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a b s t r a c t

A simplified strategy based on the interaction energy integral is implemented in the finite element frame-
work to evaluate mixed mode Stress Intensity Factors (SIFs) in 3D non-planar cracks. The proposed
approach does not require any a priori information about crack front and crack surface curvatures, there-
fore different arbitrary non-planar cracks can be easily investigated. In particular, both conical and lens-
shaped cracks in homogeneous materials are considered as case studies in order to demonstrate the accu-
racy of the present approach. Finally, the computational strategy is extended to Functionally Graded
Materials (FGMs) and the effect of graded material properties (Young’s modulus and Poisson’s ratio)
on the SIFs is studied in detail.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The impact of a small hard object on the surface of brittle mate-
rials usually leads to the formation of ring cracks and to the occur-
rence of a conical fracture proceeding downward from the
damaged area (Mencik, 1996). Conical cracks also arise in response
to indentation loading (Gogotsi, 2009). Due to complexity of non-
planar cracks, the analytical solutions for fracture parameters
(e.g. SIFs) are limited to some special cases, and therefore addi-
tional studies for cracks of general curved shapes are needed.
Sládek and Sládek (1983) derived boundary integral solutions to
crack problems with cylindrical and spherical crack surfaces. Forth
and Keat (1996) obtained some solutions to non-planar crack prob-
lems using the surface integral method. As an alterative, Chang and
Wu (2007) computed mixed mode SIFs for 3D non-planar cracks by
modifying the concept of the Jk and GIII integrals.

On the other hand, the interaction energy integral allows to
make accurate and robust estimates of stress intensity factors.
It is derived from the J-integral by considering a composition
of two admissible states (Yau et al., 1980). In particular, convert-
ing the contour interaction integral to a finite domain surround-
ing the crack front, singular elements are removed from
numerical computation (Nikishkov and Atluri, 1987). As a conse-
quence, this approach does not require to accurately capture sin-
gular fields in the vicinity of crack tip, moreover, it can be easily
introduced in the finite element context. Gosz and Moran (2002)
ll rights reserved.
adopted the interaction integral method to study 3D non-planar
cracks in homogeneous materials. In order to define auxiliary
fields at integration points for curved non-planar cracks, they
employed a curvilinear coordinate system located at integration
points. Recently Shaghaghi et al. (submitted for publication) suc-
cessfully extended the procedure proposed by Gosz and Moran
(2002) to 3D non-planar cracks in graded solids. Note that this
topic was fairly unexplored because earlier works focused on
3D planar cracks only (Yu et al., 2010; Walters et al., 2004,
2006; Yildirim et al., 2005; Ayhan, 2009, 2007). However, it
was observed in Gosz and Moran (2002) that by imposing aux-
iliary fields in curvilinear coordinate system the auxiliary strain
field is not symmetric gradient of auxiliary displacement field
and auxiliary stress field is not in equilibrium. Hence special care
should be devoted to compensate the influence of crack curva-
ture. For this reason, analytical equations for crack front and
crack surface are required to find gradient of auxiliary displace-
ment field, divergence of auxiliary stress field and location of
integration points with respect to crack front. Although the pre-
vious method has been successfully applied to determine SIFs in
homogeneous and FGM materials, in the finite element context it
would be more convenient to develop a computational proce-
dure which requires reduced a priori information regarding crack
front and crack surface. In such a way any 3D non-planar cracks
could be analyzed within the same numerical framework.

Therefore, the aim of the present work is to develop an im-
proved technique, based on the interaction integral in domain
form, for computation of mixed mode SIFs along 3D curved
non-planar cracks. In addition, the proposed procedure will
be also extended to graded materials. To demonstrate the
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capabilities of the present approach, a conical crack in homoge-
neous material is firstly considered. The results obtained are in
turn compared with those provided by ABAQUS. In order to as-
sess the advantages introduced with respect to previous related
methods, the conical crack is also analyzed using the approach
proposed by Gosz and Moran (2002), Shaghaghi et al. (submitted
for publication). To this aim the contribution of the different
terms involved to account for the influence of crack curvature
are compared. In addition, the case of a lens-shaped crack, for
which an analytical solution for SIFs do exist, is also examined.
Finally, both example are studied considering graded material
properties and the influence of gradation of Young’s modulus
and Poisson’s ratio on SIFs is investigated.

2. Interaction integral in domain form

Interaction energy integral is a two state integral which al-
lows the stress intensity factor to be computed independently
by superimposing suitable auxiliary fields to the actual fields.
Actual fields are those obtained from finite element analysis
and auxiliary fields are chosen to be asymptotic crack tip solu-
tions Williams, 1957. So far this approach has been employed
by several authors to study 2D and 3D planar cracks for homo-
geneous and graded materials Walters et al., 2005, 2006. In prac-
tice, it is more efficient to express the crack tip contour integral
as a domain integral (Nikishkov and Atluri, 1987). This approach
removes the need to precisely capture the details of the singular
fields near the crack tip and also it is well suited to be imple-
mented in the finite element context. For 3D non-planar cracks
in homogeneous solids, Gosz and Moran (2002) proposed the
interaction integral in domain form in conjunction with curvilin-
ear coordinate systems.

