G.

Proof. Let /N be one of the M-factorsof KN, and H'/N an M-normal-
izer of J/N having b generators, ¢;N, -+, q,N. Let H = {a,, ---, a,} Then
H/(HNN)~HN|N = H'/N. Hence H must contain a subgroup L such
that L;(HN N) is an M-subgroup of H/(HN N), corresponding to J/N
under this isomorphism. But H, having only b generators, belongs to U,
and so, by Lemma 3.2.5, we have L = D X (H N N), where D is an M-sub-
group of H (and thus of H" and G). Also LN = DN, and so DN/N = ]/N.
Now suppose H' contains two M-subgroups, D, , D, such that D,N/N =
D,N/N = JIN. Let H,, H, be M-normalizers of D;, D, each having &
generators; then, if P = {H,, Hy}, Pel, and so, by Lemma 3.2.4,
{D, D,} << w(P). Now, w(P), as a direct product of M-subgroups of P,
has no nontrivial abelian normal subgroup, so that w(P)N N = 1. Thus
w(P) is isomorphic to its image 2(P)N/N in the natural map of H' on /{'/N.
But J/Nis the image in this map of both D, and D, . It follows that D, = D, .
Now, for any n in N, n71Dn will be an M-subgroup of of H' such that its
image in H'/N is J/N. Hence we have n'Dn = D, ie.,, D <| DN. But
DN N =1, and so DN =D x N. This will hold for each M-factor of
K/N, and so, by Lemma 2.2.8, K =D, X - < D, x N, where the D,
are M-subgroups of G.

Levima 3.3.6. Let D be an M-subgroup of G, and put X = Cy4(D),
Y = Ci(X), then XY contains every M-subgroup of G.

Proof. XY certainly contains D itself. Let D’ be any other M-subgroup
of G, and let H, H’ be M-normalizers of D and D’ respectively, each having
only b generators. Let L = {H, H'}; then L e Y, and {D, D'} < w(L). By
Lemma 3.2.6, D has projection D; or 1 on each M-factor, D, of w(L). If D
has projection 1 on D, then D, < X. If it has projection D, , then D; < Y;
for, let x € X, and consider the group P ={L,x}. P, and D, L and P
satisfy the conditions of Lemma 3.2.9. But x € Cp(D), and so x € Cp(D;).
But this will hold for every x in X, and so D, <{ Cy(X) =Y. Hence
w(l) < {X, Y} = XY (since, by Lemma 3.3.3, X <{G). Thus D’ < XY.

Lemma 3.3.7. If I is an M-subgroup of G, and ] is a finite direct product
of M-subgroups of G, then the subgroup {I, |} which they generate is contained
in a finite direct product of M-subgroups of G.

Proof. Let J be the direct product of s M-subgroups. We proceed by
induction on 5. If s = 1, let H and H' be M-normalizers of I and ] respectively
each having b generators. Then L = {H, H'} e U, and {I, J} < w(L), a finite
direct product of M-subgroups of L, and thus of G.
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Now suppose s ~» 1, and assume the lemma to be true when j is a direct
product of fewer than s M-subgroups. Then [ = D, x J,, sav, and
4, D} < Ky, {{, J,} == K,, where K| and K, are finite direct products of
M-subgroups. Let X == Cy(D,), Y Cyi(\), so that, by Lemma 3.3.3,
X< G, and thus Y G. Also [, < X, D, = Y, so that, if K ={I, [},
then K =7 K| X, and K < K,Y. But, by LLemma 3.3.6, every M-subgroup
of G is contained in XY, so that K, <~ X'}, K, <7 AV, and K </ XV, By
Lemma 3.1.3, K;X/X is a direct product of }-subgroups of G/X. If R/.X
is one of these factors, then it corresponds in the natural isomorphism between
KX/X and (K XN Y)(XNY) to (RNY)(AXNY), and, by Lemma
3.1.5, this is an M-subgroup of G/(X N Y). Thus (K;.XN Y)/(XN Y), and,
by symmetry, (K,Y N X)/(X N Y), are direct products of M-subgroups of
G/(XN Y). But these groups, being contained respectively in ¥ /(XN Y)
and X/(XNY), generate their direct product. That is

