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a b s t r a c t

Over the years there has been a significant increase in the manufacturing of silver nanoparticles-based
products, mainly due to their antimicrobial activity, with application in medicine and textile and food
industry. However, the inappropriate use and disposal of these materials can allow the entry of silver
nanoparticles (AgNP) into the aquatic environment, with potential toxicological effects. In this study we
used Pseudokirchneriella subcapitata, Artemia salina and Daphnia similis as model organisms to investigate
the toxicity of PVA-stabilized AgNP at several concentration levels. AgNP were physico-chemically char-
acterized by UV–vis spectroscopy, particle size distribution, zeta potential analyzes and Transmission
Electron Microscopy (TEM). AgNP presented a maximum absorption at 400 nm and size range between 2
and 18 nm. Each specific organism was exposed to AgNP concentrations through standardized protocol.
For P. subcapitata and A. salina the EC50 value found, 1.09 mg L−1 and 5.5 × 10−2 mg/L, respectively, were in
accordance to previous results reported in the literature. However, for D. similis, the EC50 24–48 h values
indicate a higher toxicity than other results reported for other daphnids.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The field of nanomaterials is a fast-growing area and has
attracted attention of scientists and engineers because of its mul-
tifunctionality and possibility to tailoring the materials properties
(Li et al., 2010). The size between 1 and 100 nm (in at least one
dimension) of nanomaterials provide unique characteristics that
enable novel applications (Vandermoere et al., 2011) in several
areas of science including chemistry, physics, biology, engineer-
ing and technology (Thakor et al., 2011). Nanotechnology can also
be applied to agriculture for improving food nutritional value, and
also on the management of supply chain processes associated with
food quality (Nair et al., 2010; Scott and Chen, 2013; Singh and
Rattanpal, 2014). Several studies have shown the benefits of metal
nanoparticles for human health regarding antimicrobial activity
(Chen and Schluesener, 2008; Durán et al., 2010). The unique
physico-chemical and biological properties of nanoparticles (Abou
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El-Nour et al., 2010) arises from the larger surface area/volume ratio
(compared to microparticles) resulting, for instance, in high chem-
ical reactivity (Wijnhoven et al., 2009). One of the most traditional
nanoparticles employed are based on silver (Chen and Schluesener,
2008), which finds application in electronics, toiletries clothing,
food industry, paints, sunscreens, cosmetics and medical devices
(Ahamed et al., 2010; Ankanna et al., 2010).

The increase of manufacture and consumption of products
containing silver nanoparticles (AgNP) can lead to metallic
nanoparticles release in the environment if waste is not properly
disposed (Hamed Chaman et al., 2012; Ribeiro et al., 2014; Zahir
et al., 2012). Silver in natural fresh water can be found in the form
of silver chloride (AgCl), silver sulfide (Ag2S) and the silver ion, the
most toxic form (Ribeiro et al., 2014). According to a document
of World Health Organization (WHO, 2003), silver is found in nat-
ural waters with concentration of 0.2–0.3 �g L−1, while drinking
waters can have silver concentrations between “non-detectable”
and 5 �g/L. Concentration of these nanoparticles is increasing in
aquatic environment and can strongly affect and damage the biota
(Angel et al., 2013; Batley et al., 2012). For instance, AgNP concen-
trations above 5 �g L−1 have already been found for groundwater,
surface water and drinking water (WHO, 2003). There are many
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Table 1
Concentrations of silver nanoparticles and respective percentages of test-solutions
employed in the toxicity experiments.

Concentrations

% mg L−1

0.0 0.0
0.001 1.5 × 10−4

0.01 1.5 × 10−3

0.1 1.5 × 10−2

1.0 1.5 × 10−1

10 1.5

possible reasons for the high toxicity of silver nanoparticles, includ-
ing its high surface area/volume ratio, which greatly increases its
rate of dissolution (Angel et al., 2013). Coating of AgNP with organic
materials such as polymer-based stabilizer may also influence its
toxicity (Kwok et al., 2012). Another important factor that influ-
ences nanoparticles toxicity is the bioavailability related to the
aggregation behavior (Angel et al., 2013).