Let us consider a point s along the front of an arbitrary shaped
crack, as shown in Fig. 1(a). Following the works by Gosz and Mor-
an (2002) the interaction integral over a finite domain V, neglecting
the surface integrals, is given as:

Jð1;2ÞðsÞ ¼ �1
c

Z
V

trðHð1;2Þ � ~rqÞ þ ~r �Hð1;2Þ � q
h i

dV
� �

ð1Þ

with

c ¼
Z Lc

2

�Lc
2

DaðnÞdn

where q is a sufficiently smooth vector field in V, Da(n) is the mag-
nitude of the crack advance at crack front segment Lc and n repre-
sents coordinate along crack front, as shown in Fig. 1(b). Tensor
H(1,2) and its divergence in Cartesian coordinate system are given
as follows:
1X

2X

3X

Crack front

Crack surface

S

(a)
Fig. 1. (a) Finite domain V along curved non-planar crack;
Hð1;2Þlj ¼ rð1Þmne
ð2Þ
mndlj � rð1Þij uð2Þi;l þ rð2Þij uð1Þi;l

� �
ð2Þ

Hð1;2Þlj;j ¼ CmnpqðXÞ;leð2Þpq eð1Þmn þ rð1Þmn eð2Þmn � uð2Þm;n

� �
;l
� rð2Þmn;nuð1Þm;l ð3Þ

Cmnpq(X) is the material constitutive tensor which is spatially vary-
ing for graded materials. Superscripts (1) and (2) refer to the actual
and auxiliary fields, respectively. The interaction integral for 3D
FGMs in Linear Elastic Fracture Mechanics (LEFM) is related to SIFs
by the following equation (Walters et al., 2006):

Jð1;2ÞðsÞ ¼ 2ð1� mðsÞ2Þ
EðsÞ Kð1ÞI Kð2ÞI þ Kð1ÞII Kð2ÞII

� �

þ 2ð1þ mðsÞÞ
EðsÞ Kð1ÞIII Kð2ÞIII ð4Þ

In Eq. (4) the quantities Kð1ÞI ;Kð1ÞII ;K
ð1Þ
III

� �
and Kð2ÞI ;Kð2ÞII ;K

ð2Þ
III

� �
refer to

mixed mode SIFs for actual and auxiliary fields, respectively. E = E(s)
and m = m(s) are Young’s modulus and Poisson’s ratio at crack
front location s. In order to extract SIFs for actual state, i.e. Kð1ÞI ,
the counterpart SIF for auxiliary state is set nonzero, i.e.

Kð2ÞI ¼ 1; Kð2ÞII ¼ 0; Kð2ÞIII ¼ 0
� �

, and then Eq. (4) yields:

Kð1ÞI ¼
E

2 1� m2ð Þ J
1;2ð Þ sð Þ ð5Þ

In what follows the numerical computation of interaction integral
and SIFs is addressed.

3. Finite element implementation

In this work the finite element simulations are carried out using
the finite element package ABAQUS. In particular isoparametric
graded finite elements are implemented through the User Element
(UEL) capabilities available in ABAQUS. The graded elements incor-
porates the material property gradient at the size scale of the ele-
ment and it is based on the general framework proposed in Kim
and Paulino (2002). Details on the implementation of the isopara-
metric graded finite element are provided in Shaghaghi et al.
(2010b). In particular, it was shown that 20-noded brick elements
with 2 � 2 � 2 Gauss quadrature rule are well suited for modelling
3D FGMs. In the finite element setting, the finite domain V, over
which the interaction integral is defined, represents some ele-
ments surrounding the crack tip at crack front location s. The point
s coincides with a node in the finite element mesh. According to
Fig. 2(a) this node may be either a midside node or a corner node.
For the case of midside node, the finite domain V is assumed to
have one element along the crack front and some rings of elements
in radial direction, see Fig. 2(b). However for corner node two ele-
ments along the crack front are considered, see Fig. 2(c). The inter-
action integral can be now rewritten in reference to the above
Domain V

s

a( )

(b)

Lc

(b) variation of Da(n) along segment Lc at crack front.



S S

Corner node

Mid node
Crack front

(a) (b) (c)
Fig. 2. Details of the finite element mesh corresponding to the finite domain V over which the domain integral is defined. (a) Cross section of the mesh for a generic finite
domain (the dashed line represents the crack front); (b) finite domain when point s corresponds to a midside node and (c) to a corner node. Note that the effective number of
rings of elements depend on the actual domain size.

