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cd T cells are essential for eliminating Plasmodium berghei XAT. Because administration of the ago-
nistic anti-CD40 antibody can induce elimination of P. berghei XAT parasites in cd T cell-deficient
mice, we considered that cd T cells might activate dendritic cells via CD40 signalling during infec-
tion. Here we report that administration of the anti-CD40 antibody to cd T cell-deficient mice
3–10 days post-P. berghei XAT infection could eliminate the parasites. Our data suggest that
dendritic cell activation via cd T cells expressing CD40 ligand is critical during the early phase of
infection.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction play critical roles in protective immunity against various infectious
Malaria is one of the most serious public health problems in the
world, particularly in tropical and subtropical areas. Plasmodium is
a malaria-causing protozoan parasite. Previous studies have shown
that dendritic cells (DCs) phagocytise blood-stage Plasmodium for
processing and that DCs present malaria antigens to CD4+ ab T cells
[1–7]. DCs play fundamental roles in the initiation of immune
responses against pathogens. Because MHC class II deficient mice
do not control blood-stage Plasmodium yoelii and Plasmodium chab-
audi parasites, this conventional pathway also functions in Plasmo-
dium infection [8]. There are several DC subpopulations in spleen,
which is the central organ for protective immunity against Plasmo-
dium infection [9–12]. Conventional DCs (cDCs), whose phenotype
is CD11c+ B220�, produce IL-12 to strongly induce the Th1
response. Therefore, cDCs are thought to be key players for
initiation of the immune response that eliminates Plasmodium
parasites [13].

As innate T lymphocytes, cd T cells are the first line of defence
against infectious pathogens. It has been reported that cd T cells
diseases, including those associated with Leishmania major,
Toxoplasma gondii, Listeria monocytogenes, and West Nile virus
[14–17]. In patients with malaria, the number of cd T cells
increases in the peripheral blood and spleen [18]. Moreover, cd T
cells can recognise malaria antigens and are activated after
in vitro culture with Plasmodium falciparum-infected red blood cells
[19]. Using a rodent model of malaria, we recently showed that cd
T cell-deficient mice (TCR-d KO mice) could not eliminate the non-
lethal malaria parasite strain Plasmodium berghei XAT [13]. More-
over, several other groups reported that cd T cells have protective
effects on blood-stage P. falciparum and P. chabaudi parasites
[20,21]. Our previous study found that cd T cells begin to produce
IFN-c and express CD40 ligand (CD40L) on the cell surface in the
early phase of P. berghei XAT infection. It is generally assumed that
CD40L is expressed on activated CD4+ ab T cells to accelerate DC
activation by CD40L–CD40 signalling [13,22]. The agonistic anti-
CD40 monoclonal antibody (mAb) is thought to stimulate DCs via
CD40 on the surface of DCs in the presence of antigens [23].
Because administration of agonistic anti-CD40 mAb controls
P. berghei XAT parasites even in TCR-d KO mice, CD40L expression
on cd T cells could boost DC activation. However, it remains to be
determined whether CD40L–CD40 signalling plays a critical role in
DC activation during malaria infection. Here we show that
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administration of the anti-CD40 mAb induces DC activation. Fur-
thermore, we report that the timing of anti-CD40 mAb treatment
in TCR-d KO mice is limited to the early phase of P. berghei XAT
infection.

2. Materials and methods

2.1. Mice

C57BL/6J wild-type (WT) mice (CREA Japan) and TCR-d KO mice
(The Jackson Laboratories) were bred in the pathogen-free unit of
the animal facility of Kyorin University. All animals were female
and 8–12 weeks of age at the time of infection. The Kyorin Univer-
sity School of Medicine Animal Care Committee approved all ani-
mal protocols.

2.2. Parasites and infection

An attenuated derivative of P. berghei [24], P. berghei XAT, was
used as described in previous studies [13,25,26]. The parasites
were stored as frozen stocks in liquid nitrogen. Freshly thawed par-
asites were passaged once through naïve WT mice, and 104

infected red blood cells (iRBCs) from passaged mice were intrave-
nously injected into experimental mice. The resulting parasitemia
was assessed by counting 250–10000 RBCs in a Giemsa-stained
thin blood film. The percentage of parasitemia was calculated as
follows: [(number of iRBCs)/(total number of RBCs)] � 100.