In this context, it becomes of prime importance to investigate
the route of AgNP release on the environment and the exposure
effects to aquatic organisms (Griffitt et al., 2012). Moreover, studies
reporting the influence of AgNP size, concentration and distribution
on its toxicity for aquatic microorganisms are still scarce (Ribeiro
et al., 2014). In this study we evaluated the toxicity of AgNP for
the growth of algal Pseudokirchneriella subcapitata, the mobility of
the population of Artemia salina and the immobilization of Daphnia
similis. The effect of AgNP in distinct organisms tests was analyzed
considering different trophic levels in order to evaluate the toxicity
in diverse aquatic ecosystems.

2. Materials and methods

2.1. Preparation of silver nanoparticles (AgNPs)

To obtain highly concentrated stable dispersions of nanosized
silver particles, chemical reduction of silver nitrate in aqueous solu-
tions was employed. Deionized water was used to prepare the
solutions of polyvinyl alcohol (PVA) (stabilizing agent) with sil-
ver nitrate (AgNO3), which were then reduced in the presence of
sodium borohydride (NaBH4) (Berni Neto et al., 2008). All reagents
were obtained from Sigma-Aldrich and used without further purifi-
cation. The synthesis can be summarized as follows: 60 mM PVA
was added in 10 ml of a 5 mM silver nitrate solution and stirred for
5 min. Next, 5 ml of a freshly prepared sodium borohydride solution
was added and stirred for 15 min using a magnetic stirrer. At the end
of the synthesis yellow suspensions were obtained confirming the
formation of AgNP. The suspensions were then stored in dark bot-
tles and remained stable for more than 2 months. In order to obtain
AgNP suspension with concentrations shown in Table 1, aliquots of
the original sample were diluted in deionized water, and then used
in the experiments with the aquatic organisms.

A borohydride solution of 5 mM (same concentration of silver
suspension) was used as control experiment for the aquatic orga-
nisms. Such solution was submitted to the same set of experiments
of AgNP suspension. PVA was not included in the control solution,
once it is considered practically non-toxic for aquatic microorgan-
isms (Wong, 1996).

2.2. Characterization of silver nanoparticles

2.2.1. UV–vis absorption spectroscopy
The optical properties of silver nanoparticles were monitored

by UV–vis absorption spectroscopy using a Perkin-Elmer UV–vis
Lambda 6. Tree samples were diluted in deionized water and placed

in a quartz cell of 2 cm3 for collecting the absorption spectrum from
250 to 700 nm.

2.2.2. Zeta potential and particle size distribution
The zeta potential of AgNP was evaluated using a Zetasizer

Nano ZS (Malvern Instruments Inc., USA), which measures elec-
trophoretic mobility of nanoparticle using phase analysis light
scattering. This equipment was also employed to determine the
particle size using dynamic light scattering.

2.2.3. Transmission Electron Microscopy (TEM)
AgNP shape, morphology and size distribution was evaluated

by a Transmission Electron Microscope – TEM – (FEI Tecnai G2
F20) using 200 kV accelerating voltage. One drop of AgNP suspen-
sion was added on a carbon coated copper grid and the excess was
removed with filter paper. The grid remained light protected with
the use of a piece of aluminum foil and maintained at environmen-
tal temperature. The program ImageJ was used to determine the
size of AgNP from TEM images.

2.3. Test organisms exposure to different concentrations of AgNP

2.3.1. P. subcapitata
The unicellular algae P. subcapitata (erstwhile Selenastrum capri-

cornutum) was used as test organism. The algae was cultured in
accordance with the methodology recommended by the Organiza-
tion for Economic Co-operation and Development (OECD, 1984a),
in climatic chambers under controlled temperature at 20 ± 2 ◦C and
luminosity of ∼1300 lux. The algal suspension was distributed in
Petri dishes (final volume of 15 mL), yielding a concentration of
approximately 105 cells mL−1. The algae were exposed during 7
days to each of the AgNP suspensions shown in Table 1. Free-AgNP
suspension containing only borohydride solution was also evalu-
ated. Periodically, aliquots were taken from the algal suspensions
for measuring the absorbance at 750 nm in a Shimadzu spectropho-
tometer UV-1650 PC, once absorbance is proportional to the cells
concentration. The absorbance values (averages of three replicates)
were then converted to percentages, which is directly proportional
to algae growth. The calculation of the concentration that inhibits
algal growth rate by 50% over 7 days (EC50-7d) was based on the
relative inhibition of growth rate as a function of the silver nanopar-
ticle concentration (mg L−1).