(KX O Y) (KyY O X)X Y)

is a direct product of M-subgroups of G/(X M Y). By Lemma 3.3.5, since
XN Y, being the intersection of a group with its centralizer, is abelian,

(K XN Y)(KYNX)=Ex (XN Y),

where E is a direct product of M-subgroups of G. Finally, from K < XY,
K < KX, K< K,Y, we have that K < (K;XN Y)(K, YN X). Thus
K<{E X (XN Y). But K, being generated by simple groups, is its own
derived group, so that its projection on XN Y is 1. Hence K < F, a group
of the required form.

Lemma 3.3.8. Let G > K = {D,, -, D,}, where the D; are M-subgroups
of G; then K is a subgroup of a finite direct product of M-subgroups of G.

Proof. We proceed by induction on s. The lemma is certainly true for
s = 1. Assume true for s — 1, then K ={[,L}, where [ = D,, and
L ={Dy, -, D} < J, a finite direct product of M-subgroups of G. By
Lemma 3.3.8 {/, J}, and thus K, is contained in a finite direct product of
M-subgroups of G.

Lemma 3.3.9. w(G) is a finite direct product of M-subgroups of G, each
of which is normal in G.

Proof. By Lemma 3.3.1, w(G) is generated by a finite number of M-sub-
groups of G, and thus, by Lemma 3.3.8, it is contained in a finite direct
product of M-subgroups of G. But, by Lemma 3.3.2, each such M-subgroup
is itself contained in w(G), and so w(G) must actually be equal to this direct
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product. The normality of each factor follows from Lemma 3.3.4, since
w(G) < G.

3.4.  Proof of Theorem 2(A)

It must now be shown that U™, where n = n, = max (q, 20 + 1),
satisfies conditions (ii) and (iii) for a Cross variety.

From Lemma 3.3.9 we have that, if G is a finitely generated group in
U, then w(G) is a finite direct product of M-subgroups of G, each of which
is normal in G. Since G/w(G) is finite, it follows that G is finite, and hence
condition (ii) is satisfied.

If G is critical, then either w(G) = 1, in which case G €%, which, by hypo-
thesis, is Cross, and so possesses only a finite number of critical groups, or,
since a critical group has a unique minimal normal subgroup, w(G) ~ M.
In the latter case, since w(G) N Cy(w(G)) = 1 and Cy(w(G)) <1 G, we must
have Cy(w(G)) = 1, and so G is isomorphic to a subgroup of the full auto-
morphism group of M. Only a finite number of such groups exist, and the
truth of the theorem follows.

4. Crrrical GRouprs WITH ABELIAN MINIMAL NORMAL SUBGROUPS
In this section, we prove:

Tueorem 2(B). If B is a critical group whose minimal normal subgroup is
abelian, and N is a Cross variety containing all proper factors of B, then the
variety U generated by N and B is Cross.

It is assumed that the reader is familiar with the concept of the upper
p-series of a p-soluble group. Frequent use is made of the facts that if N, ,
P;, and NV, are consecutive terms of the upper p-series, such that P;/N, | is a
p-group and N,/P; has order prime to p, then for i = 1, C(P,/N, ) < P,
and C(N,/P;) < N, . Moreover, if F;/N;_, is the Frattini subgroup of P,/N,_, ,
then for ¢ == 1, C(P,/F,) = P;.

‘THEOREM 4. The order of a critical group G is bounded in terms of its
exponent, the maximum of the classes of its Sylow subgroups, the maximum of
its various p-measures and S-measures, and the maximum of the orders of its
compostition factors.