210 R. Ghajar et al. / International Journal of Solids and Structures 48 (2011) 208–216
mentioned finite domain V and considering the Gauss-quadrature
scheme as follows:

�JðsÞ ¼
Xelems

V¼1

X8

p¼1

rð1Þmne
ð2Þ
mndlj � rð1Þij uð2Þi;l þ rð2Þij uð1Þi;l

� �� �
ql;j

h i
p

det J wp

þ
Xelems

V¼1

X8

p¼1

CmnpqðXÞ;leð2Þpq eð1Þmn þ rð1Þmn eð2Þmn � uð2Þm;n

� �
;l

��

�rð2Þmn;nuð1Þm;l

�
ql

�
p

det J wp ð6Þ

where the summation is done over the eight integration points per-
taining to the elements included in domain V. Parameters wp and
det J denote the corresponding weight for integration points and
determinant of the coordinate Jacobian matrix, respectively. Actual
fields are the solution of finite element analysis in ABAQUS. There-
fore to compute Eq. (6) it is required to define auxiliary fields as
well as the components of vector field q and their derivatives ql,j

at integration points. Note that all quantities in Eq. (6) are defined
with respect to a fixed Cartesian coordinate system. In what follows
the definition of auxiliary fields and vector q are addressed to eval-
uate Eq. (6).

3.1. Constructing auxiliary fields

Gosz and Moran (2002) studied the SIFs for 3D non-planar
cracks in homogeneous materials and, in order to set-up auxiliary
fields at integration points, a curvilinear coordinate system was
employed. In particular, auxiliary fields were constructed consider-
ing Williams solution for 2D asymptotic fields in the vicinity of a
crack. However, it was observed in Gosz and Moran (2002), that
by imposing auxiliary fields in curvilinear coordinate system the
auxiliary strain field is not symmetric gradient of auxiliary dis-
placement field and auxiliary stress field is not in equilibrium.
Therefore, much attention must be paid to compensate the influ-
ence of crack curvature. It was shown that analytical equations
for crack front and crack surface are required to find gradient of
auxiliary displacement field, divergence of auxiliary stress field
as well as to locate integration points with respect to crack front.
However, Walters et al. (2005) observed that the values of r and
h computed using the above mentioned analytical equations can
yield incorrect position of integration points if the analytical crack
front extends to some rings of elements. This problem leads to aux-
iliary-fields inconsistent with actual fields generated by the finite
element mesh. For this reason, in studying general 3D non-planar
cracks, it would be beneficial to locate position of integration
points based on finite element mesh and regardless of analytical
equations for crack front and crack surface. For this reason, in the
present work a procedure able to locate integration points with
respect to crack front for 3D non-planar crack has been developed.
In particular, the procedure is an extension of the work proposed
by Walters et al. (2005) for 3D planar cracks.

The node s on crack front in Fig. 3(a) represents a midnode to
compute SIFs. The procedure requires a local coordinate system
at this point with unit basis �ei and coordinates xi(i = 1,2,3). The
unit basis �e3 and �e2 are directed toward the tangent vector to the
crack front and normal vector to the crack surface at point s,
respectively. Finally, the unit basis �e1 is chosen so that a right-
handed coordinate system is formed. Note that for all approaches
based on J-integral, it is required to set up unit basis �e1. In
Fig. 3(a) the integration point p and two neighboring nodes a and
b are also depicted. Consider the case in which the integration
point p is on the left side of node s, let’s say close to node a. Now
draw a vector with starting point at node s and ending point at
node a; sa

!
. Then construct a plane with normal n̂ where:

n̂ ¼
�e1 � sa

!

k sa
!
k

ð7Þ

The integration point p is now projected to this plane, point p0. The
minimum distance between point p0 and edge sa is given as:

p0M ¼
sp0
!
� sa
!

����
����

k sa
!
k

ð8Þ

where M represents a location on edge sa closest to point p0. From

Fig. 3(b) it is concluded that r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0MÞ2 þ ðpp0Þ2

q
. Actual fields ob-

tained by FE analysis at the upper and lower surfaces of crack faces
are discontinuous. The auxiliary fields have to capture these discon-
tinuities in order to ensure consistency with actual fields at crack
surfaces. Hence the major issue for the accurate computation of h
arises because of the discontinuities on auxiliary fields at
h = ±180�. In the present work, the Fortran command ATAN2() was
used in order to differentiate between quadrants. In quadrants I
and II h varies between 0� and 180� and in quadrants III and IV
the range of h is [0 � �180]�, see Fig. 3(c). Therefore h has been eval-
uated as ATAN2 (PP0,P0M). Having defined r and h, the auxiliary dis-
placement, �uð2Þ, and the auxiliary strain fields, �eð2Þ, in local
coordinate system are given as:

�uð2Þj ¼
Kð2ÞI

2l

ffiffiffiffiffiffiffi
r

2p

r
gI

jðh; mÞ þ
Kð2ÞII

2l

ffiffiffiffiffiffiffi
r

2p

r
gII

j ðh; mÞ þ
Kð2ÞIII

2l

ffiffiffiffiffiffiffi
r

2p

r
gIII

j ðh; mÞ ð9Þ

�eð2Þij ¼
1
2

@�uð2Þi

@xj
þ
@�uð2Þj

@xi

 !
ð10Þ

where gj(h,m) is the angular function (Walters et al., 2006). In the
case of FGMs we should compensate the effect of material
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Fig. 3. (a) Local coordinate system at mid node; (b) details on the computation of r and h; (c) schematic depiction of the quadrants I–IV.
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gradation. In this work the auxiliary stress field is related to the
auxiliary strain field through the constitutive tensor as:

�rð2Þij ¼ CijklðXÞ�eð2Þkl ð11Þ

To be consistent with actual fields, the auxiliary fields are trans-
formed to Cartesian coordinate system. Through the use of a trans-
formation tensor, Q, the auxiliary stress, strain and displacement
fields, (r,e,u), are given by:

e ¼ Q T�eQ

r ¼ Q T �rQ

u ¼ Q T �u

ð12Þ

As the auxiliary fields are now referred to a fix local coordinate sys-
tem, it is observed that strain–displacement compatibility is satis-
fied and auxiliary stress field satisfies equilibrium. Therefore for
homogenous solids the terms rð2Þmn;n and eð2Þmn � uð2Þm;n

� �
in Eqs. (3)

and (6) vanish. Note that for a spatially varying constitutive tensor
(graded material properties) the auxiliary stress field is not in equi-
librium and has to be considered.

3.2. Evaluating q function

Fig. 4(a) shows the finite domain V when point s, at crack front,
coincides with a midside node. Specifically, the domain V spans
one element in the finite element mesh. Let consider a cross sec-
tion of the domain V in the �e1 � �e3 plane, see Fig. 4(b). We denote
Da(n) the values of the �q function along crack front segment Lc (in
the �e1-direction). The value of �q for the nodes indicated by � is zero
and the value is unity for the nodes indicated by �. As a conse-
quence, for an element pertaining to the finite domain V, the �q
function at a generic node a, with respect to a local coordinate sys-
tem, is given as:
S S
Crack front

a( )1e

1e2e

3e

3e

(a) (b)

2
cL

2
cL

Fig. 4. (a) Finite element discretization of domain V in the case of midside node; (b)
variation of the q-function along the crack front segment Lc.
�qa
l ¼

¼ 0 for nodes on the boundary of domain V

¼ �e1 for inner nodes

	
ð13Þ

where �qa
l is the components of �q at node a in local coordinate sys-

tem. Then vector �q is transformed to Cartesian coordinate system,
q, as follows:

q ¼ Q T �q ð14Þ

Consistent with isoparametric finite element formulation, ql and ql,j

at integration points in Cartesian system are interpolated as
follows:

ql ¼
X20

a¼1

Naqa
l

ql;j ¼
X20

a¼1

Na;jqa
l

ð15Þ

The shape of the Da(n) at crack front segment Lc for a midside node
basically does not contribute to the computation of ql and ql,j at
integration points. The shape of the Da(n) only affects the integrand
c in Eq. (1). Let’s consider for Da(n) the following form:

DaðnÞ ¼ 1� 2
Lc

n












c

ð16Þ

Da(n) stands for a quadratic shape when c = 2 (Nikishkov and Atluri,
1987). In this work, by examining several problems, it was observed
that value of 2.06 for c provides accurate results. This value is taken
constant for all the problems considered here. The integrand c in Eq.
(1) is then evaluated as:

c ¼
Z Lc

2

�Lc
2

DaðnÞdn ¼ 1:01� 2
3

Lc ð17Þ

For the finite domain V over two elements at corner node a similar
approach is implemented.

3.3. Accounting for graded material properties

For graded materials the terms including derivatives of material
constitutive tensor, Cmnpq(X),l, in Eq. (6) contributes to the interac-
tion integral. For isotropic elastic FGMs, the constitutive tensor is
given as:

CmnpqðXÞ ¼ kðXÞdmndpq þ lðXÞðdmpdnq þ dmqdnpÞ ð18Þ

where dmn is the Kronecker delta, and l(X) and k(X) are spatially
varying Lame’ constants defined as follows:

kðXÞ ¼ EðXÞmðXÞ
ð1þ mðXÞÞð1� 2mðXÞÞ ; lðXÞ ¼ EðXÞ

2ð1þ mðXÞÞ ð19Þ

E(X) and m(X) are spatially varying Young’s modulus and Poisson’s
ratio, respectively. The derivative of constitutive tensor in Cartesian
coordinate system is given as:

CmnpqðXÞ;l ¼
@CmnpqðXÞ
@EðXÞ

@EðXÞ
@Xl

þ @CmnpqðXÞ
@mðXÞ

@mðXÞ
@Xl

; l ¼ 1;2;3 ð20Þ
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Fig. 5. Schematic depiction of a conical crack in an infinite solid half-space.
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where