2.3.2. A. salina
Young individuals of the brine shrimp A. salina were used as test

organisms. Approximately 24 h before the test, 900 ml of synthetic
seawater were placed in a 1 L Erlenmeyer. This water was prepared
by adding 30 g of salt “Sera Premium®” (Sera GmbH, Heinsberg)
in 1000 mL of water (pH = 7.2; conductivity = 110 �S cm−1) from an
artesian well. In this container was added approximately 50 mg of
Artemia cysts (INVE Aquaculture Inc., Ogden). The suspension of
cysts was kept under intense aeration through a porous stone at
a temperature of 25 ± 1 ◦C and ∼6300 lux brightness. The nauplii
obtained were exposed to concentrations shown in Table 1 during
48 h at 20 ± 2 ◦C. Through the use of micropipette, 10 organisms
were transferred to beakers containing the test solution (final vol-
ume of 30 ml) at different percentages, in duplicate. After 48 h,
the number of organisms tested and the concentration that affects
mobility in 50% of the population (EC50-48 h) along with its 95%
confidence interval were determined (USEPA, 1991).

2.3.3. D. similis
In ecotoxicity testing, usually the filter-feeding freshwater crus-

tacean of the genus Daphnia has been used an indicator of the
aquatic ecotoxicity tests, anticipating toxicity testing in mam-
mals (Martins et al., 2007). By being a very sensitive organism
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toward potential chemical toxicants, such as metal ion species,
Daphnia has been employed as test organims for the standard
protocols of the OECD. Environmental Protection Agency (EPA),
and International Standards Organization (ISO) (Li et al., 2010;
Baun et al., 2008). Acute toxicity immobilization tests were per-
formed on each of the AgNPs suspension in accordance with OECD
Guideline Part I (OECD, 1984b). D. similis cultures were maintained
in 40 cm × 25 cm × 15 cm glass aquaria containing water from an
artesian well, as described in OECD Guideline. The organisms
were placed in acclimatized room with controlled temperature at
20 ± 2 ◦C and with luminosity of approximately 1000 lux. They were
fed daily with microalgae (Chlorella pyrenoidosa and P. subcapitata)
suspensions (Prestes et al., 2012).

Acute toxicity tests were performed on D. similis neonates that
were less than 24 h old, using the AgNP suspension concentrations
shown in Table 1. Six or seven neonates were placed in a glass
beaker (experimental unit) containing 30 mL of test-solution. A
total of 20 organisms were tested for concentrations 1.5, 1.5 × 10−1,
1.5 × 10−2, 1.5 × 10−3 and 1.5 × 10−4 mg L−1) divided in three repli-
cates. Immobilization was determined visually after 24 h and 48 h at
each concentration, and the respective EC50 values were calculated
together with the 95% confidence interval. Daphnias were exam-
ined and photographed after 24 h in order to evaluate their internal
content using a stereomicroscope (Model SMZ 2 LED, Optika).

2.3.4. Statistical analyses for P. subcapitata, Artemia and
Daphnia

The calculation of the specific growth rates of P. subcapitata
was obtained by linear slope values of the respective curves of
absorbance increase versus time (log Abs vs. days) (OECD, 1984a).
The data were treated by Simple Regression module, contained in
Statgraphics Plus (MANUGISTICS, 2001), which allowed calculation
of EC50-7d and its 95% confidence interval, and determined the
regression model to best fit the data. Specifically, the calculation
of the concentration that inhibits algal growth rate by 50% over
7 days (EC50-7d) was based on the relative inhibition of growth
rate as a function of the silver nanoparticle concentration (mg L−1).
EC50 is the effective concentration of toxicant that results in 50%
reduction of growth of an organism population, relative to con-
trol, at a given duration of time (Chung et al., 2007). For EC50-7d
calculation purpose, although the data of the specific growth rate
as a function of concentration did not strictly follow a correlated
dose–response curve, it was fitted according to the linear regres-
sion model “y = 0.0867 − 0.0411

√
x”, where “y” is a specific growth

rate (log Abs750nmd−1) and “x” is the silver solution concentration
(mg L−1). The EC50-7d values were compared and considered sig-
nificantly different from each other when their confidence intervals
showed no overlap (Yang et al., 2002).