Let n, ¢, k, and a respectively denote the exponent, the maximum of the
classes of the Sylow subgroups, the maximum of the p-measures and the
S-measures, and the maximum of the orders of the composition factors of G
and let N be its unique minimal normal subgroup. If N is not abelian, its
order cannot exceed a*, while C(N)" N = 1. This means that C(N) = 1,
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and that G can be faithfully represented as a subgroup of the automorphism
group of a group whose order is not greater than &*. Thus when N is non-
abelian, Theorem 4 is immediate, and so it is assumed throughout the
remainder of this section that N is abelian, If G 1s nilpotent, it is of class ¢
and exponent #, and by Lemma 2.4.4 it can be generated by ¢ elements.
In this case also, Theorem 4 is immediate, so we assume that G s not nil-
potent.

The proof of the theorem is conveniently divided into five stages. We begin
with an examination of the structure of G.

4.1. The Fitting subgroup of G is nontrivial because N is abelian. Each
of its Sylow subgroups is characteristic, and so normal in 7. As these intersect
trivially, there can only be one such subgroup, otherwise G would not have a
unique minimal normal subgroup. Hence the Fitting subgroup is a p-group;
for some prime p, and it is clearly the greatest normal p-subgroup of G. Also
G has no nontrivial normal p'-subgroup (i.e., one whose order is coprime to p}.

Let D/P be the greatest normal p'-subgroup of G/P (this may be trivial)
and let K be the normal subgroup of G such that K/P is the centralizer of
DiP i G{P. By the Schur-Zassenhaus theorem, D may be written as QF,
where  is a p'-subgroup of G. Evidently, KN QP = Z(Q) P. Let M be the
normal subgroup of G generated by all normal subgroups U of G which
are contained in K and are such that UZ{Q) P/Z{Q) P is a minimal normal
subgroup of GYZ(Q) P. Again, it is possible that M;Z{((Q) P is trivial, as is the
case when K = Z(Q) P. However, as & is assumed not to be nilpotent,
QP{P and M|Z(Q) P cannot both be trivial,

Levmma 4.1.1. If KIZ(QYP is wnontrivial, then every minimal normal
subgroup of G|Z(Q) P contained in it is a divect product of isomorphic
stmple groups with nontrivial Sylow p-subgroup.

Proof. Let M,jZ(Q) P be such a normal subgroup. It is required to
prove that this cannot be a p-group nor a p’-group. But in these cases the
group M,Q is p-soluble with upper p-series of the form

() 1 <] P<1QP <] M,Q
or of the form
(i) 1<IP M0
respectively. The first possibility cannot occur because
QPP £ M,[P < C(OP/P).

The second cannot occur because QP[P is the greatest normal p’-subgroup
of G/P.
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It follows from Lemma 4.1.1 that

M se M,
7o~ Uzop (@12)

where each direct factor is a non-abelian minimal normal subgroup of
G/Z(Q) P with nontrivial Sylow p-subgroup.

4.2. 1In the paper [8], many lemmas are proved about soluble critical
groups, which do not really make use of the full power of the solubility. With
very minor modifications, these proofs can be applied to yield lemmas about
the critical group G in question. Where such lemmas are needed, the proof
is either omitted or only briefly sketched. The reader is then referred to the
corresponding lemma of [8].

Levma 4.2.1  There s a subgroup L of G such that (i) G = LP,
(ii) LN P < C(Q), and (iil) LN P < D(L).

Proof. If O 1, it is a Hall complement to P in QP. Any two such
complements are conjugate in OP, and by the usual Frattini argument,
G = N(Q) P. This is obviously true if Q = l. The proof now proceeds as
for Lemma 5.2.2 of [8], and L is chosen to be a subgroup of N(Q) which has
minimal order with respect to the property G = LP.

CoroLrary 4.2.2. (cf. Lemma 5.2.3 of [8]). If Q£ 1, L is a partial
complement to P in G.

If R = (LN P)D(P), R admits P because P(P) <{ R. It admits L because
both LN P and @(P) do. Thus R is normal in G, contains (L), and is
contained in P.

CoroLLArY 4.2.3. If Q 7= 1, R is a proper subgroup of P.

