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A b s t r a c t - - I n  this paper, closed-form solutions are obtained for registering two sets of line seg- 
ments, triangle patches, or even general simple geometric objects that are defined by a set of or- 
dered points. Based on these new registration approaches, the iterative closest line segment reg- 
istration (ICL) algorithm and the iterative closest triangle patch registration (ICT) algorithm are 
developed similar to the ICP algorithm. To simplify the mathematical representation, the concept 
of matrix scalar product is defined and some of its properties are given. The newly developed reg- 
istration methods are tested. The test shows that the ICL algorithm and the ICT algorithm work 
much better than the conventional ICP algorithm considering that the ICL and the ICT algorithms 
are much less sensitive to the initial orientations of the object. (~) 2000 Elsevier Science Ltd. All 
rights reserved. 

K e y w o r d s - - R o t a t i o n  estimation, Matrix scalar product, Iterative line segment registration. 

1. I N T R O D U C T I O N  

In c o m p u t e r  ass is ted  surgery,  one of  the  most  i m p o r t a n t  p rob lems  is to  al ign the  p r e ope ra t i ve  

mode l  wi th  i n t r aope ra t i ve  da ta .  Ma thema t i ca l ly ,  th is  is a p rob lem of e s t ima t i ng  the  coo rd ina t e  

t r ans fo rma t ions ,  usua l ly  involving ro t a t i on  and t r ans la t ion ,  be tween  the  two coo rd ina t e  sys t ems  

in which  the  p r eope ra t i ve  d a t a  and in t r aope ra t i ve  d a t a  are presented .  Genera l ly  speaking ,  w h a t  

m e t h o d  is used to  e s t i m a t e  the  unknown t r a n s f o r m a t i o n  depends  on whe the r  p o i n t - t o - p o i n t  cor- 

r e spond ing  re la t ions  be tween  the  d a t a  sets  are  known or  not.  W h e n  the  exac t  co r re spondence  

be tween  the  d a t a  sets  is known, the  d a t a  sets are  called reference marks  and  the  re levant  reg is t ra -  

t ion  app roaches  are  cal led reference m a r k  reg is t ra t ions ,  which are  very  quick and  very  accura te .  

However ,  to  collect  reference po in t  d a t a  sets, ex t e rna l  l a n d m a r k s  have to  be i m p l a n t e d  into t he  

pos i t ion  where  surgery  will be car r ied  out.  Th is  is invasive, and  m a y  br ing  a b o u t  fur ther  h a r m  

to pa t i en t s .  

A n o t h e r  k ind  of  r eg i s t r a t ion  d a t a  consis ts  of very  genera l  d a t a  sets.  The  only  i n fo rma t ion  

awdlab le  is t h a t  t he  two d a t a  sets  are col lected from the  same  surface of a r igid objec t .  Of ten  

one d a t a  set (cal led mode l  d a t a )  has  far more  po in ts  t h a n  the  o the r  one ( i n t r aope ra t i ve  da ta ) .  

As no p o i n t - t o - p o i n t  cor respondence  in format ion  is known a b o u t  t he  d a t a  sets,  n o n l a n d m a r k  

r eg i s t r a t i on  techniques  are  requi red  to  m a t c h  the  two d a t a  sets,  which are  much more  c o m p l i c a t e d  
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than landmark registration techniques. This is because an iterative optimization procedure is 
inevitable in this case. For nonlandmark registration, two kinds of registration methodologies are 
very popular. One can be classified as the 'hat and head' registration approach. This treats one 
data set as the hat and another data set as the head, and thus, the data  matching problem is just 
the matter  of where to put the hat on the head. More precisely, let P - - - -  {Pi)i=lN and Q -- (QJ}j=IM 
be two data  sets that  are going to be matched. Let the unknown rotation and translation that  
link the two data sets be R and T. Then R and T can be estimated by minimizing the sum 

N 

E d(RPi ÷ T, Q), 
i=1 

where d(P, Q) is the distance from a point P to the data set Q defined by 

d(P,Q)  = min I IP-Qj l I .  
I<j~_M 

This approach is direct in idea but is time consuming and computationally expensive. Though 
great improvement has been made, it will still take some time before it becomes useful in practice. 
Another kind of registration method can be classified as iterative closest point registration (ICP), 
developed from the method given in [1]. These approaches are realized by iteratively calculating 
the closest points in model data  for each intraoperative data point. In this way, the nonland- 
mark registration problem is turned into an iterative landmark registration problem. The ICP 
algorithm is always convergent and a transformation can always be found. The problem is that  
in many cases, it does not converge to the expected transformation. More general discussion 
on medical data  registration techniques can be found in [2,3]. In this paper, approaches for 
matching two sets of line segments or two sets of triangle patches are developed first. Based on 
these techniques, algorithms similar to ICP are proposed. Instead of searching for the closest 
point corresponding to each data  point, a closest line segment (or triangle patch) in model data 
is calculated for each line segment (or triangle patch) in the intraoperative data. Our test shows 
that  in most cases, it will converge to the expected position. This paper is organized in the 
following way. In Section 2, the concept of matrix scalar product is defined by which the relative 
mathematical representations will be comparatively simple and can reflect geometric intuition. 
In Sections 3 and 4, line segment and triangle patch registration techniques are provided. In 
Section 5, a nonlandmark registration technique is provided similar to the ICP. In Section 6, test 

results are presented. 

2 .  T H E  M A T R I X  S C A L A R  P R O D U C T  A N D  I T S  P R O P E R T I E S  

DEFINITION 1. Let A = (aij) and B = (b i j )  be two n x m matrices. The scalar product of the 
two matrices, denoted by A .  B, is defined as 

n m 

A" B = ~ ~ a i j b i j .  (1) 
i ~ l  j ~ l  

It is evident that  this definition is a natural generalization of the vector scalar product. 
Let A,B be n×m real matrices. Let AI. ,  A2.,. • •, An. and A.1, A . 2 , . . . ,  A.m be the row vectors 

and column vectors of A and let BI . ,  B 2 . , . . . ,  Bn.  and B.1, B . 2 , . . . ,  B.m the row vectors and 
column vectors of B. 