2.3. Flow cytometry

Each day post-infection (p.i.), single spleen cell suspensions
from WT mice and TCR-d KO mice were stained using the fluores-
cent antibody method in cold PBS containing 0.5% BSA (Sigma) and
0.01% sodium azide (staining buffer) for FACS analyses. Fluorescein
isothiocyanate (FITC)-conjugated anti-MHC-II, anti-CD40, anti-
CD80, and anti-CD86 mAbs, phycoerythrin (PE)-conjugated anti-
B220 mAb, allophycocyanin (APC)-conjugated anti-CD3e and
anti-CD19 mAbs, as well as APC/Cy7-conjugated anti-CD11c mAb
were used for DC analyses. PE-conjugated anti-CD40L (CD154)
mAb, APC-conjugated anti-CD3e mAb, PE/Cy7-conjugated anti-
TCR-cd mAb, APC/Cy7 anti-CD4 mAb, and Pacific Blue-conjugated
anti-TCR-b mAb were used to analyse cd T cells and CD4+ T cells.
All mAbs were purchased from BioLegend Japan. Analyses were
performed using a FACS Canto II with FACS Diva software (BD Bio-
sciences). Data were analysed using FlowJo software (Tree Star).

2.4. Administration of the anti-CD40 agonistic mAb
into Plasmodium-infected mice

The anti-CD40 mAb (clone 1C10; BioLegend) was intravenously
injected (100 lg per mouse) into P. berghei XAT-infected mice once
on days 0, 3, 4, 5, 7, 10, 14 or 17 p.i. Normal rat immunoglobulin G
(IgG) (Cappel Research Products) was used as a control for the anti-
CD40 mAb.

2.5. Statistical methods

Statistical analyses were performed using Student’s t tests and
Statcel (OMS Ltd).

3. Results

3.1. Enhanced dendritic cell activation by the anti-CD40 mAb

We previously showed that cd T cells play critical roles in pro-
tective immunity against blood-stage P. berghei XAT parasites, a
non-lethal strain in control wild-type (WT) mice [13,25]. Although
TCR-d KO mice could not eliminate P. berghei XAT parasites, admin-
istration of the agonistic anti-CD40 mAb led to elimination of the
parasites in the absence of cd T cells [13]. We therefore postulated
that the agonistic anti-CD40 mAb would contribute to activation of
splenic conventional DCs, thereby eliminating parasites even in
TCR-d KO mice. However, it is unclear whether administration of
the agonistic anti-CD40 mAb can actually enhance DC activation
in mice. DCs were transiently activated on day 5 p.i. with P. berghei
XAT parasites [13]. Therefore, we inoculated P. berghei XAT-
infected red blood cells (iRBCs) into WT and TCR-d KO mice and
injected the agonistic anti-CD40 mAb or control IgG on day 4 p.i.
On day 5 p.i., we compared the expression levels of activation
markers, such as MHC class II (MHC-II), CD40, CD80, and CD86
on the surface of splenic DCs from each group of mice (Fig. 1A–
H). Expression of the markers on DCs from P. berghei XAT-infected
WT mice administered control IgG significantly increased com-
pared with DCs from naïve WT mice, confirming our previous
report [13]. In mice administered control IgG, MHC-II, CD40, and
CD80 expression on DCs from TCR-d KO mice was significantly
reduced by day 5 p.i compared to DCs from WT mice (Fig. 1A–H).
Administration of the anti-CD40 mAb to WT mice upregulated
DC expression of CD40, CD80, and CD86, but not of MHC-II, on
day 5 p.i. In contrast, administration of the anti-CD40 mAb into
TCR-d KO mice upregulated expression of these four markers on
DCs on day 5 p.i. However, CD86 expression on day 5 p.i. in TCR-
d KO mice was statistically lower compared with WT mice
(Fig. 1A–H). These results suggest that the anti-CD40 mAb
enhances DC activation in mice after Plasmodium infection.

