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Abstract 

The safe and efficient movement of people and cargo on roadways is dependent on a well functioning highway 
system which requires effective maintenance policies focused on the maximum use of invested resources. For 
efficient city logistics operations various components of highway infrastructure, such as pavements, guardrails, and 
roadside signs must be maintained and kept in acceptable operating condition as elements of an integrated highway 
network. Due to the shrinking budget for undertaking infrastructure inspection and maintenance activities Resource 
Effectiveness (RE) becomes paramount. Theoretically, Resource Effectiveness (RE) is intended to get the optimum 
performance out of a project or investment. Instead of adding more resources (like labor, equipment, etc.), it will 
concentrate on the prudent utilization of resources or investment. Thus, RE in a broader sense, is concerned with the 
prudent use of labor, equipment, and material. In this paper we develop an optimization approach for maximizing 
resource effectiveness of highway infrastructure maintenance investments, subject to budget constraints, based on the 
concept of the well-known Cobb-Douglas production function. Several examples are presented. 
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1. Introduction 

We are living in challenging economic times which require thoughtful use of available resources  in 
order to maximize their productivity. Often times in organizations resources are wasted since minimal 
effort is devoted to maximize their effectiveness. For effective city logistic operations a well functioning 
highway system is desired, which requires timely inspection and maintenance of various components of 
the highway system, such as pavements, bridges, tunnels, and other assets. In our previous works 
([5]&[6]) we have developed optimization models for obtaining optimal inspection and maintenance 
schedules of highway assets over a planning horizon. A comprehensive maintenance strategy requires an 
intense resource study to serve as the basis for increased reliability of best practices. This paper 
formulates a special class of maintenance inspection and scheduling problem in which the resource 
effectiveness is optimized to achieve a desired service output level.  

The concept of resource effectiveness has primarily been studied in the area of economics and dates 
back to 1951. Debreu (1951) called the wasted resource as "dead loss" and developed a mathematical 
approach to calculate the coefficient of resource utilization. Intuitively, the issue of resource effectiveness 
can be expressed as shown in Fig. 1(a) & Fig. 1(b). Fig. 1(a) shows that an optimal output level Q*can be 
achieved at a resource effectiveness level RE1. Thus any additional resource, say RE2 will be wasted since 
it will not improve the output level to any further extent. The hatched area in Fig. 1(a) shows wasted 
resource. 

 

             

Fig. 1. (a) Graphical illustration of service quality (Q) vs. resource effectiveness (RE); (b) Different levels of service quality (Q) for 
a given resource effectiveness (RE) 

In many real-life situations, especially in agencies and organizations this is what is observed, i.e., 
resources are wasted quite often given that no further improvement in the service quality is possible.  In 
an era of budgetary and resource limitations modern methods are continually being sought to increase the 
reliability and availability of available resources. 

Fig. 1(b) shows how different output levels (Q1…,Q3) can be achieved for the same resource 
effectiveness level RE. Since output levels are generally a combination of Labor (L), Equipment (E), and 
Material (M), different L, E, and M combinations may yield different Q’s subject to a given resource 
effectiveness level RE. 

Theoretically, Resource Effectiveness (RE) desires to get the optimum performance out of a project or 
an investment for accomplishing specified objectives. Rather than over-exerting undue maintenance 
efforts, the ideal circumstance would be to exhaust cost-effective means to predict transport system 
failures. This consequence would afford a highway agency the ability to effectively maintain its' 
transportation system networks, while cost-effectively accruing a safety benefit by avoiding unpredicted 
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breakdowns. Instead of adding more resources (like labor, equipment etc.), it will concentrate on the 
prudent utilization of resources and investments. 

Thus, RE in a broader sense, is concerned with the prudent use of labor, equipment, and material. 
Equipment effectiveness quantifies the time it uses to do the job, while human resource effectiveness is 
concerned with the time that an individual takes to perform assigned tasks on a project. If an organization 
wants to maximize its' resource effectiveness, it should prepare a clear definition of all the activities 
performed by its resources and then identify the most important resources, highlighting the constrained 
tasks.  A higher degree of resource effectiveness should result in a reduced cycle-time, with minimum 
maintenance requirements and lesser supervision. As a result, the organization can increase its' capacity 
and achieve greater resource life-cycle. Since there is always some limitations on budget allocations [8] 
there should be a way to optimize the resource effectiveness based on the specified constraints.     