P R O P O S I T I O N  1. 

A • B = A 1 .  • B 1 .  + A 2 .  • B 2 .  + . .  • + A n ,  • Bn. 

-- A.1 • B,1 + A.2 • B.2 + ' . .  + A.m • B.m. 
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PROPOSITION 2. 

I .  A = t rA,  (2) 

A .  B = B - A ,  (3) 

(A + B ) .  C = A .  C + B .  C, (4) 

A .  B = t r A T B  = t r A B  T = t r B T A  = t r B A  T, (5) 

d .  A = [[AI[ 2, (6) 

where  I1 " 1[ denotes  Frobenius  norm and in (2) I is an n x n iden t i t y  matr ix .  

PROPOSITION 3. Le t  A be an n x m matr ix ,  and let  X be an m-d imens iona l  vector,  and Y an 

n-d imens ional  vector.  Then  

V .  ( A X )  = A .  ( y x T )  . (7) 

PROOF. 

PROPOSITION 4. 

n m n m 

i=1 j = l  i=1 j = l  

Le t  A , B , C  be n x m ,  n x k, and k x m matrices ,  respect ively .  Then  

A .  ( B C )  = B .  ( A C T ) .  (8) 

PROOF. 

and 

A . ( B C )  = A , j  . ( B e ,  j )  = E B . ( A , j C ~ )  = B . A , j c ,T j  
j = l  j = l  j=1 

m 

E A.c.; = ACT 
j = l  

follows directly. 

PROPOSITION 5. Le t  A , B  be n x m ,  n x m matr ices  

]IA - BI[  2 = IIAII ~ + I lUll  e - 2 A - B ,  (9) 

where I[ • [[ denotes  the  b-~obenius Norm.  

PROOF. According to the  definit ion of the  Frobenius  norm, we have 

m 

[[A - BI[ 2 = ~ I[A,j - B,j l l  2 
j = l  

m 

= E NA*j[[2 + NB*j[[2 - 2 A , j .  B , j  
j = l  

= [IAI[ 2 + []8112 - 2A .  B.  

COROLLARY 1. I f  R is a real orthogonal  matr ix ,  then  

] [ A -  RBI[ 2 = IIA[[ 2 + [[BII 2 - 2 R .  ( A B T ) .  (1o) 

PROOF. T h e  proof  follows direct ly  f rom Propos i t ions  4 and 5. | 
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3. C L O S E D - F O R M  L I N E  S E G M E N T  R E G I S T R A T I O N  

DEFINITION 2. Let P1, P2 E ~3 be two points. The ordered pair [P1, P2] is called a line segment 
in •3. The set of all line segments on N 3 is denoted as g. 

DEFINITION 3. Let L E £ be a line segment in R 3, F is a transformation on space ~3. Then this 
transformation can be extended to be a line segment transformation by defining 

F[P1, P2] = [FPl,  FP2]. (11) 

[F P1, F P2] is called the transformation of line segment L. For translation, we will write T[P1, P2] 
= [P1 + T, P2 + T] m o r e  n a t u r a l l y  as  [/'1, P2] + T. 

Similarly, the other operations on IR 3 can also be extended to line segments. 

DEFINITION 4. Let L1 = [P1, P2], L2 = [Q1,Q2] c £ 5e two line segments, and a,b two real 
numbers. We define 

aLl  + bL2 = [aPx + bQ1, aP.2 + bQ2]. (12) 

It should be noted that  this definition is different from the set operation obtained with the 
conventional extension principle. 

Let ][-1 = [ P l ,  P2], L2 = [Q1,  Q2] E £2 be two line segments. Geometrically, L1 and L2 can be 
represented as functions in the form: fl(A) = P1 + A(P2 - P1) and f2(A) = Q1 + A(Q2 - Q1), 
respectively, where 0 _< A < 1. If A is incremented by dA, then f l  and f2 are incremented by 
(P2 -P 1 )dA and (Q2 -Q1)dA,  respectively. The distance between these two micro-line segments 
can be approximated by the area of the trapezium that  has height I[ f l  (A) - f 2  (A)[[ 2 with top-edge 
and bottom edge defined by (P2 - P1)dA and (Q2 - Q1)dA approximately, i.e., 

  (IIP2 - Pill + E h  - Qxll)llfl( ) - A(A)H d . 

We choose to use []fl(A) - f2(A)l[ 2 rather than []fl (A) - ]'2(A)][ to measure the distance between 
points fl(A) and f2(A) only for the convenience of computation. The distance between the two 
line segments can thus, be described by the following integration: 

11 + 12 f l  
2 J0 []fl(A) - f2(A)]] 2dA - 11 + 12 

6 (13) 
• (lIP1 - QI][ 2 + lIP2 - Q2II 2 + (P1 - Q1). (P2 - Q2)) ,  

where ll = lIP2 - P I [ [ ,  12 = [[Q2- QIII. 

DEFINITION 5. Let  ]L 1 = [P1, P2], L2 = [Q1, Q2] be two line segments. The distance between the 
two line segments is defined as (13) and is denoted by D(L1, L2). 

It should be noted that  the value of the above integration depends on the corresponding 
relations between the ends of the two line segments. Thus, the distance between two line segments 
defined above is direction dependent. 

In paper [4], the distance between line segments has been defined for the case where the lengths 
of the line segments are equal. We will show that  our definition is more general. 