Artemia and Daphnia also had the EC50 24–48 h calculated
by modulus Probit Analysis of Statgraphics Plus 5.1 software
(MANUGISTICS, 2001). Through the same procedures, we also eval-
uated the toxicity of the borohydride solutions free of AgNP to verify
possible interference from other compounds in the test solutions.

3. Results

3.1. UV–vis absorption spectroscopy of AgNP

The UV–vis absorption spectrum of precursor silver salt solu-
tion and AgNP is displayed in Fig. 1. According to Whelan et al.
(2004) and Krklješ et al. (2007) silver nanoparticles exhibit absorp-
tion spectra band centered at 400–410 nm. The spectrum shows
that AgNP synthesis yielded a single and well-defined peak in
the absorbance spectrum, with maximum absorbance at 400 nm,
which corresponds to the characteristic surface plasmon reso-
nance of AgNP (Fig. 1). The position of plasmon absorption peak
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Fig. 1. UV–vis absorption spectrum of AgNP.
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Fig. 2. Particle size distribution of AgNP.

of metal nanoparticles solutions depend on several factors, such as
size, shape and polydispersity of the particles (Mock et al., 2002).
The relatively narrow band indicates that AgNPs present a nar-
row size distribution, as further confirmed by TEM analysis. The
well-defined peak combined with the yellow color of the colloid
solution is an evidence of the non-oxidation of AgNPs (Varkey and
Fort, 1993). The silver salt showed no absorbance in this spectral
range.

3.2. Zeta potential and particle size distribution

The particle size distribution of AgNP obtained by dynamic light
scattering is showed in Fig. 2. AgNP display a polydispersity index
(PDI) = 0.179 with an average size of 8.12 nm. The zeta potential
obtained for nanoparticles synthesized was around −1 mV at pH of
6.2, which is considered to be low for a permanent stabilization.
AgNP suspension presenting low zeta potential values has already
been reported in the literature (Loeschner et al., 2011). In the case
described by Loeschner et al. (2011), the stability of AgNP suspen-
sion was ascribed by electrostatic stabilization, but instead to steric
stabilization promoted by the large molecules of polymers PVP.
Although in our work we used a distinct stabilizer (PVA), the large
molecules of PVA similarly promote steric stabilization of AgNP
suspension.
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Fig. 3. (a) TEM image of AgNP and (b) histogram of nanoparticles diameter.

Fig. 4. Algae growth curves of P. subcapitata in different concentrations (mg L−1) of
silver nanoparticles.

3.3. Transmission Electron Microscopy (TEM)

TEM image of AgNP is showed in Fig. 3a, revealing that the
primary morphology of the nanoparticles is spherical. It can be
seen that the nanoparticles are well dispersed, without aggregation
and have small particle size in the range 2–18 nm. Although TEM
images are greatly subjected to sub-sampling, the results obtained
(in terms of size range) agree with those obtained by dynamic light
scattering technique. Very small nanoparticles can be observed in
TEM micrographs, indicating good stabilization by the PVA, which
was also inferred by the Zeta potential analysis. The correspond-
ing particle size distribution histogram of AgNP obtained by TEM
images is given in Fig. 3b.

3.4. Toxicity assays

3.4.1. P. subcapitata
Fig. 4 presents the curves of Algae growth as a function of expo-

sure time (up to 7 days) of P. subcapitata in different concentrations
(mg L−1) of silver nanoparticles. The comparison of the curves sug-
gest that the solution concentration of 1.5 × 10−1 mg L−1 was the
one that most affected P. subcapitata, inhibiting the growth of algae
substantially when compared with the other concentrations. The
data show that two days of exposure led to a decrease in absorbance
and onwards the absorbance (and consequently the growth) of