Previous studies showed that Plasmodium infection leads to DC
expansion in the spleen [13,27,28]. Therefore, we estimated splenic
DC numbers in WT and TCR-d KO mice and compared the effects of
the anti-CD40 mAb on DC expansion. In P. berghei XAT-infected WT
mice on day 5 p.i., administration of the anti-CD40 mAb signifi-
cantly reduced splenic DC numbers compared with control IgG
(Fig. 1I). However, splenic DC numbers in P. berghei XAT-infected
TCR-d KO mice administered the anti-CD40 mAb were similar to
those in mice administered control IgG (Fig. 1I). These results sug-
gest that administration of the anti-CD40 mAb to P. berghei XAT-
infected WT mice induces excessive DC activation and apoptosis
[29,30].

3.2. CD40L expression on cd T cells and CD4+T cells in spleen

Our previous study showed that cd T cells express CD40L on day
5 after P. berghei XAT infection. However, in the previous study, we
did not investigate whether CD40L expression on cd T cells and
CD4+T cells in spleen change during infection. Therefore, we exam-
ined CD40L expression on cd T cells and CD4+T cells in spleens
from naïve mice (day 0 p.i.) and from P. berghei XAT-infected mice
on days 5, 7, 9, 11, and 14 p.i. (Fig. 2). cd T cells began to express
CD40L on their surface day 5 p.i. In contrast, CD4+ T cells increased
in CD40L expression starting day 7 p.i. in both WT and TCR-d KO
mice. The proportion of CD40L-expressing cd T cells was slightly
decreased on days 9–11 p.i. Moreover, the proportion of CD40L-
expressing CD4+ T cells in WT mice was comparable to that in
TCR-d KO mice from days 7 to 14 p.i. These results suggest that
CD40L is continuously expressed on cd T cells and CD4+ T cells dur-
ing Plasmodium infection.

3.3. CD40 signalling is required to control Plasmodium parasites
during the early phase of infection

In our previous report, we showed using immunodepletion of
cd T cells that cd T cells function prior to day 9 after P. berghei
XAT infection [13]. However, the most effective timing of agonistic
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Fig. 1. The agonistic anti-CD40 mAb induces splenic DC activation in P. berghei XAT-infected mice. TCR-d KO and C57BL/6 WT mice were infected with P. berghei XAT by
intravenous inoculation of 104 iRBCs. The agonistic anti-CD40 mAb (clone 1C10) or control rat IgG was intravenously injected (100 lg per mouse) once on day 4 p.i. (A, C, E, G)
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from each mouse group on day 5 p.i. MFI levels indicate the expression level of each molecule in DCs. (B, D, F, H) Flow cytometry histograms are shown. In each left histogram,
the black line indicates the splenic DCs of naïve WT mice, and the grey line indicates the splenic DCs of naïve TCR-d KO mice. In each middle histogram, the black line indicates
the splenic DCs on day 5 p.i. in WT mice administered control rat IgG, the grey line indicates splenic DCs on day 5 p.i. in TCR-d KO mice administered control rat IgG, and the
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anti-CD40 mAb treatment for induction of protective immunity
against Plasmodium parasites in TCR-d KO mice remains to be
determined. Therefore, we administered the agonistic anti-CD40
mAb to TCR-d KO mice on days 0, 3, 5, 7, 10, 14 or 17 after infection
with P. berghei XAT parasites and examined parasitemia (Fig. 3)
and survival rate (Table 1). While administration of the anti-
CD40 mAb to TCR-d KO mice at the same time as infection
decreased parasitemia around the first peak (from day 5 to 7
p.i.), the TCR-d KO mice could not control the Plasmodium parasites,
and all animals eventually died (Fig. 3C and L). In contrast, admin-
istration of the anti-CD40 mAb to TCR-d KO mice on days 3, 5, 7, or
10 p.i. eliminated iRBCs (Fig. 3D–G, M–O). However, elimination of
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Plasmodium parasites in mice administered the anti-CD40 mAb
was not as great as that in WT mice. Furthermore, administration
of the anti-CD40 mAb to TCR-d KO mice on day 14 or 17 p.i. did
not control Plasmodium parasites, and all of the TCR-d KO mice died
eventually (Fig. 3H and I). To further examine whether stimulation
of CD40 signalling enhanced protective immunity against Plasmo-
dium infection, we next analysed WT mice treated with the anti-
CD40 mAb. Thus, we administered the agonistic anti-CD40 mAb
to WT mice on days 5, 7, 10 or 14 after infection with P. berghei
XAT parasites and examined parasitemia (Fig. 4). Similar to WT
mice that were not administered the anti-CD40 mAb, anti-CD40
mAb-administered WT mice also displayed controlled P. berghei
XAT parasites. Administration of the anti-CD40 mAb to WT mice
on day 5, 7, or 10 p.i. slightly accelerated the last day of parasite
elimination (Fig. 4B–D). In contrast, administration of the anti-
CD40 mAb to WT mice on day 14 p.i. did not change the time
points of parasite elimination (Fig. 4E). These results suggest that
stimulation of CD40 signalling in DCs can enhance protective
immunity against P. berghei XAT parasites during the early phases
of infection.