PROPOSITION 6. Let L1 = [PI, P2], L2 = [Q1, Q2] C £ be two line segments. Then 

- - (  lll2 'v~ - 1 _  ) 
D ( L 1 , L 2 ) -  11+122 l l O 1 - O 2 [ [ 2 + - ~  - 1 V2I[2+ (11 12) 2 , (14) 

where O1 = (P1 + P2)/2, 02 = (Q1 + Q2)/2 are the centers of the two line segments, the unit 
vectors I/1,1/2 axe their directions and ll, 12 their lengths. 

The geometric meaning of the measure is clear• The first term of equation (14) measures the 
difference between the two line segments in position, the second term measures the difference in 
direction, and the third term measures the difference in length. 
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PROOF. 

1 
IlO: - 02ll 2 = E (IIP~ - Q:H 2 + lIP2 - Q2II 2 + 2(P:  - Q : ) .  (P2 - Q2) ) ,  

l:12llV: - v2112 = 2Z~Z2 - 2(P2 - P : ) .  (Q2 - Q1), 

lll211V~ - v2112 + (t:  - 12) 2 = IIP~ - Q l l l  = + liP2 - Q2112 - 2 ( p :  - Q : ) .  (P= - Q 2 ) ,  

and so 

/ : + / 2  ( 1:I2 ~2(/1 /2)2 ) 2 Jl01 - 02ll 2 + - ~  111 - v2112 + - 

= tl  + 12 ( l iP :  - O l l l  2 + liP2 - O=ll ~ + ( P :  - Q : )  (P2  - Q ~ ) ) .  
6 

When  11 = 12 = l, we have 

1 3  

D ( L 1 , L 2 )  = ZllO~ - o2112 -4- ~ l l V ~  - v2112 

13 
= lllO: - 02[[ 2 + -6(1 - V:-V2).  

This  is the definition given in [4]. 

Though  (14) is more direct  t han  (13), we will mainly  use equat ion (13) as it is easier to  compute  

from points.  
Next ,  we will establish a line segment registrat ion algorithm. Let  

I N ([Pn, Ptnl}N=l , {[Qn, Qn]}n=l 

be two sets of line segments. Suppose tha t  there  exists a ro ta t ion R and a t rans la t ion  T such 
tha t  

[Q~, Q~] = R[Pn ,  P~] + T + [en, ~ ] ,  n = 1, 2 , . . . ,  N ,  

where [sn, :~], n = 1, 2 , . . . ,  N,  are exper imental  errors. We es t imate  R and T by minimizing 

N 

( 6 IIQ,~ - R P n  - TI[ 2 + IIQ~ - R P  Z - Tll  2 

+(Q,~ - R P n  - T )  . (Q~ - R P ~  - T ) )  , 

(15) 

where l, .... 12,~ are the  lengths of [P=, Pn t] and [Qn, Q~], respectively. 
Let  0z b-Y = 0. It  follows immediate ly  tha t  the opt imal  t ransla t ion should be chosen as 

T = Q - R P ,  (16) 

where 

Let  

~v p , ,  + p .  

P=~w.---y--- 
N 

N w n Q n  + Q .  
Q = E  2 ' 

n ~ - I  

11,~ + 1 2 . .  
W r  t - -  _ _  

W 

(17) 

[&,  P ' ]  = [P~, P ' ]  - P,  [Q~, Q d  = [Q~, Q']  - ~ ,  
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n = 1, 2 , . . . ,  N. Substituting (16) into (15), we have 

N 

: E ll'* 4- 12" ([[(~n -- RPn]I 2 4- - RP ' I I  = 4- (¢)n - R P 4  (¢)" - R P ' ) )  
6 

n : l  

This sum can be further written as 
N 

- - t  T - t  - T  E = A - R. ~ 11,, + 12,, 2(2n[~T + ~(3' PtT 4- Q,~p n + Q,~P" 
- - " ~ ? ' t - -  n 

n=l 

where 

(18) 

(19) 

F = R .  A, (20) 

N 

= + Q,~P ~ + Q,~P,~ . (21) 
- - " ~ n - -  n 

n=l 
Now, there are several ways to find the optimal R from (20). This paper only considers 

two methods. One way is to use Eigen-techniques. Another way is to use the singular value 
decomposition technique. We first discuss how the eigen-technique can be used to find the 

rotation R. 
When the rotation matrix R is represented with Euler-Rodrigus parameters in form [5] 

(q2  + q 2 - q ~ - q 2  2(qlq2-qoq3) 2(qlq3+qoq2) ) 
R = 2(qlq2 + qoq3) %2 _ q2 + q2 _ q32 2(q2q3 - qoql) (22) 

2(qlq3 - q0q2) 2(q2q3 4- q0ql) q~ - q~ - q~ 4- q32 

with q~ 4- q2 4- q2 4- q~ = 1, R-  A in (20) can be directly written as a quadratic form 

F = qTQq,  (23) 

where q = (qo,ql,q2,q3) T and Q is a 4 x 4 matrix constructed from A by [1] 

Q = (tr(bA) bT (24) 
A + A T - t r ( A ) I 3 / '  

where b = (a32 - a 2 3 ,  a13 -a31 ,a21  - a 1 2 )  T is a column vector and I3 is the 3 × 3 identity 
matrix. The maximum value of quadratic form (23) subject to IIq[[ -- 1 is attained with the unit 
eigenvector of Q corresponding to its greatest eigenvalue [6]. This gives the eigen-algorithm (also 
known as the quaternion algorithm). A similar technique has been used by Faugeras in [7] and a 
more comprehensive discussion in using quaternions to solve reference point matching problems 
can be found in [8]. 