@CmnpqðXÞ
@EðXÞ ¼ 1

EðXÞCmnpqðXÞ ð21Þ

@CmnpqðXÞ
@m Xð Þ ¼ EðXÞð1þ 2mðXÞ2Þ

½ð1þ mðXÞÞð1� 2mðXÞÞ�2
dmndpq

� EðXÞ
2ð1þ mðXÞÞ2

ðdmpdnq þ dmqdnpÞ ð22Þ

In the finite element formulation, material properties and their
derivatives at integration points are computed using isoparametric
interpolations (Li and Zou, 1998):

mðXÞ ¼
X20

I¼1

mINI;
@mðXÞ
@Xl

¼
X20

I¼1

mI
@NI

@Xl

EðXÞ ¼
X20

I¼1

EINI;
@EðXÞ
@Xl

¼
X20

I¼1

EI
@NI

@Xl

ð23Þ

where EI and mI are nodal values of the elastic properties and NI are
shape functions.

4. Numerical examples

The procedure outlined in the previous sections is now em-
ployed to compute mixed-mode SIFs along 3D non-planar cracks.
A conical crack is investigated to assess the capability of the pres-
ent approach for non-planar cracks. It is worth noting that this
problem geometry was also analyzed in ABAQUS1 (Hibbitt et al.,
2006). Furthermore a lens shaped crack is also considered to study
the influence of mesh refinement on the results.

4.1. Conical crack

Fig. 5 shows the problem of a conical crack in an infinite solid
half-space. The crack circumscribes a circle with a radius of 10
length units on the free surface and intersects the free surface at
45� and extends 15 length units into the solid domain. The applied
load is a static pressure with a magnitude of 10 force/length2 ap-
plied on the circular free surface of the block circumscribed by
the crack. The linear static structural analysis requires specification
of Young’s modulus, which is 30,000,000 units of force/length2, and
Poisson’s ratio, which is 0.3. Although the geometry and loading
condition are axisymmetric, the 3D model is investigated here to
demonstrate the capability of the present approach. The input file
employed for the simulation was retrieved from ABAQUS. The cor-
responding 3D domain discretized using 3D brick elements is
shown in Fig. 6(a). The mesh represents a quarter-symmetric seg-
ment of the problem domain with 9517 20-noded brick element
and 42,089 nodes. To minimize the influence of curvature on the
results and to obtain domain-independent results, a very refined
mesh was employed in ABAQUS; in particular 18 elements were in-
serted along crack front and the crack is surrounded by 16 sectors
of elements as shown in Fig. 6(b). Elements at crack front have
quarter-point nodes and collapsed faces and are of size Le/a = 1/
50, with Le being the size of elements incident at the crack front.

The values of KI, KII and J-integral at a location halfway the crack
front obtained from this FE model are reported in ABAQUS (Hibbitt
et al., 2006). The domain independency of the results is assessed by
evaluating fracture parameters in four domains each correspond-
ing to the ring of elements taken outward radially from the crack
tip. While there is no analytical solution available for comparison,
ABAQUS reported the results obtained from an axisymmetric anal-
ysis with extreme mesh refinement as reference (these values are
1 ABAQUS 6.7 example library.
reported in parentheses in Table 1). This example is considered
herein as a case of study to obtain fracture parameters using the
present approach. The results are tabulated in Table 1.

The results obtained using the present approach are in good
agreement with the reference values that are shown in parenthe-
sis. Moreover, results accuracy and domain independency are
higher than those obtained using ABAQUS. Gosz and Moran
(2002) employed curvilinear coordinate system to construct auxil-
iary field along curved cracks. They emphasized the importance of
including extra terms in domain integral to account for the influ-
ence of crack curvature. Otherwise the domain integral would be
domain dependant. In the present approach a local coordinate
system, fixed on crack front, is employed to define auxiliary fields.
To examine the contribution of the extra terms in domain integral,
the conical crack is studied considering (1) curvilinear coordinate
system, CCS, and (2) local coordinate system, LCS. The interaction
integral can be rewritten as follows:

Jð1;2ÞðsÞ ¼ Jð1;2Þ1 ðsÞ þ Jð1;2Þ2 ðsÞ þ Jð1;2Þ3 ðsÞ þ Jð1;2Þ4 ðsÞ

Jð1;2Þ1 ðsÞ ¼ �1
c

Z
V

rð1Þmne
ð2Þ
mndlj � rð1Þij uð2Þi;l þ rð2Þij uð1Þi;l

� �h i
dV

Jð1;2Þ2 ðsÞ ¼ �1
c

Z
V

CmnpqðXÞ;leð2Þpq eð1Þmnql

h i
dV

Jð1;2Þ3 ðsÞ ¼ �1
c

Z
V

rð1Þmn eð2Þmn � uð2Þm;n

� �
;l
ql

� �
dV

Jð1;2Þ4 ðsÞ ¼ �1
c

Z
V
�rð2Þmn;nuð1Þm;lql

h i
dV

ð24Þ

The term Jð1;2Þ2 ðsÞ contributes in the case of graded material proper-
ties only. For homogeneous materials, the terms Jð1;2Þ3 ðsÞ and Jð1;2Þ4 ðsÞ
reflect the influence of crack curvature. Stress intensity factors are
computed here with both approaches by considering and neglecting
the extra terms as:

Kð1Þm j1 ¼
EðsÞ

2ð1� mðsÞ2Þ
Jð1;2Þ1 ðsÞ

Kð1Þm j2 ¼
EðsÞ

2ð1� mðsÞ2Þ
Jð1;2Þ2 ðsÞ þ Jð1;2Þ3 ðsÞ þ Jð1;2Þ4 ðsÞ
h i

Kð1Þm ¼ Kð1Þm j1 þ Kð1Þm j2

ð25Þ

where m = I and II. The results are tabulated in Table 2. It is clear
that in Kð1ÞI j2 the terms Jð1;2Þ3 ðsÞ þ Jð1;2Þ4 ðsÞ must be included for the
numerical computation of domain integrals using curvilinear coor-
dinate system to ensure accuracy and domain independency. How-
ever these terms vanish when local coordinate system is employed.
Thereby the present approach provides accurate results with less
computation costs and prior efforts.
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Crack surface
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Domain sizeMesh details:
9517 C3D20 elements
47089 nodes

Fig. 6. Details of the finite element model of a conical crack. (a) 3D mesh employed to model the conical crack; (b) details of the finite element mesh at crack tip.

Table 1
Comparison of present approach with Abaqus.

Fracture
parameters

Approach Domain1 Domain2 Domain3 Domain4

KI(=0.491) Present 0.492 0.494 0.493 0.493
Abaqus 0.501 0.503 0.502 0.500

KII(=2.03) Present 2.021 2.022 2.023 2.024
Abaqus 2.029 2.018 2.004 1.987

J(=1.33)(�10�7) Present 1.337 1.338 1.339 1.338
Abaqus 1.334 1.336 1.337 1.337

Table 2
Values obtained for SIFs considering curvilinear (CCS) and local (LCS) coordinate
systems.

SIFs Approach Components Domain1 Domain2 Domain3 Domain4

KI(=0.491) LCS Kð1ÞI j1 0.492 0.493 0.493 0.493

Kð1ÞI j2 0.000 0.000 0.000 0.000

Kð1ÞI
0.492 0.493 0.493 0.493

CCS Kð1ÞI j1 0.489 0.485 0.481 0.476

Kð1ÞI j2 0.003 0.007 0.012 0.016

Kð1ÞI
0.492 0.492 0.493 0.492

KII(=2.03) LCS Kð1ÞII j1 2.021 2.023 2.023 2.024

Kð1ÞII j2 0.000 0.000 0.000 0.000

Kð1ÞII
2.021 2.023 2.023 2.024

CCS Kð1ÞII j1 2.021 2.016 2.010 2.003

Kð1ÞII j2 0.006 0.011 0.017 0.024

Kð1ÞII
2.027 2.027 2.027 2.027

E

E

E( )Y

E

1

ct 2

1

ct 2

Y
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Fig. 7. Material gradation profile for a conical crack in an infinite solid half-space.
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The stress intensity factors are now examined for a conical
crack embedded in a graded solids using the present approach.
Elastic properties are assumed to vary exponentially in Y direction
to a depth y2 = 20 as shown in Fig. 7. Specifically:

EðyÞ ¼ Ectebðy�ycÞ; b ¼ � 1
y2

ln
E1

E2

� �

mðyÞ ¼ mcteb0 ðy�yc Þ; b0 ¼ � 1
y2

ln
m1

m2

� � ð26Þ

where b and b0 are gradation indexes and yc denotes the Y coordinate
of crack front. Ect and mct represent the values of elastic properties at
crack tip. Tables 3 and 4 illustrate the interaction integral compo-
nents for Kð1ÞI and Kð1ÞII with respect to different values of E1/E2. Pois-
son’s ratio is taken constant 0.3. It can be seen from Tables 3 and 4
that for E1/E2 = 1 only term Jð1;2Þ1 ðsÞ contributes to interaction integral
in determining Kð1ÞI and Kð1ÞII . The values of SIFs depend on material
gradation and domain size. For Kð1ÞI the contribution of term Jð1;2Þ4 ðsÞ
is superior to the contribution of Jð1;2Þ2 ðsÞ. However for Kð1ÞII this trend
is inverted. It is also inferred that, for any gradation index, the inter-
action integral remains basically domain independent.

