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are given. The constant variation formulae for singular fractional differential systems with
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1. Introduction

Recently, fractional differential systems have gained scholar’s attention [1–9]. In some practical systems, such as
economic systems, biological systems, space-light industry systems and so on, due to the transmission of the signal or the
mechanical transmission, we must study time delay [4,5,10–14]. In [13–17], we see that singular differential systems have
obtained considerable importance due to their applications in various sciences.
The systems we consider will be singular Caputo fractional differential systems with delay:{

E(cDαx(t)) = Ax(t)+ Bx(t − 1)+ f (t), t ≥ 0,
x(t) = ϕ(t), −1 ≤ t ≤ 0 (1)

and singular Riemann–Liouville fractional differential systems with delay{
E(Dαx(t)) = Ax(t)+ Bx(t − 1)+ f (t), t ≥ 0,
x(t) = ϕ(t), −1 ≤ t ≤ 0 (2)

where x(t) ∈ Rn is a state vector; A, B, E ∈ Rn×n are constant matrices; E ∈ Rn×n is a singular matrix; ϕ(t) is the initial
control function; 0 ≤ α < 1, f (t), ϕ(t) ∈ Rn; cDαx(t) denotes α order-Caputo fractional derivative; Dαx(t) denotes α
order-Riemann–Liouville fractional derivative.
This paper considers the Caputo singular fractional differential systems with delay and the Riemann–Liouville singular

fractional differential systems with delay. A new function α − δ function is defined. By the D−inverse matrix and α − δ
function, two fundamental solutions are given. The constant variation formulae for singular fractional differential systems
with delay are obtained.
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2. Preliminaries

Let us start with some definitions and preliminaries.

Definition 1. Riemann–Liouville’s fractional integral of order α > 0 for a function f : R+ → R is defined as

D−α f (t) =
1

Γ (α)

∫ t

0
(t − θ)α−1f (θ)dθ.

Definition 2. Caputo’s fractional derivative of order α (0 ≤ m ≤ α < m+ 1) for a function f : R+ → R is defined as

cDα f (t) =
1

Γ (m− α + 1)

∫ t

0

f (m+1)(θ)
(t − θ)α−m

dθ.

Definition 3. Riemann–Liouville’s fractional derivative of order α (0 ≤ m ≤ α < m + 1) for a function f : R+ → R is
defined as

Dα f (t) =
1

Γ (m− α + 1)

(
d
dt

)m+1 ∫ t

0

f (θ)
(t − θ)α−m

dθ.

Remark. From [6] we have that for 0 ≤ m ≤ α < m+ 1

Dα f (t)=c Dα f (t)+
m∑
k=0

f (k)(0)
Γ (1+ k− α)

tk−α.

Specially, when 0 ≤ α < 1,

Dα f (t) = cDα f (t)+
f (0)

Γ (1− α)
t−α.

From [1] we have that for 0 ≤ m ≤ α < m+ 1 the Laplace transformation of D−α f (t), cDα f (t) and Dα f (t).

L(D−α f (t)) = λ−αL[f (t)].

L(cDα f (t)) = λαL[f (t)] −
m∑
k=0

λα−k−1f (k)(0).

L(Dα f (t)) = λαL[f (t)] −
m∑
k=0

λk[Dα−k−1f (0)].

Specially, when 0 ≤ α < 1, we have

L(D−α f (t)) = λ−αL[f (t)].
L(cDα f (t)) = λαL[f (t)] − λα−1f (0).
L(Dα f (t)) = λαL[f (t)] − Dα−1f (0).

Definition 4. If det(λE − A) 6≡ 0, we call matrix couple (A, E) regular. If (A, E) is regular, we call system (1) regular.
From [1], it is evident that if (E, A) is regular, the system (1) is solvable.

From [11], we have

Lemma 1. For any square matrix E, the Drazin inverse matrix Ed exists and is unique, and if the Jordan normalized form is

E = T
(
J1 0
0 J0

)
T−1.

Here J0 is a nilpotent matrix, J1 and T is an invertible matrix. Then

Ed = T
(
J−11 0
0 0

)
T−1.
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3. Constant variation formula of system (1)

In this section we give the constant variation formula of the singular Caputo fractional differential systems with delay.
We separate system (1) into three systems{

E(cDαx(t)) = Ax(t)+ Bx(t − 1)+ EEdf (t), t ≥ 0
x(t) ≡ 0, −1 ≤ t ≤ 0, (3){
E(cDαx(t)) = Ax(t)+ Bx(t − 1)+ (I − EEd)f (t), t ≥ 0
x(t) ≡ 0, −1 ≤ t ≤ 0, (4)

and {
E(cDαx(t)) = Ax(t)+ Bx(t − 1), t ≥ 0
x(t) = ϕ(t), −1 ≤ t ≤ 0. (5)

It is easy to see that

Lemma 2. Assume that x1(t), x2(t), x3(t) is the solution of system (3)–(5) respectively, we have that x(t) = x1(t)+x2(t)+x3(t)
is the solution of system (1).