Another way to compute the optimal R from (20) is the SVD algorithm which uses the singular 
value decomposition technique to calculate the rotation matrix. Instead of writing R • A as a 
quadratic form, it can be written in the form 

F = R.1 • A.1 + R.2 • A.2 + R.3 • A.3. (25) 

This representation immediately shows that  to maximize F, the three mutually orthogonal column 
vectors of rotation matrix R should be chosen to be as close as possible to the column vectors 
of matrix A. This is equivalent to finding the closest rotation matrix to A in the sense of the 
Frobenius norm. Let the singular value decomposition of matrix A in (21) be U W V  T, with 
UU T = V V  T = I, W = dia(wl,w2,  W3), and W 1 ~ W2 ~_~ W3 ~.~ 0. It is known [9-11] that  
the closest rotation matrix to A is UV T when det A _> 0, and is U J V  T when det A < 0, where 
J = dia (1, 1 , - 1 ) .  This gives the SVD algorithm. 

where matrix 

N 

6 
n = l  

is a constant independent of rotation R. Therefore, minimizing (18) is equivalent to maximizing 
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4 .  C L O S E D - F O R M  T R I A N G U L A R  P A T C H  R E G I S T R A T I O N  

In this section, the concept of a triangle patch is introduced. The contents of this section can 

then be treated like that  of the previous section. Triangle patches can be seen as a generalization 
of the line segments introduced in the previous section. The main results of this section can be 
further generalized to an ordered point set of any size without any difficulty. 

DEFINITION 6. Let P1,P2,P3 E II~ 3 be three points. The ordered triple [Pl, ]92, Pc] is called a 
triangle patch in IRa. The set of all triangle patches on R 3 is denoted as T. 

DEFINITION 7. Let T E T be a triangle patch in R a. F is a transformation on space R. Then 
this transformation can be extended to apply to a triangle patch by means of the definition 

F[Pt, P2, Pal = [FP1, FP2, FP3]. (26) 

[F P1, F P2 , F P3] is called the transformation of triangle patch T. For translation, we also write 

T[P~, P2, P3] = [P1 + T, P2 + T, P3 + T ]  = [P1,P2, P3] + T. 

Plus and scale operations can also be defined on triangle patches as they are on line segments. 

DEFINITION 8. Let "IF1 = [P1, P2, P3], T2 = [Q1, Q2, Q3] E T be two triangle patches, and a, b 
two real numbers. We define 

a'F1 + b'F2 = [aP1 + bQ1, aP2 + bQ2, aP3 + bQ3]. (27) 

We now discuss how to introduce the concept of distance between triangle patches to measure 
their closeness. Let ql'l = [P1, P2, P3], "IF2 = [Q1, Q2, Q3] c T be two triangle patches. Geometri- 
cally, they can be represented as functions 

f l (u , v )  : Pl + u(P2 - / °1)  + v(P3 - P1) 

and 

f2(u,v) = Q1 + u(Q2 - Q1) + v(Q3 - Q1), 

respectively, where 0 _< u, v <_ 1, and u + v  < 1. As with line segments, we define a cylinder with 
height Hfl(u, v) - f2(u, v)ll 2. The top surface is defined with triangle ']~1 and bot tom is defined 
with triangle qr2, and the volume of the cylinder is used to measure closeness of the two triangles. 
Given increments du and dv to variable u and v, the cylinder gets an increment 

CIIf l (u ,  v) - f2(u,  v)ll 2 du dv, 

where 
C = [I(P2 - P1) × (Pc - P1)II + II(Q~ - Q1) x (Qa - Q1)11 

(28) 
~- I I ( (P2  --  E l )  -~- ((~2 --  Q 1 ) )  X ((/:)3 --  P l )  -~- ( Q 3  --  Q 1 ) ) I I ,  

and x denotes vector product of vectors. Thus, the volume is 

f£cIIfl(u,v) - f 2 ( u , v ) l l  2 dudv = C (llPa - Qlll 2 -1-lIP2 - Q2112 + lIP3 - Qall 2 
(29) 

+ ( P l  - -  Q1) .  (1°2 - -  Q 2 )  + (P, - Q,)" (Ps - O3) + (P2 - Q2) .  (Pc - Q 3 ) ) ,  

where 7 9 = { ( u , v )  [ 0 < _ _ u + v < l ,  0_<u, v_<l} .  

DEFINITION 9. Let 11~1 = [P1, P2, Pal, "1['2 = [Q1, Q2, Q3] E T be two triangle patches. The 
distance between the two triangle patches is defined as (29) and is denoted by D(T1, T2). 

It should be noted that  the distance between two triangle patches defined above depends on 
the ordering of their vertices. Following Proposition 6, we have the following. 
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PROPOSITION 7. Let  ~F 1 = [P1,  P2 ,  P3] ,  ']1"2 = [Q1, Q2, Q3] E T be two triangle patches. Then 

D(~I'l,']I'2) = ~- JtO1 - 0 2 ] ]  2 

1 
+ -~  (lll~JJVl - VIII 2 + 12l'211V2 - ½'112 + l a l ' a l l v 3  - v3'[I 2) (30) 

+~-~ ((1, - l l )  ~ + (12 - / ; ) 2  + (/3 - / ; ) 2 )  , 

where O 1 = (P1 + P2 + P3)/3, 02 = (Q1 + Q2 + Qa)/3  denote the centers of  the two triangles, 
unit vector V1, V2, V3, V{, VJ, V 3' are the corresponding directions of  edges, and 11, 12,13, "~1, "~2, l~ 
are corresponding lengths of the three edges. 

The proof of this proposition is similar to that  of Proposition 6. 

The first term of equation (30) measures the difference between the two triangle patches in po- 
sition, the following three terms measure the differences of the two triangle patches in orientation, 
and the last three terms measure the differences in size. 