P. subcapitata had a slight increase, but without exceeding
0.05. However, when we calculated the specific growth rate
obtained from the slope of the regression of log Abs vs. time
(OECD, 1984a), the lowest specific growth rate were observed
for the 1.5 mg L−1 and 1.5 × 10−1 mg L−1 concentrations. Specif-
ically, 1.5 × 10−1 mg L−1 solution yielded a growth rate of 0.054
(R2 = 0.524, provided by the mathematical fitting), while the
solution of 1.5 mg L−1 yielded a growth rate of 0.039 (R2 = 0.589,
provided by the mathematical fitting). The 1.5 × 10−2, 1.5 × 10−3

and 1.5 × 10−4 mg L−1 solution concentrations of AgNP shows
behavior similar to control, not interfering in the specific growth
rate, which were in the order of 0.08–0.09. Such behavior prob-
ably arises because of the relative low concentration of silver,
which was not sufficient to induce algal toxicity. The calculation
of EC50-7d for this AgNP suspension, according to the model
employed (see experimental section for details), was 1.09 mg L−1

(0.59–3.15 mg L−1 at 95% confidence interval).
Similarly, the EC50 was determined for the sodium borohydride

solution in terms of % of solution, which yielded EC50-7d = 61.56%.
Such value indicates that sodium borohydride solution is much less
toxic than the AgNP suspension (EC50-7d = 7.29%), presenting EC50-
7d value 8.5 times higher than AgNP.

The AgNP used in this work showed lower toxicity to P.
subcapitata compared to other investigations reported in the
literature. For instance, EC50 = 3.24 × 10−2 mg L−1 was obtained
for alkane-coated AgNP of 7.5 nm (Ribeiro et al., 2014), while
EC50 = 1.95 × 10−2 mg L−1 was obtained for PVP-coated AgNP with
dimensions from 9.9 to 20 nm (Angel et al., 2013). The higher tox-
icity found for AgNP in Ribeiro et al. (2014) and Angel et al. (2013)
can be ascribed to the nature of their respective coatings, indicating
that PVA may present lower toxicity as stabilizing agent.

The EC50 obtained in our study, however, was similar to that
reported by Mc Laughlin and Bonzongo (2012), who determined
an EC50–96 h for silver nanoparticles equivalent to 1.6 mg L−1 for P.
subcapitata grown in natural water. Little is known about the action
mechanism of AgNP on P. subcapitata. Navarro et al. (2008) indicate
that there are several factors that influence the toxicity of AgNP
to P. subcapitata, including size and surface area of nanoparticles,
biotic interactions between organisms and chemical conditions of
the environment that also affect the dissolution of silver ions from
AgNP.

The precise mechanism by which distinct coating can affect
aquatic toxicity is still a matter for debate. For instance, the tox-
icity found against P. subcapitata and other tests organisms can be
influenced by the coating of the AgNP. The AgNP used in this inves-
tigation was coated by poly(vinyl alcohol) (PVA). PVA and AgNP
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Fig. 5. Dose–response (in blue) and 95% confidence interval (in red) to A. salina
under different concentrations of silver nanoparticles present in the solution.

present high interfacial compatibility, given by non-covalent bonds
(Lin et al., 2012). The hydroxyl groups (OH−) of PVA strongly inter-
act with water molecules and OH− neighbors of the environment,
thereby increasing the molecular mobility (González-Campos et al.,
2012). This molecular mobility of PVA causes a mobility of AgNP
allowing release of these nanoparticles to the environment that
could be toxic (DeMerlis and Schoneker, 2003).

According to Kwok et al. (2012) silver nanoparticles with dif-
ferent coating of organic materials (capable of enhancing their
dispersion in water), present different degrees of toxicity to
Japanese rice fish. In addition, AgNP coated by layers of polymers
can increase the electrostatic repulsion and increase stability in
suspension. The same authors attributed PVP-coated AgNP tox-
icity to a more positive surface charge found in the polymer
surface, resulting in greater interaction with aquatic organism.
Besides, the chemical interactions between the polymer surface
coverage with aquatic environment can influence the release of
AgNP.