Definition 5. Let X(t) ∈ Rn×n, and satisfy
E(cDαX(t)) = AX(t)+ BX(t − 1),

X(t) =
{
EEd, t = 0,
0, −1 ≤ t < 0

(6)

then X(t) is called the corresponding fundamental solution of system (3). We also call X(t) the first fundamental solution
of system (1), the first fundamental solution for short.

To give the corresponding fundamental solution of system (4), we define a new function:

Definition 6. Let α (0 ≤ α < 1), the function

δα(t) =
1

Γ (1− α)

∫ t

0

δ(θ)

(t − θ)α
dθ

is called α − δ function, here δ(t) is the δ-function.

Lemma 3. The Laplace transformation of α − δ function is

L(δα(t)) =
1

λ(1−α)
.

Proof.

L(δα(t)) = L
(

1
Γ (1− α)

∫ t

0

δ(θ)

(t − θ)α
dθ
)

=
1

Γ (1− α)
L
(
t−α

)
L (δ(t))

=
1

Γ (1− α)
L
(
t−α

)
=

1
Γ (1− α)

∫
+∞

0
t−αe−λtdt.

Let ξ = λt , we have

L(δα(t)) =
1

Γ (1− α)

∫
+∞

0

(
ξ

λ

)−α
e−ξ
1
λ
dξ

=
1

Γ (1− α)
1

λ(1−α)

∫
+∞

0
ξ (1−α)−1e−ξdξ

=
1

λ(1−α)
. �
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Definition 7. Let Y (t) ∈ Rn×n, and satisfyE(
cDαY (t)) = AY (t)+ BY (t − 1)+ (I − EEd)δα(t),

Y (t) =
{
I − EEd, t = 0,
0, −1 ≤ t < 0

(7)

then Y (t) is called the corresponding fundamental solution of system (4). We also call Y (t) as the second fundamental
solution of system (1), the second fundamental solution for short. There δα(t) is the α − δ function.

Let H(λ) = λαE − A− e−λB and L−1 denote inverse transformation of Laplace-transformation, from (6) we have

X(t) = L−1[λα−1H−1(λ)EEEd]. (8)

From (7), we have

(λαE − A− e−λB)L[Y (t)] = λα−1(E + I)(I − EEd),
H(λ)L[Y (t)] = λα−1(E + I)(I − EEd),

that is

Y (t) = L−1[λα−1H−1(λ)(E + I)(I − EEd)]. (9)

Theorem 1. Assume that (E, A) is regular, X(t) is the first fundamental solution, we have the solution of system (3)

x(t) =
∫ t

0
(cD1−αX)(t − θ)Edf (θ)dθ + EdD−α[f (t)].

Proof. Take the Laplace transformation for system (3), we have

L[x(t)] = H−1(λ)EEdL[f (t)]
= λ1−αλα−1H−1(λ)EEEdEdL[f (t)]
= λ1−αL[X(t)]EdL[f (t)]
= (L[(cD1−αX)(t)] + λ−αEEd)EdL[f (t)]
= L[(cD1−αX)(t)]EdL[f (t)] + EdL[D−α f (t)].

That is

x(t) =
∫ t

0
(cD1−αX)(t − θ)Edf (θ)dθ + EdD−α[f (t)]. �

Theorem 2. Assume that (E, A) is regular, Y (t) is the second fundamental solution, we have the solution of system (4)

x(t) =
∫ t

0
(cD1−αY )(t − θ)(I + E(I − EEd))−1f (θ)dθ + (I − EEd)(I + E(I − EEd))−1D−α[f (t)].

Proof. From Lemma 1, we have that if E = T−1
(
J1 0
0 J0

)
T ,

I − EEd = T−1
(
0 0
0 I

)
T ,

E + I = T−1
(
J1 + I 0
0 J0 + I

)
T ,

(E + I)(I − EEd) = T−1
(
0 0
0 J0 + I

)
T .

I − EEd = T−1
(
0 0
0 J0 + I

)
TT−1

(
I 0
0 J0 + I

)−1
T

= (E + I)(I − EEd)(I + E(I − EEd))−1.
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Take the Laplace transformation for system (4), we have

L[x(t)] = H−1(λ)(I − EEd)L[f (t)]
= H−1(λ)(E + I)(I − EEd)(I + E(I − EEd))−1L[f (t)]
= λ1−αλα−1H−1(λ)(E + I)(I − EEd)(I + E(I − EEd))−1L[f (t)]
= λ1−αL[Y (t)](I + E(I − EEd))−1L[f (t)]
= (L[(cD1−αY )(t)] + λ−α(I − EEd))(I + E(I − EEd))−1L[f (t)]
= L[(cD1−αY )(t)](I + E(I − EEd))−1L[f (t)] + λ−α(I − EEd)(I + E(I − EEd))−1L[f (t)]
= L[(cD1−αY )(t)](I + E(I − EEd))−1L[f (t)] + (I − EEd)(I + E(I − EEd))−1L[D−α f (t)].