Now, we discuss a technique for triangle patch registration. Let 

I p z q l N  I It N 
{[Pn,Pn,"  nUn=l  , {[Qn,Qn,Qn]}n=l  

be two sets of triangle patches. Suppose that  there exist a rotation R and a translation T such 
that  

[Qn, Q L  Q"] = R[pn,  p ' ,  p"] + T + [~n, ~', ~"~ nJ, n = 1 , 2 , . . . , N ,  

where [~n, e~, c"l  . . . ,  ~j, n = 1, 2, N are experimental errors. We estimate R and T by minimizing 

N 

E = E D(R[Pn,  P~, P~'] + T, [Q~, Q~n, Q~]) 
n = l  

N = ~ C n  
n=~ ~ ([IQ - RP~ - rl l  2 + IIQ' - R P "  - T l l  2 (31) 

+ [IQ" - RP'n' - TII z + (Q - RP n  - Z ) .  (Q' - RP~n - T )  

+ (Q - RP~ - T ) .  (Q" - RP~' - T)  

+(Q'  - RP~ - T ) .  (Q" - RP~' - T ) ) ,  

where 

c ~  = I I (P"  - Pn)  x (P~" - P, d l l  + II(Q'n - Q~)  x ( Q "  - Qn) l [  

+ II((P;~ - P~)  + ( Q "  - Q ~ ) )  x ( ( P -  - P~)  + (Q~  - Q ~ ) ) I I .  

Let o~ b-~ = 0. I t  follows immediately that  the optimal translation is chosen as 

T = ~) - RP ,  (32) 

where 

Let 

N P~ + P" + F"  N w Q~ 
P= ~ " '  3 (~= ~ +Q" +Q" 

' 3 ' n = l  n = l  

N Cn 
w =  E C n ,  Wn = - - .  

n = l  W 

(33) 

- - !  - - I f  ! I f  [p~, P~,P~] : [P,,,P~,P;~]-p, 
[0~, -' = ' - O n , O " ]  [ Q ~ , O ~ , O " ]  O, 
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n = 1 , 2 , . . . ,  N. Substituting (32) into (31), we have 

N 

n=l  

+ - R P ' ) .  - r i p " ) ) .  

This sum can be further written as 

(34) 

E = A - R . B ,  (35) 

where A is a constant independent of rotation R and 

N 
8 = + 2¢)°p: (2Q'.';,,: + 

n=l  
f )  I~lt T - t  - T  (~)1 p i t  T (~tt /~,T tt -t T ) 

+ Q n P t ~  + , ,~n- -  n + Q nP~ + -~ n -  n + n n + Q n P ,~ • 

Therefore, minimizing (34) is equivalent to maximizing 

R . B .  

The way to estimate R from B is the same as that  discussed in the previous section. 

5.  I T E R A T I V E  L I N E  S E G M E N T  A N D  

T R I A N G L E  P A T C H  R E G I S T R A T I O N  

In this section, the iterative closest line segment registration algorithm (ICL) and the iterative 
closest triangle patch registration algorithm (ICT) are presented. As the ICT algorithm is similar 
to the ICL algorithm in principle, it will just be discussed briefly. 

p. N M Let P = { n } n = l ,  Q = { Q m } m = l  be two data  sets from the patient on the operating table and 
preoperative model, respectively. Usually, no point-to-point correspondence relations are known 
between the two data  sets and the number M is much larger than N. In this case, the data  set Q 
should be large enough to depict the surface of the object realistically, otherwise, the estimated 
rotation and translation might not be what we expect. The ICL algorithm works by searching 
for the closest line segments in Q for each line segment in 7). 

In searching for the closest line segments, a dynamically weighted distance is used to measure 
the closeness of two line segments. Note that  the length of a line segment is left unchanged by 
rotation and translation. For a given line segment in 7 ), its closest line segment in Q should have 
a similar length. If two line segments are significantly different in length, then one cannot be 
the transformation of the other. With this fact in mind, we could modify the distance between 
line segments by increasing the weight on the length difference to filter out the unlikely pairs 
of line segments. Therefore, at the beginning, we can set the weight on the length difference 
between two line segments to be very large such that  whether two line segments are close mainly 
depends on whether they have similar lengths. Then the weight on length difference is gradually 
minimized according to the sum of distances between line segments in 7) and their corresponding 
line segments in Q. 

In this paper, the matching error in the k TM step of the iteration is used as the weight of 
differences in length, i.e., in k th step, the following definition of distance between line segments 
is used in searching for the closest line segments in our ICL algorithm: 

Dk(LI,IL2) = D(Ea,L2) + e k - l ( l l  - 12) 2, (36) 
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where distance D is defined by (13) and ek-l is the error sum in the ( k - l )  th step, and/1,12 are the 
lengths of L1 and L2, respectively. Since the lengths of line segments are invariant under rotation 
and translation, the estimated rotation and translation based on distance Da and distance D are 
the same. To enhance the efficiency of the ICL algorithm, it is proposed to sort the line segments 
of the intraoperative data according to their lengths so that longer line segments are compared 
first. The reason for doing this is that the orientation of the object is mainly determined by 

longer edges. 
Let L = [P, P'] e 7 ) be a line segment, and [Q(P), Q(P')] denote its closest line segment. 

Once the closest line segments for all elements in 7 ) have been found, the line segment regis- 
tration method given in Section 3 is used on the data sets {[P~, Pj] ] i < j;  i, j = 1, 2 , . . . ,  N} 
and {[Q(Pi),Q(Pj)] I i < j; i,j = 1 , 2 , . . . , N } .  The estimated rotation and translation are 
then applied on 7). Then the updated 7 ) are used as the intraoperative data. This procedure 
is repeated until the difference between two consecutive error sums is smaller than the given 
tolerance. This procedure is always convergent under appropriate scaling. Let 7)(k) be the point 

set after updating 7) k times. For each line segment [~(~'), pJk)] in 7)(k), the closest line segment 

[Q(pi(k)) Q(pjk))] c Q is defined as the line segment that  satisfies 

Dk([p[k),p(k)] [ Q ( p ~ ! k ) ) Q ( p ~ . ) ) ] ) =  rain Dk([P~k),P (k)] [Q,Q ' ] ) .  
' ' Q , Q ' E Q  ' 

ICL ALGORITHM. 