1.1. Resource effectiveness and city logistics problems 

City logistics activities entail the movement of people and goods in an efficient manner. For example, 
vehicle routing problems deal with obtaining optimal vehicle routes subject to specified objectives and 
constraints [9] & [10]. The objective of resource effectiveness is to derive the optimum performance out 
of an invested infrastructure instead of contributing additional funds. The guarantee of service quality is 
important to the users and maintenance agencies with restrictive budgets charged with ensuring that the 
highway network capacity is suitable and adequate for service. The resource life-cycle suggests a 
sequence of time-events to occur prior to accomplishing the resource goals or objectives. A segment of 
the engineering profession considers reliability engineering as seeking best practices and the right tools to 
govern the entire life-cycle of a resource from designation to removal from service.   

In the highway maintenance arena, the operational inspection work is strategically intended to 
determine the right amount of maintenance work to keep the resources at an optimal level. Achieving this 
goal requires a logistic centre and an extensive application of information and communication 
technologies, namely the tracking of vehicles with, individual route guidance, electronic data interchange 
protocols, to also include tracking routing and scheduling in real-time. Additionally, the coordination of 
all operations in real-time is desirable in order to promptly react to any unexpected events. Transport 
planners and managers of logistic centers, support individual City Logistics systems in a given urban 
municipality that provide scheduling tours and routing of the highway network. 

2. Problem formulation 

We formulate the resource effectiveness maximization problem by introducing the notion of the 
production function generally covered in Economics [1]. The nomenclature used in the formulation is 
shown in the table below. Since the conceptualized output level in Fig. (1) can be thought of as a 
production function, its’ measure can be regarded as the service level in the infrastructure inspection and 
scheduling problem described in our previous works [5]&[6]. The production functions are generally a 
measure of a certain combination of Labor, Equipment, and Material, and generally exhibit a constant 
elasticity of substitution property. In the Infrastructure Inspection and Scheduling (IIS) problem, a 
production function refers to the output level Q reflecting the measure of effort by a highway crew to 
carry out the inspection and maintenance operations.  
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2.1. Production functions 

In economics, constant elasticity of substitution (CES) is a property of some production and utility 
functions. More precisely, it refers to a particular type of collective function which combines two or more 
types of expenditure, or two or more types of productive inputs into a collection. This collective function 
shows signs of constant elasticity of substitution. The CES production function is a type of production 
function that displays constant elasticity of substitution between capital and labor [2]. 
 
Nomenclature 

 

Q              Output 

F               Factor of productivity 

a                Share parameter 

X               Production factors (i = 1,2...n) 

s                Elasticity of substitution. 

y               Total production (the monetary value of all goods produced in a year) 

L               Labor input 

K              Capital input 

A              Total factor productivity 

α and β     Output elasticities of labor and capital, respectively. These values are constants determined by 

 available technology. 

L*            Optimal labor work hours  

E*            Optimal equipment usage hour  

M*           Optimal required material in kg  

C*            Total Cost  

Q*            Optimal Resource Effectiveness Production Function Value 

RE*         Optimal Resource Effectiveness Utility Function Value 

 
The general form of the CES production function is [1]: 
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Leontief, Linear and Cobb-Douglas production functions are special cases of CES Production function 
[3]. If s approaches 1, we get the Cobb-Douglas function expressed as: 

 

n
nxxy ....1

1  (2) 

 
If s approaches infinity we get the linear (perfect substitutes) function expressed as: 
 

nn xxy ....11  (3) 

 
if s approaches 0, we get the Leontief (perfect complements) function expressed as: 
 

n
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1

1  (4) 

 

2.1.1. Cobb-Douglass production function 
 
Knut Wicksell (1851–1926), proposed the Cobb–Douglas functional form of production functions in 

economics which is used to represent the relationship of an output to inputs. It was then tested by Charles 
Cobb and Paul Douglas in 1900–1928 against statistical evidence. Cobb–Douglas function used at micro 
level is expressed as (Cobb and Douglas, 1928): 

  

KALy  (5) 

 
Output elasticity measures the responsiveness of output to a change in levels of either labor or capital 

used in production.  
Cobb–Douglas function used at macro level is expressed as: 
 

1LKy  (6) 

 
Where K is capital and L is labor. When the model coefficients sum to one, the production function is 

first-order homogeneous, which implies constant returns to scale, that is, if all inputs are doubled then the 
output will double. 