3.4.2. A. salina
The results regarding exposure of A. salina at different con-

centrations of the test solution is expressed in Fig. 5. The
value EC50-48 h is 5.5 × 10−2 (2.2–11.2 × 10−2 mg L−1 at 95%
confidence interval, and percentage of deviance = 60, 56) indi-
cates the very high toxicity to this test-organism (<0.1 mg L−1)
(USEPA, 1985). This value appears to be higher than that found
by Falugi et al. (2013) when assessing the toxicity of AgNP
for brine shrimp using with 1–10 nm in serial dilutions (from
1.0 × 10−1 mg L−1 up to 100 mg L−1). Falugi et al. (2013) obtained
LC50-48 h (lethal concentration) value of 7.3 × 10−3 mg L−1. Solu-
tions containing only borohydride showed no toxicity, since
the mobility pattern of the organisms was similar to the
control.

In the literature there are few reports on the ecotoxicity of silver
nanoparticles against A. salina. Kumar et al. (2012) obtained LC50
value of 10 nM (∼10−3 mg L−1) by evaluating the toxicity of AgNP
with average size of 33–44 nm against A. salina. Kowalska-Góralska
et al. (2011) reported that Brine Shrimp specimens exposed by 6 h
in silver solution at a concentration of 10 mg L−1 showed average
survivability near to 93%. More recently, investigations on the tox-
icity of inorganic nanoparticles for A. salina have also been reported.
For instance, Ates et al. (2013) described the impregnation of the
gut of A. salina with TiO2 nanoparticles (including adults and nau-
plii). These facts suggest that in nanometric, inorganic compounds
can agglomerated in gut of aquatic organisms and prevent the
nutrients absorptions, once mostly of these organisms are filter
feeder.

3.5. D. similis

The AgNP suspension interfered on the survival of Daph-
nia. The calculation for 24 h EC50 for this AgNP suspension was
3.42 × 10−4 mg L−1 (4.86–2.52 × 10−4 mg L−1 at 95% confidence
interval). For the 48 h the exposure, the EC50 calculation was
2.62 × 10−4 mg L−1 (1.80–4.03 × 10−4 mg L−1 at 95% confidence
interval). The toxicity of the control solution of borohydride was
determined, which proved the very low contribution (0.92%) on
the overall toxicity of the solution containing AgNP.

The low EC50 48 h value equivalent to 2.62 × 10−4 mg L−1 for
D. similis is somehow consistent with findings in the literature in
which the EC50-48 h values for metals nanoparticles are lower than
1 × 10−1 mg L−1. Because of this fact, we can categorize it as “very
highly toxic” to the test-organism (UN United Nation, 2009). For
example, Li et al. (2010) found the value of 2 × 10−3 mg L−1 for
the silver ion, when testing the effects in D. magna. Asghari et al.
(2012) obtained EC50 of the same value on D. magna for spheri-
cal silver nanoparticles of average size of 16.6 nm. The lower EC50
value for D. similis found in this work comparatively to other values
reported in the literature can be explained by the higher sensitivity
of the former to toxicant materials (Jardim et al., 2008; Romanholo
Ferreira et al., 2011).

Ag+ inhibits the flow of sodium ions (Na+), by blocking the action
of enzymes, Na+, K+ and ATPase, causing a disturbance in ion reg-
ulation of these aquatic organisms (Allen et al., 2010; Bianchini
and Wood, 2003; Zhao and Wang, 2010; Stensberg et al., 2014).
At the moment that silver nanoparticles are exposed to the aquatic
environment they undergo surface oxidation by releasing the ionic
silver (Ag+) in water, which presents the highest toxicity for aquatic
organisms (Angel et al., 2013; Allen et al., 2010; Lee et al., 2005). Jo
et al. (2012) also obtained high toxicity for some of their formula-
tions (24 h-EC50 9.0–14.3 × 10−3 mg L−1) to Daphnia, assigning the
toxic effect of the silver ions released from the surface of silver
nanoparticles.