1. Sort the line segments in P in such a way that the longer line segments are considered 
first in computing the closest line segments. In practice, if the number of points in P is n, 
we can just use the first n longest line segments to establish the registration. 

2. Initialize rotation, translation, and e0: R=I,  T=0;  eo should be initialized as large as 

possible. 
3. For each pair of points p(k), p,(k) ¢ 7)(k) find a pair of points Q, Q' E Q in a preoperative 

model such that  the distance between line segments [P, P'] and [Q, Q'] are minimum in 

the sense of (36). 
4. Using the line segment registration approach developed in Section 3 to compute rotation R' 

and translation T' ,  set R = R'R and T = R'T + T'. 
5. Calculate the error sum 

If l e k  - -  ek+ll is less than given tolerance, stop; otherwise, set 

p_(k+~) = R,p~k) + T , ,  n = 1 , 2 , . . . , N ,  

and repeat from Step 3. 

Now we show that  this algorithm is always convergent under appropriate scaling. Let 

N 

/,j-----l; i< j  

and let R(k),T (k) be the estimated rotation and translation from data sets {[p~}k)pJk)]} and 

.p(k) Q(pjk))]}. Define 

N 

i , j = l ,  i < j  
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Let Rot and Tr represent any rotation and any translation, respectively. According to line 
segment registration algorithm, 

dk -~ 

N 

E 
i , j=l ,  i<j  

N 

E 
i , j=l ,  i<j  

N 

= min Z Dk(R°t[  P}k) P(k)] + T r '  [ Q ( p ( k ) )  Q(pJk))]) 
Rot,Tr ~ ' 

i , j=l ,  i<j  

N 

i , j=l ,  i<j  

On the other hand, with the definition of closest line segments, we have 

ek+l = 

N 

i , j=l ,  i<j  

N 

i , j = l ,  i<j  

N 

i , j=l ,  i<j  

N 

i , j = l ,  i<j  

O k + l  , 

D k  , 

Q (pJk+l))l) 

+ ekak - ek- lak 

= d k + ( e k  -- ek-1)ak ~ ek + (ek - ek-1)ak, 

where 

N 

($k = 
i,j.=l, i<j  

N 

= E 
i , j=l ,  i<j  

From the relation 
ek+l < ek + (ek - ek-1)Sk, 

we see that if ek <_ ek-1, then ek+l _ ek. Thus, if we could choose e0 such that it is bigger 
than el ,  then the nonnegative real number sequence {ek} will be nonincreasing and bounded 
below, and it must be convergent. 

It can be seen directly that a necessary condition that ek+l _< ek is 5k _< 1.0. On the other 
hand, when al < 1.0 is uniformly valid with the choice of e0, then e0 can always be chosen to 
be big enough such that it is larger than el .  Since 5k is just a sum of differences of lengths of 
corresponding line segments,  its upper bound should be very small if the searching line segments 
are actually included in the model data sets. Even when the intraoperative data are not good 
enough, an upper bound 1.0 can always be set to 51 uniformly by rescaling the data sets or scale 
the sum of squared length differences directly such that it is less than one, say, the average sum 
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of squared length differences can be used. Therefore, under appropriate scaling, the real number 
sequence {ek } will always be decreasing and thus convergent. 

The iterative triangle patch algorithm (ICT) proceeds much the same way. The ICT algorithm 
can be obtained by replacing a line segment with a triangle patch in the above algorithm. As in 
the ICL algorithm, the following dynamic weighted distance is used instead of using (9). 

Dk(T1, ~I'2) = D('~I, V2) + ek (d 2 + d 2 + d2), (39) 

where ek is the error sum in the k th step defined in a similar way as (37) and dl, d2, d3 are 
differences in lengths of three corresponding edges of the two triangle patches. 

For each triangle patch in T', the ICT algorithm will search for the closest triangle patches in 
the preoperative model data and use the triangle patch registration method given in Section 4 
to compute the rotation and translation. The ICT algorithm works more robustly than the ICP 
and the ICL, but it spends more time in computing the closest triangle patches. 

6. T E S T I N G  RESULT 

The iterative line segment registration algorithm and triangle patch registration algorithm have 
been tested and compared with the ICP algorithm. Three different geometric objects have been 
considered in our experiments: a set of space line segments, a space curve, and a surface, see 
Figures 1-3. Having sampled the first data set (corresponding to preoperative data), the object is 
randomly transformed by a rotation and a translation and then the second data set (corresponding 
to intraoperative data) is sampled. The algorithms ICP, ICL, and ICT are applied to the two 
data sets to estimate the transformation. 

4 

3 

0 

1 O ~ ~ ~ ~ ~ O  "0.5 

-1 -0.5 
Figure 1. The line segments matching. 

It is shown that when the second data set (intraoperative data) is just the transformation of 
a subset of the first data set, the estimated transformation obtained with the ICL and the ICT 
algorithm will be exactly the true transformation performed and the number of iterations is just 
two or three in most cases. When the second data set is not the transformation of a subset 
of the first one, it takes more iterations to converge and the transformation estimated may not 
necessarily be very close to the true transformation, though it is close in most of the cases. To 
test the stability of the ICL and the ICT algorithms, different numbers of data sets are sampled 
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Figure 2. The curve matching. 
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Figure 3. The surface matching. 

for each object, with various orientations. The experiment results show that  both the ICL and 
the ICT algorithms are much more stable than the ICP algorithm. 

Obviously, the convergence speed depends largely on the size and the quality of the data  used, 
but  it is also affected by the initial value assigned to eo. Too large eo tends to result in the 
convergence speed slower and too small eo may result in improper convergence. In our test, the 
ideal eo is chosen between 101°-103°. 