Lemva 4.24. If U, , -, U, are subgroups of P containing R and admitting
L, and which together generate P, then some subset of them, consisting of at most ¢
members, also generates P.

If R = P, the lemma is trivial. Otherwise the proof is as in Lemma 5.2.4

of [8].

4.3. We now begin the task of bounding the order of G. In this part, the
third stage of the proof of Theorem 4, we indicate how | O | can be bounded
in terms of #, k and ¢. If Q is trivial, there is nothing to prove, and it is assumed
in this part that Q == 1. In this case P/R is nontrivial by Corollary 4.2.3. We
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therefore obtain a representation of G as a group of automorphisms of PR
by conjugation.

In Theorem 5.3.6 of [8], it is stated that if ' is a soluble critical group, and
L, P,Q, R, n, and ¢ are defined as above, then | O | can be bounded in terms
of n, ¢ and the absolute rank of G. It may be verified that:

(i) the proof, as it stands, actually shows that || can be bounded in
terms of #, ¢ and the maximum of the absolute p-degrees of the chief factors
of G between P and R,

(it} the solubility of G is not required but only that the representation of
G as a group of automorphisms of P/R represents Q faithfully and that the
image of 0 is normal in that of G.

If then C is the kernel of this representation, the bounding of | O | in terms
of the stated invariants becomes equivalent to proving.

Levma 43.1. CNQP =P

Proof. Clearly, this intersection contains . Assume therefore to the
contrary that this intersection strictly contains P. Then there is a normal
subgroup X/P of QP/P which induces trivial automorphisms of P/R. Using
the Schur- Zassenhaus theorem, write X = QuF, where Q, <{ 0. By Lemma
4.2.1, LN P < C(Q), so that LN P < C(Q,). Hence the elements of O,
induce trivial automorphisms of R/@(P), and so O, acts trivially on both
P{R and R/®(P). Since (; is a p'-group, this implies that Q, acts trivially
on P/®(P) and that, in turn, implies that Cyux(P) = Qp . This is impossible

4.4, Next, we show that | M/Z(Q) P | can be bounded in terms of , %, ¢,
and a, We assume that it is nontrivial, otherwise there is nothing to prove.
Now (4.2.2)

M s M,
7oy p— Lz p

where each M,/Z(Q) P is a direct product of isomorphic simple groups with
nontrivial Sylow p-subgroups. Each M,/Z(Q) P is a chief factor of G(Z(Q) P
and its order cannot exceed «*. Thus it is sufficient to prove that the
number s of direct factors is bounded in terms of #, &, and ¢.

For each j (=1, 2, ---, 5) let N, be a normal subgroup of G which is
minimal with respect to the conditions, (1) N, [> P, (il) N,Z(Q) P = M, .

Levma 4.4.1. N,/P is a minimal normal complement to Z(Q)P[P in
M,/P.
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For otherwise, N; could not be minimal with respect to the above condi-
tions.

Levmva 4.4.2. If H is any normal subgroup of G, then either Ny H = N;;
or N;N H << Z(Q) P.

For ZOQYP < (N;NHYZ(O)P < N,Z(Q)P = M;, and M;/Z(Q) P is
a chief factor of G.

Levmva 443, If also HZ= P, and is such that N;OH < Z(Q) P
(j=1,..., 1), then N\N, ... N0 H < Z(Q) P.

Proof. Let U = NyN, - Ny H. Now,

U ___ UXQP _ NN, NZQ)P ﬁ
TAZOP - ZOP < Z0)P 70) P

Hence UZ(Q) P/Z(Q) P is either trivial or contains at least one of the
normal subgroups M,/Z(Q) P. In the latter case, it follows that for such j,
each z; in IV; may be written #; = zh for 2 in Z(Q) P and A in H, and because
N;/P < C(QP|P), nj'mn; = zn;‘hn; (mod P) for all »; in N,. Thus
[n;, n;] € H, for all #;, n; € N;, and as it is assumed thatHﬂ N; < Z(O) P
thls implies that [#;, ]] =1 (mod Z(Q) P). By the very nature of \,,
this is a contradiction. Hence UZ(Q) P/Z(Q) P is trivial and the lemma is

proved.