2.2. Utility functions 

Nonetheless, the Cobb–Douglas function has been applied in a lot of other contexts besides 
production. It can be applied to utility as follows:  
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2121 ),( xxxxU  (7) 

 
Where x1 and x2 are the quantities consumed of good 1 and good 2, respectively. In its generalized 

form, where x1, x2, ... ,xL are the quantities consumed of good 1, good 2, ..., good L, a utility function 
representing the Cobb–Douglas preferences may be written as: 

 

L

i
i

ixxu
1

)(~  
(8) 

 
 

 
With x = (x1, x2, ... ,xL). Setting λ = λ1 + λ2 + ... + λL and because the function /1xx is strictly 

monotone for x > 0, it follows that /1)(~)( xuxu represents the same preferences. Setting αi = λi / λ it 
can be shown that: 
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The utility function may be maximized by looking at the logarithm of the utility: 
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Thus, the utility maximization problem can be expressed as: 
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2.3. Solution procedure 

The above formulation is solved by using the Lagrangian Multipliers which provide a strategy for 
finding the maximum/minimum of a function subject to constraints. The concept of Lagrangian 
Multipliers can be found in standard references [11] and has been skipped here for brevity. 
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3. Numerical examples  

We show several examples to demonstrate the applicability of the developed formulation. The first 
two examples are relatively simpler with 2 and 3 variables to optimize the resource effectiveness in a 
highway maintenance project. In the examples, we have employed the concepts of both the production 
function maximization and utility function maximization. The third example is an application of the 
developed methodology in a real IIS problem. 

3.1. The 2-variable numerical example 

Suppose that in a highway maintenance project the cost of labor is $40/hr, the cost of equipment is 
$36/hr, and the available budget is $70,000. The output elasticity of labor work is considered as 2/3, 
output elasticity of equipment is considered as1/2, and the factor of productivity (A) is estimated to be 12.  

3.1.1. Cobb-Douglas production function application 
 

Maximize                             EALQ                                                                         (13) 

Based on budget constraint   WeElLELB ),(                                                                       (14) 

Q= 
2/13/212 EL                                                                                                                                (15) 

B = 40L+ 36E = $70,000                                                                                                                (16) 

  
Using the Lagrange multiplier (lambda) will lead to: 
 

F' (L, E) = 2/13/212 EL  - λ (40L+ 36E- 70,000)                                                                             (17) 

 
Solving the above equation, we obtain: 
 

L*= 999; E*=832.5                                                                                                                          (18) 

Total Cost C*: (40($/hr) x 999 (hr)  )+ (36($/hr) x 832.5 (hr) )= $69,930                                    (19) 

Optimal Q*=34,601 

 
The results indicate that the optimal output level Q* is achieved by investing L* units of labor and E* 

units of equipment. Therefore, any excess expenditure towards labor and equipment expenditures will be 
a waste since the productivity cannot be improved any further. 

3.1.2. Cobb-Douglas utility function application 
 

Maximize                             )ln( 21ELRE                                                                                  (20)   

Based on budget constraint    WeElLELB ),(                                                                      (21) 
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1i 1  2                                                                                               (22) 
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B = 40L+ 36E = $70,000                                                                                                               (26) 

 
Using the Lagrangian multiplier will lead to: 
 

F' (L, E) = )ln(
7

3
)ln(

7

4
EL  - λ (40L+ 36E- 70000)                                                                    (27) 

 
Solving the above equation, we obtain: 
 

L*= 1,000 , E*=833                                                                                                                        (28) 

Total Cost C*: (40($/hr) x 1000 (hr)  )+ (36($/hr) x 833 (hr) )= $69,988                                     (29) 

Optimal Resource Effectiveness RE*=6.8 

 
The results indicate that an optimal resource effectiveness RE* is sufficient to achieve the desired 

productivity by investing L* and E* units of labor and equipment, respectively. 