4. Discussion

In this study, we confirmed that splenic DC activation in P. berg-
hei XAT-infected mice is enhanced by administration of the agonis-
tic anti-CD40 mAb (Fig. 1). Enhanced DC activation with anti-CD40
mAb administration after P. berghei XAT infection led to control of
the parasites in TCR-d KO mice [13]. To elucidate when CD40L-
expressing cd T cells are required for host survival and P. berghei
XAT elimination, we infected TCR-d KO mice with parasites and
administered the anti-CD40 mAb at various time points after infec-
tion. The results showed that protective immunity via CD40–
CD40L signalling is important during the early phases of infection
(days 3–10 p.i.; Fig. 3).
Administration of the anti-CD40 mAb to TCR-d KO mice on day
0 p.i. did not provide protective immunity against P berghei XAT
parasites (Fig. 3). Because DC stimulation stops antigen uptake
by phagocytosis, anti-CD40 mAb administration on day 0 p.i. is
likely too early for DC stimulation to enhance an antigen-specific
immune response [31]. There are several possibilities to explain
why administration of the anti-CD40 mAb to TCR-d KO mice on
day 14 or 17 p.i. did not provide protective immunity against par-
asites. First, DCs may lose their ability to respond to stimulation of
CD40 signalling after day 14 or 17 p.i. Second, stimulation of CD40
signalling may activate DCs but may not result in parasite-specific
helper T cell responses to eliminate the parasites. The number of
CD4+ T cells significantly increased in the spleen of TCR-d KO mice
compared with WT mice. This result suggests that splenic CD4+ T
cells from both WT and TCR-d KO mice receive some stimulation,
such as that from IL-2, and expand on day 14 p.i. However, the
number of antigen-specific CD4+ T cells in TCR-d KO mice may be
lower than that in WT mice. After infection with P. berghei XAT,
the proportion of IFN-c-producing CD4+ T cells and cd T cells tran-
siently increased in the early phase of infection, but then decreased
on days 11 and 14 p.i. [13]. This decrease might be due to inhibi-
tory signalling via PD-1 and CTLA-4, which are inhibitory receptors
that suppress TCR signalling, in order to avoid excessive inflamma-
tion by T cell activation [32]. In contrast, CD40L expression on CD4+

T cells and cd T cells was not significantly reduced (Fig. 2). It has
been suggested that CD40L-expressing CD4+ T cells could contrib-
ute to DC activation [33]. Thus, even in TCR-d KO mice, DC activa-
tion occurred after infection with P. berghei XAT [13] (Fig. 1).
However, in WT mice, CD40L-expressing cd T cells could cooperate
with CD40L-expressing CD4+ T cells for DC activation, resulting in a
higher state of activation.