Lemma 4.4.4. Suppose that s > [log, n*k!]. Let t be an integer such that
s =1t > [log, n*k!], and let 4, B be normal subgroups of G such that
1 < B << A< P and such that A|B is elementary abelian and central in P|B.
If ny,ny, <o+, n, is a sequence of elements of G such that n; € N; and each n;
has p'-order modulo N;N P, then for all he A

[A, 7,05, -, n,] =1 (mod B).

Proof. 'The group A/B may be identified with the additive group of a
vector space V over the field 7, of p elements. By conjugation, G acts as a
group of automorphisms of A/B, and this action gives V' the structure of a
representation module for G. We choose .47, to be a finite extension field of
#, such that every irreducible G-submodule and G-factor module of
A, ® V is absolutely irreducible (e.g., ¢, may be chosen as the extension
field obtained by the adjunction of the | G |th roots of unity). Let | be the
subgroup of G generated by n,,n,, -, n,, then J/JN Z(Q) P is a direct
product of ¢ cyclic groups of p'-order, and J/ /N P is therefore a p’-group.
In the usual manner, g is used to denote both the element of the group and
the transformation of ¢", @ V that it induces.
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Each chief factor of G between A and B has absolute p-degree at most 4.
Consequently the space .#, & 17 has a G-composition series

Ay @V =Yg =¥y o =V, =0

in which each composition factor is of dimension at most k. As [4, P] << B,
the spaces Y; (i =0, 1, -+, ) may be regarded as G/P-modules and there-
fore, a fortiori, as JP/P-modules. But JP/P is a p’-group, and so for each i,
a JP/P-module U; can be found such that Y, ; == U, @ Y,. In this way,
# , 0 V may be written as

U@ U U,

where each U; is a JP/P-module of dimension at most k.
Suppose now that the lemma is false. Then for at least one value ¢

U{—1-+mn)(—1+mn)(—1+n)#0

and so Uf— 1 - n;) # 0 forj =1, 2, ---, #. Thus each »n; acts nontrivially
on U, and cannot therefore centralize Y, /Y, . If H is the normal subgroup
of G which centralizes Y, ,/Y,, H contains P but not N; (j = 1,2, =, ).
By Lemma 4.4.2, HN N; < Z(Q) P, and by Lemma 4.4.3,

NN, - N, H < Z(Q) P.
Thus

‘ N, {4‘ - N, Ny
N; - Nth 'N,~--N,mZ(Q)P

Now as M,/Z(Q) P is not a p-group, it contains a p’-subgroup of order at
least 2 and l_[,t-:1 M,/Z(Q) P contains one of order at least 2¢ > n*k! . Hence
G/H has exponent dividing 7, has a p’-subgroup of order exceeding
n*k! and acts faithfully on a vector space of dimension at most k over a field
of characteristic p. By Theorem 5 of [6], this is impossible.

The assumption that Lemma 4.4.4 is false thus leads to a contradiction.
Hence the lemma is true.

LemMA 4.4.5. Suppose s > [log, n*kl]. Let the integer t and the sub-
groups A, B be as in the previous lemma. If i, ,1,, -+, i, be any sequence of
distinct integers between 1 and s, then

[A, Nil’Nizv Ty ‘/Vii.] < B

Proof. Clearly it is sufficient to consider the case where #; =j (j =1,

- 1)
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As N;IN;N Z(Q) P ~ M,/Z(Q) P, it is a direct product of isomorphic
simple groups, N; therefore has a normal generating set S; in which
every element has p’-order modulo N; N P. By the previous lemma,
(4, 8;,S,, -, S;] = 1. The proof of the lemma is now a consequence of the

relation
[4, N, Ny, -, N]=1[4, 5,3, 5] mod B,

a proof of which may be found in {3].
The group P is a p-group, so its lower central series may be refined to a
series