Much of the experiment has been done to compare the ICL and the ICT algorithms with the 
ICP algorithm. As we know, the ICP algorithm is very sensitive to the initial orientation of 
the object. Thus, it is natural to ask whether the newly developed methods are less sensitive 
to initial orientations. The first way to show such a stability for these algorithms is to compute 
the probability of success for a series of experiments. In the experiment, we say that  a matching 
process is successful if both the error between the estimated rotation and the true rotation and 
the error between estimated translation and the true translation are less than the given threshold. 



1184 Q. LI AND J. G. GRIFFITHS 

Tables 1-3 show the  percentage of successes over 500 runs of these three a lgori thms wi th  different 

da t a  sets in using the ICP, the ICL, and  the I C T  algorithms. The  figures are ob ta ined  by se t t ing 

the threshold to be 0.2 for line segments object  and  curve object  and  0.4 for the surface object .  

The  closeness between two ro ta t ion  matrices is defined as the Frobenius  norm of their  difference 

and the closeness of two t rans la t ions  is measured by the norm of the difference between the two 

vectors which define the t ranslat ions.  The  number  of points  in the model  da t a  is in the range of 

60-1000 and  the n u m b e r  of points  in the second da ta  set is jus t  between 4-6. 

Table 1. Percentage of success for line segments. 

Points in Second Data 4 5 6 

ICP 37.4 35.1 14.3 

ICL 78.8 91.8 99.6 

ICT 100.0 1 0 0 . 0  100.0 

Table 2. Percentage of success for curve. 

Points in Second Data 4 5 6 

ICP 10.6 15.1 16.7 

ICL 74.8 93.8 98.7 

ICT 83.3 95.2 98.2 

Table 3. Percentage of success for surface. 

Points in Second Data 5 7 9 

ICP 3.1 2.1 3.5 

ICL 43.5 64.8 92 

ICT 52.6 75.1 93.6 

It can be see from the figures tha t  the ICL and the I C T  algori thm are much less sensit ive to the 

ini t ia l  or ienta t ions  of the  object .  In all cases, the percentage of success is more t h a n  70 for line 

segments  and curve with the  ICL and  the ICT  algori thms compared with less t h a n  20 percent  

of success with the ICL algorithm. The  figures in the table also show tha t  with the increase of 

n u m b e r  of points  in the  second da ta  sets, the ICL and the I C T  become more and more robust ,  

while there is no such sign for the ICP algorithm. 

Table 4. Difference in rotation, translation, and distance for line segments with 
4 points in the test data set. 

Mean Std 

Rotation Translation Distance Rotation Translation Distance 

ICP 1.6626 0.8648 1.6755 1.2116 0.7507 1.3280 

ICL 0.1253 0.1177 0.2219 0.4234 0.2752 0.2630 

ICT 0.1271 0.1411 0.4071 0.0739 0.0536 0.1282 

Table 5. Difference in rotation, translation, and distance for line segments with 
5 points in the test data set. 

Mean Dev 

Rotation Translation Distance Rotation Translation Distance 

ICP 1.6995 0.8022 1.9817 1.2215 0.7215 1.4866 

ICL 0.2091 0.1675 0.3550 0.6382 0.4082 0.6115 

ICT 0.1391 0.1497 0.5039 0.0544 0.0563 0:1650 
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Table 6. Difference in rotation, translation, and distance for line segments with 
6 points in the test da ta  set. 

ICP 

ICL 

ICT 

Mean Dev 

Rotat ion Translation Distance Rotation Translation Distance 

2.0121 1.0921 3.0404 1.0776 0.7007 1.1353 

0.1861 0.1484 1.0994 0.6016 0.3727 0.5039 

0.1036 0.1388 1.3265 0.0639 0.0445 0.1370 

Table 7. Difference in rotation, translation, and distance for curve with 4 points in 
the test  da ta  set. 

ICP 

ICL 

ICT 

Mean Dev 

Rotat ion Translation Distance Rotat ion Translation Distance 

2.0372 

0.6733 

0.3409 

5.1269 

1.6610 

0.7728 

3.3219 

1.4082 

0.7065 

1.1156 3.3631 

1.0407 2.4570 

0.8503 1.9574 

2.0127 

1.5658 

1.5621 

Table 8. Difference in rotation, translation, and distance for curve with 5 points in 
the test  da ta  set. 

Mean Dev 

Rotat ion Translation Distance Rotat ion Translation Distance 

ICP 1.9769 

ICL 0.4656 

ICT 0.0816 

4.9529 

1.0212 

0.1876 

5.0027 

1.3700 

0.7006 

1.1702 3.3979 

0.9080 2.3405 

0.2118 0.4901 

3.0511 

1.7400 

1.0160 

Table 9. Difference in rotation, translation, and distance for curve with 6 points in 
the test  da ta  set. 

1185 

Mean Dev 

Rotat ion Translation Distance Rotat ion Translation Distance 

ICP 1.2347 3.7532 4.1150 1.1352 3.4012 2.5323 

ICL 0.1366 0.2655 0.8782 0.3423 0.9151 1.1480 

ICT 0.0751 0.1666 0.8626 0.0814 0.2128 0.9346 

Table 10. Difference in rotation, translation, and distance for surface with 5 points 
in the  test  da ta  set. 

Mean Dev 

Rotat ion Translation Distance Rotat ion Translation Distance 

ICP 2.1157 2.5736 4.0252 0.8368 1.5330 1.3005 

ICL 0.6150 1.3876 2.9965 0.2207 0.3765 0.6095 

ICT 0.6751 0.9171 0.9749 0.8347 1.3943 0.1733 

T h e  r o b u s t n e s s  o f  t h e  I C L  a n d  I C T  a l g o r i t h m s  c a n  a l so  b e  s h o w n  b y  c o m p u t i n g  t h e  a v e r a g e  

e r ro r s ,  b e t w e e n  t r u e  t r a n s f o r m a t i o n  a n d  e s t i m a t e d  t r a n s f o r m a t i o n  as  wel l  as  e r r o r s  in  o b j e c t  

m a t c h i n g .  T a b l e s  4 - 1 2  s h o w  t h a t  t h e  a v e r a g e  e r r o r s  a n d  t h e  r e l e v a n t  s t a n d a r d  d e v i a t i o n s  for  

b o t h  I C L  a n d  I C T  a l g o r i t h m s  a r e  m u c h  s m a l l e r  t h a n  t h o s e  o b t a i n e d  w i t h  I C P  a l g o r i t h m .  