The trend of stress intensity factors versus different E1/E2 is
shown in Fig. 8. Poisson’s ratio is taken constant and equal to
0.3. The same calculation is carried out for graded Poisson’s ratio
and constant modulus of elasticity, E = 3e7. Fig. 9 depicts the trend
of SIFs versus different m1/m2. It is concluded that SIFs depend on
gradation of material properties. By increasing E1/E2 both Kð1ÞI

and Kð1ÞII increase. However when m1/m2 increases Kð1ÞII increases
and Kð1ÞI decreases.
4.2. Lens shaped crack

Fig. 10(a) illustrates a cylinder of radius r and height H with
an embedded lens-shaped crack whose surface geometry is



Table 3
Components of interaction integral (�10�8) for Kð1ÞI .

E1
E2

Domain Jð1;2Þ1 ðsÞ Jð1;2Þ2 ðsÞ Jð1;2Þ3 ðsÞ Jð1;2Þ4 ðsÞ J(1,2) (s) Kð1ÞI

0.5 1 0.758 0.003 0.000 �0.042 0.719 0.099
2 0.845 0.011 0.000 �0.139 0.717 0.099
3 0.949 0.022 0.000 �0.254 0.717 0.099
4 1.065 0.035 0.000 �0.383 0.717 0.099

0.75 1 2.294 0.000 0.000 �0.019 2.275 0.313
2 2.339 0.001 0.000 �0.065 2.276 0.313
3 2.391 0.003 0.000 �0.119 2.275 0.313
4 2.448 0.007 0.000 �0.180 2.275 0.313

1 1 3.579 0.000 0.000 0.000 3.579 0.492
2 3.582 0.000 0.000 0.000 3.582 0.493
3 3.582 0.000 0.000 0.000 3.582 0.493
4 3.583 0.000 0.000 0.000 3.583 0.493

1.5 1 5.702 0.004 0.000 0.034 5.740 0.789
2 5.623 0.010 0.000 0.113 5.746 0.790
3 5.526 0.014 0.000 0.207 5.746 0.790
4 5.417 0.016 0.000 0.313 5.746 0.790

2 1 7.451 0.010 0.000 0.064 7.524 1.035
2 7.296 0.027 0.000 0.210 7.533 1.036
3 7.108 0.040 0.000 0.386 7.534 1.036
4 6.899 0.049 0.000 0.585 7.534 1.036

Table 4
Components of interaction integral (�10�8) for Kð1ÞII .

E1
E2

Domain Jð1;2Þ1 ðsÞ Jð1;2Þ2 ðsÞ Jð1;2Þ3 ðsÞ Jð1;2Þ4 ðsÞ J(1,2)(s) Kð1ÞII

0.5 1 12.635 �0.071 0.000 0.016 12.580 1.730
2 12.770 �0.216 0.000 0.039 12.594 1.732
3 12.908 �0.364 0.000 0.054 12.598 1.732
4 13.054 �0.516 0.000 0.063 12.601 1.733

0.75 1 13.784 �0.032 0.000 0.006 13.759 1.892
2 13.855 �0.098 0.000 0.016 13.774 1.894
3 13.921 �0.164 0.000 0.021 13.778 1.894
4 13.990 �0.232 0.000 0.023 13.781 1.895

1 1 14.697 0.000 0.000 �0.001 14.696 2.021
2 14.715 0.000 0.000 �0.002 14.712 2.023
3 14.720 0.000 0.000 �0.003 14.717 2.024
4 14.723 0.000 0.000 �0.003 14.720 2.024

1.5 1 16.122 0.053 0.000 �0.014 16.162 2.222
2 16.050 0.161 0.000 �0.031 16.180 2.225
3 15.953 0.270 0.000 �0.038 16.185 2.225
4 15.846 0.380 0.000 �0.038 16.188 2.226

2 1 17.230 0.097 0.000 �0.024 17.304 2.379
2 17.082 0.294 0.000 �0.053 17.324 2.382
3 16.899 0.493 0.000 �0.063 17.329 2.383
4 16.699 0.694 0.000 �0.060 17.332 2.383

Fig. 8. SIFs versus E1/E2 for a conical crack in an infinite solid half-space.