P:PODPID'"DP,:Iy

whose length is not greater than nc, and is such that each factor P,/P;,, is
elementary abelian and central in P/P

t+1

LevMa 4.4.6. If s > ne([log, n*kY] -- 1) - 3, then for all permutations
o of the integers 1,2, ==+, s

(Vo » Nogay > =% No] = 1.
Proof. The groups Ny, , Ny, generate their direct product modulo
Z(Q) P, and Ny, /P is contained in K/P which is the centralizer of QP/P

in G/P. Hence [Ny, Nuw) s Nog] < P. Writing u for [log, n*kl] + 1,
it follows from Lemma 4.4.5 that

[Ny Nogy s " Noqueyy] = 1 mod P,
and inductively that
[]VG(l) 3 No(2) y T lVa(iu+3)] = 1 mod PL .

As P,, =1, this completes the proof of the lemma.

Lemma 4.4.7.  The order of M{Z(Q) P can be bounded in terms of n, k, ¢
and a.

Proof. By Lemma 2.2.9, there is a subgroup 7 of G such that

(W) Z2Q) < T,
(i) the group G/Z(Q) P is generated by T/Z(Q) P together with the
subgroups M;/Z(O)P (j = 1,2, -+, s),

(iii) the group G/Z(Q) P is not generated by T/Z(Q) P together with any
proper subset of the groups M;/Z(Q)P (j = 1,2, -+, 5).
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As M; = N,;Z(Q) P, we see from this that in G
(i) G is generated by T together with N, Ny, ---| N

(it) G 1s not generated by 7' together with any proper subset of the sub-
groups N;, N,, -, N,

i.c., the subgroups T, N;, N,, ==+, N, of G satisty the first two of the hypo-
theses of Lemma 2.4.2. As G is critical, it must fail to satisfy the third, and by
Lemma 4.4.6, this can only happen if s < ne{log, n*k!] + 1) -+ 3 Hence
MjZ(Q) P =11;.., M,[Z(Q) P where each M,/Z(Q) P has order at most a*,
and where the value of s is at most ne([log, #*k!] - 1) =- 3.

4.5. So to the final stage of the proof of Theorem 4. We first show how
the bound for | Q |, obtained in Section 4.3, and the bound for | M/Z(Q) P |,
obtained in Section 4.4, lead to a bound for | KOQ/P | in terms of n, &, ¢, and a.

Levma 4.5.1. | KQ/P | is bounded in terms of n, k, ¢ and a.

Proof. Let X|Z(Q)P be the centralizer of M/Z(Q)P in KjZ(Q) P.
Clearly X<} G. Now M/Z(Q) P is generated by all minimal normal sub-
groups of G/Z(Q) P in K/Z(Q) P, and so, if X/Z(Q) P is nontrivial it has
non-trivial intersection with M/Z(Q) P. On the other hand, M/Z(Q) P is a
direct product of non-abelian chief factors of G/Z(Q) P and is without center.
Hence X/Z(Q) P is trivial, and K/Z(Q) P may be faithfully represented as a
group of automorphisms of M/Z(Q) P. Since | M/Z(Q) P | can be bounded
in terms of n, k, ¢, and a (Lemma 4.4.7) so then can | K/Z(Q) P |, and com-
bining this bound with the bound for | QO ! of 4.3, the lemma follows.

Levva 4.5.2.  G/KQ | is bounded in terms of n, k ¢, and a.

For G/K acts faithfully as a group of automorphisms of OP/P by conjuga-
tion, and | Q | has been shown to be bounded in terms of these invariants.

CoroLLARY 4.5.3. | G/P | is bounded in terms of n, k, ¢, and a.

LemMA 4.5.4. | P | is bounded in terms of n, k, ¢ and a.

Proof. | P| is bounded in terms of #, ¢, and | P/{®(P) | because it is a
p-group. We need only bound | P/@(P) | therefore. We first bound | P/R |,
then | R/®(P) .