3.2. The 3-variable numerical example 

Given: 
The cost of labor is $40/hr; 
The cost of equipment is $36/hr; 
The cost of material is $20/kg; 
The available budget is $180,000; 
The output elasticity of labor work is considered as 2/3;  
The output elasticity of equipment is considered as 1/2; 
The output elasticity of material is considered as 1/3; 
The factor of productivity (A) is estimated to be 12. 

3.2.1. Cobb-Douglas production function application 
 

Maximize                            MEALQ                                                                                    (30)   
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Based on budget constraint   WmMeElLELB ),(                                                               (31)   

Q= 3/12/13/212 MEL                                                                                                                          (32) 

B = 40L+ 36E +20M= $180,000                                                                                                    (33) 

  
Using Lagrangian multiplier will lead to: 
 

F' (L, E) = 3/12/13/212 MEL  - λ (40L+ 30E +20M-180,000)                                                           (34) 

 
Solving the above equation, we obtain: 
                                                                          

L*= 2,000 (hr), E*=1,666.67 (hr), M*= 2,000 (kg)                                                                        (35) 

Total Cost C*: (40($/hr) x 2,000 (hr) )+ (36($/hr) x 1,666.67 (hr) ) +  

(20($/kg) x 2,000 (kg))= $180,000                                                                                                  (36) 

Optimal Productivity Q*=979,797                                                                                                (36a) 

 
The results indicate that in order to achieve the desired output level of Q*, the amount of investments 

needed towards labor, equipment, and material are  L*, E*, and M*, respectively. 

3.2.2. Cobb-Douglas utility function application 
 

Maximize                             )ln( 321 MELRE                                                                             (37)   

Based on budget constraint    WmMeElLMELB ),,(                                                      (38) 

1i 1 ,  2 ,  3

                                 

                (39) 
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B = 40L+ 30E +20M= $180,000                                                                                                    (44) 
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Using Lagrangian multiplier will lead to: 
 

F' (L, E, M) = )ln(
9

2
)ln(

9

3
)ln(

9

4
MEL - λ (40L+ 36E +20M- 180,000)                                 (45) 

 
Solving the above equation, we obtain: 
                                                                                                                                            

 L*= 2,000 (hr), E*=1,666.67(hr), M*= 2,000(kg)                                                                          (46) 

Total Cost C*=(40($/hr) x 2,000 (hr) )+ (36($/hr) x 1,666.67 (hr) ) +  

(20($/kg) x2, 000 (kg))= $180,000                                                                                                  (47) 

Optimal RE*= 7.54                                                                                                                        (47a) 

 
The results indicate that an optimal resource effectiveness RE* is sufficient to achieve the desired 

productivity by investing L* and E*, and M* units of labor, equipment, and material, respectively. 

3.3. An example using a real highway network 

We make use of the example from Jha et al (2010) for the application of Infrastructure Inspection and 
Scheduling Problem (IIS) to which the developed resource effectiveness maximization concept is 
employed. The road network shown in Fig. 2 is a section of the local highway network in the City of 
Baltimore, Maryland, surrounding the intersection of interstate 695 and Harford road with the arcs 
numbered in a counterclockwise direction. The labor, equipment, and material input values for 
conducting maintenance activities along each of the arcs is shown Table 1. In addition, the following 
input values are given: 

 
The cost of labor is $40/hr; 
The cost of equipment is $30/hr; 
The cost of material is $20/kg; 
The available budget is $80,000; 
The output elasticity of labor work is considered to be 2/3;  
The output elasticity of equipment is considered to be 1/2; 
The output elasticity of material is considered to be 1/3; 
The factor of productivity (A) is estimated to be 12. 
 