Besides the sensitivity to pollutants, Daphnia compose the bot-
tom of the food chain in aquatic freshwater ecosystems. A subtle
change in the quality and quantity of Daphnia population affects
other populations of aquatic organisms, resulting in major envi-
ronmental impacts (Martins et al., 2007). Fig. 6 shows changes
suffered by Daphnia adults and neonates exposed for 24 h to a solu-
tion of AgNP with concentration of 1.5 mg L−1. The dark coloration
observed in the lines of the intestine indicates that these organisms
ingested the solution of silver nanoparticles. It can be observed
that, for both adult and neonate, the AgNP suspension modified
the morphology of the eyes and that there are AgNP agglomerates
impregnated in the carapace, antennules and other parts of body.
Ingestion of AgNP may interfere on food availability for these orga-
nisms and also impair intestine cleaning (Lee et al., 2005). Zhao
and Wang (2011) also showed brown color in their gut lines when
exposed at high AgNP concentrations (200 and 500 mg L−1). Similar
results were found (Ates et al., 2013) for other nanoparticles, which
showed that Daphnias had difficulty to clean up the gut after TiO2
nanoparticles ingestion.

3.5.1. Final remarks
The physical and biological conditions of aquatic systems are

complex and composed of many variables, and therefore, it is dif-
ficult to reproduce in vitro conditions. Thus, the toxicity of metals,
especially metallic nanoparticles, is largely affected by water qual-
ity parameters such as pH, temperature and organic composition.

Generally, toxicity of Ag salts are higher compared to AgNP,
nevertheless AgNP can also have toxic effects depending on
concentration of dissolved ionic silver, probably due to additional
effects of particles and agglomerations on cell membranes. Such
behavior depends on various factors like media, organic molecules,
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Fig. 6. Typical alteration observed in Daphnia adults and neonates after 24 h of silver nanoparticles exposure.

light conditions and particle size or NP coating (Boenigk et al.,
2014). In this context, Vannini et al. (2013) compared the effects
of AgNO3 and AgNPs on Eruca sativa and observed that only the
AgNP exposure causes the alteration of some proteins related
to the endoplasmic reticulum and vacuole indicating these two
organelles as targets of the AgNPs action. According to the authors,
these data add further evidences that the effects of AgNPs are not
simply due to the release of Ag ions.

Specifically in Brazil, the concentration limit of Ag in the
aquatic compartment is ruled by the CONAMA 357/05 decreet
(BRASIL, 2005), which establishes 0.01 mg L−1 for freshwaters and
0.005 mg L−1 for saline waters. According to our results, the effec-
tive concentration (EC50-48 h) for the most sensitive organism
is about 20 times lower than the limit established by CONAMA
decreet. Considering the acute toxicity (EC50) for the most sen-
sible organism and an application factor of 100 in order to
prevent the chronic adverse effects in such species and protect
other species (Gherardi-Goldstein et al., 1990), a concentration of
2.62 × 10−6 mg L−1 was calculated (2.62 × 10−4 mg L−1/100) for this
purpose. For achieving this concentration, as reported by Zagatto
(2006) and Crane et al. (2003) in order to assess the safety of mate-
rials, it would be necessary a direct application of approximately
7.86 mg of AgNP over an area equivalent to 1 ha, with a water col-
umn depth of 30 cm. Thus, according to the considerations above,
AgNP concentration limits previously established should be care-
fully reviewed for correct handling and disposing of AgNP, avoiding
accumulation in aquatic compartments.

4. Conclusions

This study investigated toxic effects of silver nanoparticles sta-
bilized with PVA for aquatic organisms, such as P. subcapitata algae,
A. salina and D. similis, representing different trophics levels of the
food chain. According to dynamic light scattering measurements,
the AgNPs in solution are well dispersed, with size range 2–18 nm.
Among the organisms studied, AgNP showed lower toxicity to A.
salina and P. subcapitata organisms compared with data found in
the literature, with EC50 5.5 × 10−2 mg L−1 and 1.09 mg L−1 respec-
tively. The AgNP showed high toxicity to D. similis with EC50 (48 h)
2.62 × 10−4 mg L−1. According to the EC50 values, the order of toxic-
ity for the test-organisms is D. similis > A. salina > P. subcapitata. This
difference is statistically significative (p < 0.05) since the 95% confi-
dence intervals of the EC50s do not overlap to each other (Yang et al.,
2002). These nanoparticles were impregnated along the Daphnia
gut and shell as well as in the appendices, including altered mor-
phology eye. Considering the technological applications of AgNP,
investigation on its effects for aquatic organisms are crucial to help
to establish protocols for the use and disposal of AgNP on the envi-
ronment, minimizing toxic effects.
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