Consider P/R.If thisis not trivial, define foreach g (g € P, g ¢ R) the sub-
group U, as the intersection of all subgroups of P which admit L and contain g
and R. Since G = LR and P/R is elementary abelian, it is clear that | U,/R |
divides p'%/F!, for each U, . The set of all such subgroups generate P and so,
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by Lemma 4.4.2, some subset of them, containing at most ¢ members also
generates P. Hence | P/R | divides p““/"', and by Lemma 4.5.3, this is a
number which is bounded in terms of #, &, ¢, and a.

Next, consider R/@(P). Since G/P ~L/L N P, |LILN P| is of bounded
order. By Lemma 4.2.1 (iii), LN P << ®(L), and so | L/@(L) | is of bounded
order. This means that L can be generated by a bounded number of elements.
The subgroup L N P is of bounded index in L, and so this, too, may be gener-
ated by a bounded number of elements. But it is nilpotent of class at most ¢
and its exponent divides 7. Thus it has bounded order, and as

R = (LN P)&(P),

so then has R/®(P).
This completes the proof of Theorem 4.

4.6. Using Theorem 4, it is possible to prove Theorem 2(B). As before,
let A be a finite group which generates % and let w = w(x; , x,, -+ x,) be a
basis for the defining relations of 9. Let C = 4 X B, and choose ¢ to be the
maximum of the classes of the Sylow subgroups of C, and & to be the maxi-
mum of its various p-measures and S-measures. Let

r = max (2a, ¢ + 1, a + 2k).

The aim is to show that €7 is a Cross variety, as this immediately implies

that € = U is a Cross variety. We observe that as «(C)is an elementary

abelian p-group of aboslute p-degree at most k, the variety €7 includes
(1) w? =1

(11) [ZU(XI » T xa)’ w(‘xavl y T x2a)] = 1

(i) JJ{wow ez =1 (Lemma 2.5.1)

among its defining relations.
Because of Theorem 4, we need to verify that

(a) there is a finite basis to the relations of €7

(b) finitely generated groups in T are finite,

(c) groups in €7 have some common finite exponent,

(d) there is a bound to the order of the finite simple groups in €7,
(e) mnilpotent groups in €\ are of class at most c.

(f) every finite group in €' has p-measure and S-measure at most k, for
each prime p and each finite simple group S.
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That € satisfies (a) is the statement of Lemma 2.3.2, while (b) and (c)
are true because of the relations (i) and (ii). The factor group G/#{G) of any
group G in €1 belongs to A which contains only a finite number of critical
groups and, a fortiori (Lemma 2.4.1), only a finite number of finite simple
groups. Hence, as w((G) is abelian, (d) is true. For (e), suppose on the con-
trary that €7 contains a nilpotent group of class greater than ¢. It must then
contain such a group which can be generated by ¢ -+ 1 elements. As
¥ 2z ¢ 4 1, this would belong to €, which is a contradiction, by Lemma 2.3.5.

We have already remarked that if G belongs to €' then Gjw(G) belongs
to % and w(G) is an elementary abelian p-group. By Lemmas 2.5.2 and
2.5.3, this means that for all primes ¢ other than p, and for all finite simple
groups .5, the g-measure and S-measure of the finite group G cannot exceed
the corresponding g-measure or S-measure of 4. As for the prime p itself,
because of the relation (iii}, we may apply Lemma 2.5.1 to give that the
absolute p-degree of any chief factor of G between @w(G) and 1 is at most .
Since the p-rank of GJw(G) is not greater than that of 4, we have that the
p-rank of any finite group G in €7 is at most k. Hence, for all primes p,
and for all finite simple groups S, the p-measure and S-measure of any
finite group in € is at most &.

This completes the proof that €17 is a Cross variety and so Theoren: 2(B)
is proved. Theorems 2{A) and 2(B) give Theorem 2, from which Theorems 1
and 3 follow.
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