The forms of utility function and cost are as follows: 
 

)ln(
9

2
)ln(

9

3
)ln(

9

4
MELRE                                                                                                   (48) 

B = 40L+ 30E +20M= $80,000                                                                                                      (49) 
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Fig. 2. A schematic of Baltimore, MD (I-695) highway network 

For the aforementioned problem, different combinations of routes are obtained as optimal solutions, 
subject to the budget constraint. Jha et al. (2010) used Floyd's shortest path algorithm to obtain the 
optimal routes. The following routes were obtained as a set of an optimal solution for a budget constraint 
of $80,000: 

 
 Route 1:  37, 32, 35, 36, 18, 13, 1, 3, 2, 6;  
 Route 2:  8, 4, 12, 5, 15, 10, 11, 9, 7, 19;  
 Route 3:  14, 16, 17, 26, 27, 30, 38, 40, 42, 44;  
 Route 4:  48, 50, 45, 46, 43, 47, 49, 41, 39, 28;  
 Route 5:  25, 22, 23, 24, 20, 33, 31, 29, 34, 21;  
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Table 1. Labor, equipment, and material input values for the example study 

 

Arc # Labor hours Equipment hours Material quantity (kg.)
1 8 5 375
2 1 3 178
3 4 6 247
4 9 8 332
5 3 10 336
6 9 5 289
7 9 3 310
8 5 6 401
9 5 2 251
10 3 5 250
11 3 6 172
12 9 9 260
13 1 7 460
14 5 6 170
15 5 9 135
16 7 8 131
17 4 1 425
18 6 1 461
19 1 3 453
20 3 2 391
21 10 3 185
22 3 7 334
23 8 1 459
24 1 1 308
25 9 10 451
26 2 5 263
27 3 10 243
28 6 9 231
29 2 4 351
30 8 1 124
31 8 8 454
32 8 7 298
33 3 6 418
34 8 6 306
35 9 9 271
36 5 4 424
37 8 7 429
38 7 5 247
39 7 1 479
40 6 2 335
41 2 5 262
42 6 6 169
43 9 3 363
44 10 6 382
45 3 2 176
46 2 3 217
47 10 2 250
48 5 4 109
49 6 7 473
50 9 4 250
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The optimal solution is obtained using the Lagrangian Multiplier procedure as explained in examples 1 
and 2 above. The optimal labor, equipment, and material quantities as well as optimal resource 
effectiveness are shown in Table 2 below. It can be seen that total optimal cost is at or below the 
appropriated budget: 

Table 2. Optimal quantities for the third example 

 
The results indicate that for different optimal routes different combinations of L*, E*, and M* are 

required to produce the desired productivity, which can be achieved at different optimal RE* values as 
shown in Table 2 above. Further, it can be observed that while the desired productivity for different 
routes are different, the optimal resource effectiveness values are very close, which means resources are 
generally not wasted. 

4. Results and discussions 

This paper presented a numerical optimization approach for resource effectiveness which is defined as 
the minimum resource level required to achieve desired productivity at the expense of different levels of 
labor, equipment, and material expenditures, subject to a budget constraint. The approach is similar to 
that covered in economics related to consumer theory and behaviour. We employed the well known 
Cobb-Douglass production function and the technique of Lagrangian Multipliers to obtain optimal 
resource effectiveness on highway infrastructure maintenance inspection and scheduling problems. We 
showed one example application using a real highway network in the Baltimore area. The proposed 
optimization approach can be integrated in the computerized maintenance management system of a city 
or state department of transportation, which in turn, can be used to compare various alternatives and 
scenarios for maximizing resource effectiveness. 

5. Conclusions and future works 

In this study we developed a computationally feasible numerical modelling framework for maximizing 
resource effectiveness of a highway infrastructure maintenance and management. In future works we will 
develop an integrated modelling framework for infrastructure inspection, scheduling, and resource 
effectiveness.  
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Route # L* E* M* C* Q* (Production) RE* (Utility) 
1 51 51 3228 68130 17,417.71 4.85 

2 52 61 2900 61910 18,620.06 4.90 

3 58 50 2489 53600 17,230.31 4.85 

4 59 40 2810 59760 16,231.10 4.81 

5 55 48 3657 76780 18,524.73 4.89 
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