T h e  I C L  a n d  t h e  I C T  a l g o r i t h m s  a r e  d e s i g n e d  for  p r o b l e m s  w h e r e  o n l y  v e r y  few p o i n t s  in  

t h e  i n t r a o p e r a t i v e  d a t a  se t  a r e  used ,  n o r m a l l y  b e t w e e n  4 - 1 0 ,  w h i l e  t h e  p o i n t s  in  p r e o p e r a t i v e  
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Table 11. Difference in rotation, translation, and distance for surface with 7 points 
in the test data set. 

ICP 

ICL 

ICT 

Mean Dev 

Rotation Translation Distance Rotation Translation Distance 

2.2706 

0.5996 

0.3100 

2.9904 3.4057 

0.6705 1.7966 

0.5402 0.9695 

0.8760 

0.8221 

0.6925 

1.9573 

0.2151 

1.1445 

1.3736 

0.6559 

0.3149 

Table 12. Difference in rotation, translation, and distance for surface with 9 points 
in the test data set. 

Mean Dev 

Rotation Translation Distance Rotation Translation Distance 

ICP 2.3007 2.9269 4.5968 1.8298 3.0929 1.5027 

ICL 0.1116 0.1506 2.0263 0.1184 0.0640 0.5962 

1CT 0.2065 0.2761 2.8030 0.1009 0.0822 1.0202 

da ta  can be huge so that  the object surface can be fully described by the data. Thus, it is 

natural  to ask whether the ICL and the ICT  algorithms are feasible for this problem in practice 

as its computat ion complexity will be O(NM 2) in searching the closest line segments for the 
ICL algorithm and O(NM 3) in searching the closest triangle patches for the ICT  algorithm. 

Generally speaking, the ICL and the ICT  algorithms should not be directly applied to the data. 
Some preprocessing for preoperative data  is needed. For example, the geometric invariants under 
rotation and translation can be considered to remove those unlikely pairs of line segments and 

triangle patches. Before applying the ICL algorithm, we could first select possible line segments 
in the preoperative data  by considering whether a line segment has similar length to some line 
segment in the intraoperative data. Let P1, P2 be two points in the intraoperative data, and let 

their corresponding position in preoperative space be Q1, Q2- If  the maximum distance between 

the neighboring elements in the preoperative data is 5, then the difference between NP2 - Pill 

and IIQ2 - Q l l l  cannot be larger than 25. In this way, the number of line segments considered 
in the ICL will be greatly reduced. As the triangle patch algorithm provides more geometric 
invariants, more iliformation can be used to select the possible triangle patches used in the ICT  
algorithm. This not only solves the problem of the feasibility in using the ICL algorithm and the 
ICT  algorithm, but also increases the robustness of these two t~lgorithms. 

As far as the computing t ime is concerned, it depends not ~mly on the size of the da ta  sets, 
but also on their quality. The total  computat ion t ime consists of the t ime used for selecting the 
possible line segments (or triangle patches) and the time used to est imate the t ransformation 
based on the selected line segments (or triangle patches). Increasing the number of points in 
matching data  sets will only increase the time used for selecting the possible line segments (or 
triangle patches), but not necessarily the iteration times. When the number of points in the 

model da ta  set is not too large, the time used mainly depends on the convergence speed. But  
for large model data  set, the computation speed will be determined mainly by the t ime used for 
selecting possible line segments (or triangle patches). As for the ICT  algorithm, the computat ion 
t ime really depends on the value of the threshold for selecting the possible triangle patches. A 
big threshold may result in thousands of triangle patches being selected and it may take hours 
to finish the matching process. The number of triangle patches selected for an appropriate  
threshold should be around 512 times the number of triangle patches selected from the second 
da ta  sets. Figures 4 and 5 show the computat ion times in using the ICL and the ICT  algorithms 
to match two data  sets from a curve, where N represents the number of points in the second da ta  
set. The code is written in C + +  and is run under Microsoft Windows NT with a CELERON 
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Figure 4. Computation time vs. the number of points in model data for the ICL 
algorithm. 
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Figure 5. Computation time vs. the number of points in model data for the ICT 
algorithm. 

400 MHz processor .  As can be seen, it  uses less t h a n  a minu te  to  m a t c h  two d a t a  sets  for t he  ICL 

a l g o r i t h m  wi th  the  number  of po in ts  in mode l  d a t a  ranging  from 100-1000. W h e n  a p p l y i n g  the  

I C T  a l g o r i t h m  to the  s ame  d a t a  sets,  i ts  speed  is not  as slow as expec ted ,  as we can see from the  

figure. However ,  if we ignore the  select ing procedure ,  it  does  t ake  a few hours  to  e s t ab l i sh  t he  

m a t c h  when  the  number  of po in ts  in the  model  d a t a  is larger  t h a n  700. T h e  good  th ing  a b o u t  t he  

I C T  and  the  ICL  a lgor i thms  is t h a t  t hey  can sti l l  give good  e s t ima te s  even if the  mode l  d a t a  set 

is a b i t  sparse ,  while  the  I C P  cannot .  Therefore ,  we can first use t he  I C T  or the  ICL  a l g o r i t h m  

to find a good  in i t ia l  so lu t ion  (one or two i te ra t ions)  wi th  a subse t  of mode l  da ta .  Th is  in i t ia l  

can  then  be fur ther  t u n e d  by  the  ICP  a lgor i thm.  
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