In our previous report, immunodepletion of cd T cells at day 9
p.i. controlled P. berghei XAT. Therefore, we considered that cd T
cells play important roles in protective immunity before day 9
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p.i. at least. [13]. However, the anti-CD40 mAb treatment was par-
tially effective for providing protective immunity to Plasmodium in
TCR-d KO mice even on day 10 p.i. These results may be due to
stronger stimulation of CD40 signalling by anti-CD40 mAb treat-
ment than by cd T cells. In this study, we used not only TCR-d
KO mice but also WT mice to investigate the time at which
CD40–CD40L signalling is important for protective immunity
against Plasmodium parasites. The results of those kinetic analyses
of P. berghei XAT infection in WT mice administered the anti-CD40
antibody support our hypothesis that stimulation of CD40



Table 1
Survival rate of mice treated with anti-CD40 mAb at different times during P. berghei
XAT infection.

Mouse Time of anti-CD40 mAb
administration
(Days post-infection)

Survival rate

WT – 6/6

TCR-d KO – 0/6
0 0/7
3 3/7
5 7/7
7 7/7
10 3/7
14 0/7
17 0/3

2152 S.-I. Inoue et al. / FEBS Letters 588 (2014) 2147–2153
signalling in DCs enhances protective immunity against P. berghei
XAT parasites during the early phases of infection. However, in
contrast to TCR-d KO mice, WT mice possess CD40L-expressing
cd T cells and can control P. berghei XAT parasites without admin-
istration of the anti-CD40 antibody. In WT mice, CD40L–CD40
signalling should sufficiently activate DCs and induce protective
immunity against P. berghei XAT parasites. We could not exclude
the possibility that, in the case of WT mice, administration of the
anti-CD40 antibody caused activation of phagocytic activity,
resulting in accelerated parasite elimination. Thus, further detailed
analyses using WT mice treated with the anti-CD40 mAb are
important for determining whether stimulation of CD40 signalling
enhances protective immunity against Plasmodium infection.
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Fig. 4. Effects of agonistic anti-CD40 mAb treatment on the control of P. berghei XAT para
berghei XAT through intravenous inoculation of blood-stage parasites (104 iRBCs), and pa
administered the agonistic anti-CD40 mAb on day 5 (B, G), 7 (C, H), 10 (D), or 14 (E) p.i. Pa
n = 3 for each experiment. Arrows indicate the time points of mAb treatment.
During the first peak of parasitemia, phagocytic cells, such as
dendritic cells and macrophages, play a role in the innate response.
CD4+ T cells began to activate before the start of the second peak of
parasitemia [13] (from day 7 p.i.). Thus, during the second and
third parasitemia peaks, P. berghei XAT antigen-specific CD4+ T
cells would respond to P. berghei XAT parasites and contribute to
parasite regulation. Furthermore, a previous report showed that
antibody-dependent phagocytosis was required for the control of
P. berghei XAT parasites. That report suggests that B cells activate
and differentiate into plasma cells, for the production of P. berghei
XAT antigen-specific antibodies. Such antibodies would be impor-
tant for the elimination of the P. berghei XAT parasites. As shown in
our previous report on P. berghei XAT-infected WT mice [25], the
level of antigen-specific antibodies in plasma increased markedly
during the third peak of parasitemia. Thus, during that third peak,
B cells and plasma cells may respond to P. berghei XAT parasites –
an acquired immune response – resulting in the elimination of the
parasites. As described above, our previous report showed that the
ability of WT mice to control P. berghei XAT parasites was not influ-
enced by cd T cell depletion from day 10 p.i. [13]. Thus, the CD40L-
expressing cd T cells seem to play an indirect role in the immune
response against the P. berghei XAT parasites during the second
and third peaks of parasitemia.

A previous report regarding cancer immunity showed that
treatment of mice with a combination of anti-CD40 mAb and IL-
2 improves survival after primary tumour injection, but decreases
rejection against secondary tumour injection after immunisation
with irradiated tumour cells [34]. The impaired secondary antitu-
mor responses were caused by the loss of memory T cells. It is
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sites in WT mice. (A–H) Time course of parasitemia. WT mice were infected with P.
rasitemia was measured (A, F). P. berghei XAT-infected WT mice were intravenously
rasitemia was shown from day 0 to 10 p.i. and was graphed on a linear scale (F, G, H).
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important to investigate whether impaired memory function also
occurs in malaria after stimulation of CD40 signalling. Studies
regarding the role of CD40 signalling in association with long-term
T cell responses should advance the understanding of protective
immunity against malaria.
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