Fig. 9. SIFs versus m1/m2 for a conical crack in an infinite solid half-space.
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characterized by radius R and angle a. In particular the geomet-
ric parameters of the model are given as follows: 2r/H = 1, 2r/
R = 10, R = 1 and a = p/4. The values of elastic parameters em-
ployed in the simulations are E = 68.9 GPa and m = 0.22. Analyti-
cal solutions (Martynenko and Ulitko, 1978) and numerical
data (Gosz and Moran, 2002) for SIFs are available for this prob-
lem geometry. Gosz and Moran (2002) used a finite element
mesh in which the characteristic length of the smallest elements
near the tip is R/500. They achieved accuracy with a maximum
error of 0.3% for Kð1ÞI and 5% for Kð1ÞII . For this crack Moës et al.
(2002) used coarse mesh with the characteristic length of the
smallest elements near the tip as R/20 and reported the values
of SIFs with 2% error for Kð1ÞI and 10% for Kð1ÞII . In practice it is
of interest to have acceptable results with less computation
costs. Here it is intended to study the influence of mesh size
and number of element along crack front on SIFs. Here the local
coordinate system is employed. Fig. 10(b) shows the finite ele-
ment discretization of the lens shaped crack. The percent error
of Kð1ÞI and Kð1ÞII with respect to analytical solution provided by
Martynenko and Ulitko (1978) are tabulated in Table 5 for differ-
ent Le and ncf. Le refers to the size of the smallest element inci-
dent at crack front, ncf refers to the number of element at crack
front. The reference values are 0.877 and 0.235 for Kð1ÞI and Kð1ÞII ,
respectively. It is inferred that even for a coarse mesh (Le = 0.04)
the error for Kð1ÞI is less than 1.6% and for Kð1ÞII less than 4%. By
reducing the Le, more accuracy is achieved. However the varia-
tion is negligible with respect to ncf. Now we define JK and JA

where JK denotes the J values estimated from stress intensity fac-
tors and JA denotes the J values estimated directly from J-integral.
The ratio Jk/JA for all cases deviates from unity 1.1% which is a
good check for numerical computation of interaction integral.

The effect of graded material properties on the SIFs of a lens
shaped crack in considered next. To this aim, the finite element dis-
cretization consists of 10 elements along crack front and Le = 0.015;
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Mesh details:
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9871 nodes

Fig. 10. (a) Characteristic geometrical features of the lens shaped crack; (b)
corresponding finite element mesh developed in ABAQUS.

Table 5
Influence of mesh refinement on SIFs. The percentage of error for Kð1ÞI and Kð1ÞII are
shown.

Le ncf Element Node Kð1ÞI Kð1ÞII
JK
JA

0.04 6 1182 5763 1.4 2.9 0.992
8 1632 7729 1.6 3.2 0.994

10 2120 9871 1.5 3.3 0.994

0.025 6 1404 6822 0.9 3.4 0.991
8 1728 8187 1.0 3.6 0.992

10 2240 10,419 1.1 3.7 0.992

0.015 6 1476 7166 0.6 3.5 0.990
8 1824 8621 0.8 3.7 0.991

10 2360 10,967 0.8 3.9 0.991

0.01 8 1920 9079 0.6 3.8 0.990
10 2480 11,515 0.7 4.0 0.991

0.005 12 2808 12,934 0.5 3.4 0.991
0.0025 14 3395 16,260 0.5 3.5 0.990

Fig. 11. Variation of KI with respect to gradation indexes for Young’s modulus and
Poisson’s ratio.

Fig. 12. Variation of KII with respect to gradation indexes for Young’s modulus and
Poisson’s ratio.
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a total of 2360 elements has been employed for the model.
Furthermore, exponential gradation in radial direction of both
Young’s modulus and Poisson’s ratio are considered as follows:

EðrÞ ¼ ELegr; g ¼ 1
R

Ln
ER

EL

� �

mðrÞ ¼ mLejr; j ¼ 1
R

Ln
mR

mL

� � ð27Þ

where g and j are gradation indexes for Young’s modulus and Pois-
son’s ratio and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Z2

p
. Note that EL and mL denote the values

assumed by the elastic properties on the axis of symmetry (r = 0),
while ER and mR represent the corresponding values at the outer sur-
face of the cylinder (r = R). The numerical computations have been
carried out considering different values of the gradation indexes.
The so obtained values of the mixed mode stress intensity factors
are reported in Figs. 11 and 12. Based on these results it is inferred
that material gradation do affect SIFs. Indeed, for this problem
geometry, we observe that the SIFs decrease if gradation indexes
increase.

5. Conclusion

In this work the interaction integral method was employed to
extract stress intensity factors along 3D non-planar cracks. In par-
ticular, in the present approach a fixed local coordinate system was
employed to define auxiliary fields. It was shown that by using a
fixed local coordinate system located at crack front some extra
terms embedded in the interaction integral can be neglected as
they do not provide contribution to the SIFs. However, when curvi-
linear coordinate system is employed, these terms should be in-
cluded to ensure accuracy and domain independency of
interaction integrals. The evaluation of these extra terms requires
analytical equations for crack front and surface. In the present ap-
proach, the locations of integration points can be determined with-
out the need to know the analytical equations for crack front and
crack surface. Therefore reduced computational efforts are re-
quired in the determination of the interaction integral. The pro-
posed approach has been validated comparing the results
obtained for 3D non-planar conical and lens-shaped cracks with
the corresponding reference solutions. Finally, the influence of
material gradation on SIFs was investigated and it was shown that
SIFs depend on gradation of both Young’s modulus and Poisson’s
ratio.
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