That is

x(t) =
∫ t

0
(cD1−αY )(t − θ)(I + E(I − EEd))−1f (θ)dθ + (I − EEd)(I + E(I − EEd))−1D−α[f (t)]. �

From Lemma 2, Theorems 1 and 2, we have the constant variation formula for singular fractional differential systems with
delay (1).

Theorem 3. Assume that x(t, ϕ(t), 0) is the solution of system (5), we have that the solution of system (1) x(t, ϕ(t), f (t)) can
be written as

x(t) =
∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1]f (θ)dθ

+ (E + (I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0), (10)

there X(t) is the first fundamental solution, Y (t) is the second fundamental solution.

Proof.

x(t) =
∫ t

0
(cD1−αX)(t − θ)Edf (θ)dθ + EdD−α[f (t)] +

∫ t

0
(cD1−αY )(t − θ)(I + E(I − EEd))−1f (θ)dθ

+ (I − EEd)(I + E(I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0)

=

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1]f (θ)dθ

+ (Ed + (I − EEd)(I + E(I − EEd))−1)D−α[f (t)] + x(t, ϕ(t), 0)

Ed + (I − EEd)(I + E(I − EEd))−1 = T−1
(
J−11 0
0 0

)
T + T−1

(
0 0
0 I

)(
I 0
0 J0 + I

)−1
T

= T−1
(
J−11 0
0 0

)
T + T−1

(
0 0
0 (J0 + I)−1

)
T

= T−1
(
J−11 0
0 (J0 + I)−1

)
T

= T−1
(
J1 0
0 J0 + I

)−1
T

= T−1
((
J1 0
0 J0

)
+

(
0 0
0 I

))−1
T

= (E + (I − EEd))−1.

That is

x(t) =
∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1]f (θ)dθ

+ (E + (I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0). �

4. Constant variation formula of system (2)

In this section, we give the constant variation formula of the singular Riemann–Liouville fractional differential systems
with delay (2).
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From Section 1, we have

Dαx(t)=c Dαx(t)+
ϕ(t)(0)
Γ (1− α)

t−α.

Take it to system (2), system (2) will becomeE(cDαx(t)) = Ax(t)+ Bx(t − 1)+ f (t)−
ϕ(0)

Γ (1− α)
t−α, t ≥ 0,

x(t) = ϕ(t), −1 ≤ t ≤ 0.
(11)

Theorem 4. Assume that x(t, ϕ(t), 0) is the solution of system (5), we have that the solution x(t, ϕ(t), f (t)) of the singular
Riemann–Liouville fractional differential systems with delay (2) can be written as

x(t) =
∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][f (θ)]dθ

+ (E + (I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0)

−
ϕ(0)

Γ (1− α)

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][θ−α]dθ − ϕ(0)(E + (I − EEd))−1,

there X(t) is the first fundamental solution, Y (t) is the second fundamental solution.
Proof. From Theorem 3, (11), we have

x(t) =
∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][f (θ)−

ϕ(0)
Γ (1− α)

θ−α]dθ

+ (E + (I − EEd))−1D−α[f (t)−
ϕ(0)

Γ (1− α)
t−α] + x(t, ϕ(t), 0)

=

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][f (θ)]dθ + (E + (I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0)

−
ϕ(0)

Γ (1− α)

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][θ−α]dθ

−
ϕ(0)

Γ (1− α)
(E + (I − EEd))−1D−α[t−α].

For

D−α[t−α] =
1

Γ (α)

∫ t

0
(t − θ)α−1θ−αdθ,

let ξ = θ
t , we have

D−α[t−α] =
1

Γ (α)

∫ 1

0
(1− ξ)α−1ξ−αdξ =

1
Γ (α)

B(α, 1− α)

=
1

Γ (α)

Γ (α)Γ (1− α)
Γ (α + (1− α))

= Γ (1− α).

There B(a, b) is the β − function [1]. So, we have

x(t) =
∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][f (θ)]dθ + (E + (I − EEd))−1D−α[f (t)] + x(t, ϕ(t), 0)

−
ϕ(0)

Γ (1− α)

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][θ−α]dθ − ϕ(0)(E + (I − EEd))−1. �

From Theorems 3 and 4, it is easy to prove the following theorem.

Theorem 5. Assume that x(t, ϕ(t), f (t)) is the solution of the singular Caputo fractional differential systems with delay (1),
x̄(t, ϕ(t), f (t)) is the solution of the singular Riemann–Liouville fractional differential systems with delay (2), we have

x̄(t, ϕ(t), f (t)) = x(t, ϕ(t), f (t))−
ϕ(0)

Γ (1− α)

∫ t

0
(cD1−α)[X(t − θ)Ed + Y (t − θ)(I + E(I − EEd))−1][θ−α]dθ

−ϕ(0)(E + (I − EEd))−1,

there X(t) is the first fundamental solution, Y (t) is the second fundamental solution.
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