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1. INTRODUCTION 

In this study we proceed on a theoretical and numerical analysis of the 
vibrations of a fluid confined in a deformable shell. The so-called hydroelastic 
problem has seldom been met in a global way; one can find in [l] a study 
considered by us as the origin of our work ([l] is exclusively devoted to the 
case of thin shells; the solutions’ properties are obtained from the equations 
in a computational way). 

In the present analysis, we state within the linearized theory the general 
equations of the coupled system fluid-elastic shell (considered as a three- 
dimensional body), which corresponds to the study of small vibrations, and 
we introduce a variational formulation of the problem. By an appropriate 
choice of the function spaces it is possible to associate a spectral problem for 
which we have defined the operators’ properties. In particular, we demonstrate 
compactness properties resulting from a previous work [2]. We then show 
directly the existence of an eigenfrequencies and eigenfunctions spectrum 
which defines the vibration modes. The knowledge of the vibration modes 
characterizes the system from a mechanical point of view. 

The theoretical study is achieved by a numerical analysis by the finite 
element method. In Section 2, we present the matrix formulation of the 
approximate problem. We then study the different finite element types used 
in the computation: fluid elements of isoparametric type, shell elements, 
coupling elements. 

After describing the resolution of the approximate problem, numerical 
results are shown in the case of the first stage of the civil applications launch 
vehicle Diamant B. The results allow us to identify the mode of vibration 
characterizing the Pogo effect. We recall that this phenomenon consists of 
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an instability due to coupling between the main structure (tanks and shells), 
the so-called secondary structure (pipes, pumps), and the thrust. 

2. DESCRIPTION OF THE PROBLEM 

The liquid is supposed to be inviscid, incompressible, irrotational, and 
contained in a deformable shell. 

FIG. 1. Notations. 

Notation (Fig. 1). Q, and L$ are open bounded sets of R3. 

The Ziquid occupies the initial volume Q, with the boundary (supposed 
smooth) a& = I’, v Z1 , where r, is the free surface at rest and Z1 the 
wetted surface of the shell. rz(nj) represents the external normal to Sz, , 
pf the density of the fluid, @(x, t) the velocity potential of the fluid 

@ = (XI , x-2 > x3)), Y(x’, t) the normal displacement at the free surface 
(x’ = (‘X r , ~a)), and g the gravity vector. 

The she& supposed thick, is represented by a domain 52, with the boundary 
852, = Zr u J$ u Z; . On Zz and Z3 (meas Zz , meas Z3 > 0) act, respectively, 
a force and displacement field. n’(nj’) represents the external normal to Q2, , 
n’ = ---n on Zi; pC is the density of the shell, u = (ul , ua , us) is the displace- 
ment field vector referred to the equilibrium (static) configuration, (I is the 
tensor whose components oij represent the stress variations between the 
actual and the initial states; finally, f(fJ re p resents the given body forces 
per unit volume. We shall set herefi = 0. 

2.1. Equations of the Coupled Problem 

The Bernoulli theorem permits to calculate the pressure perturbation in any 
point il4 of the shell or of the free surface. After linearization, one obtains 

P = -Pt(g-ru(w). 

In the linear approximation corresponding to the study of the small vibra- 
tions, the model presently used supposes that the initial state is quasinatural 
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and the normal variations are negligible during the deformation [3]. The 
dynamic equations are the following: 

(i) for the fluid 

A@=0 in .n, x IQ Tr 
with the boundary conditions 

~=$l~nj on ,L’r x IO, T[ (nonpenetration condition) 

and 

a@ ay -=- 
an at 

$+gy=o 
on r, x IO, T[ (free surface condition); 

(ii) for the shell 

c 
3acTij= a2u, . 

j=1 8% PC at2 In 

with the boundary conditions 

ui = 0 

4 agljl = 0 

1 cwj’ = pf ($f- + 94,) ni 
i 

4 x IO, T[ 

on z; x IO, TL 
on 22 x IO, TL 

on 4 x IO, T[. 

We recall here that the constitutive equations for linear elasticity are of 
the form 

where Xiihlc are the elasticity coefficients and 

1 afih 
%k@) = 7 ( 

au, 
&- + ax, 1 * 

In the following, we assume that the Tong [l] hypothesis holds: the inner 
product u *g is replaced by (u . n) (g . n). 

Consequently, the boundary condition on Z; x IO, T[ becomes 

1 o,p; = pf (% - (24 . n) (g * n)) n, 
j 

and later on leads to the introduction of symmetric operators. 
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2.2. Variational Formulation 

Let P(Q,) be the Sobolev space of real functions with the second power 
absolutely integrable for the Lebesgue measure with derivatives of order one 
inL2(Q2) [4], and let V be the space 

v = {v E (Hl(Q2))3; w lz, = 0). 

We can show, using the Green formula, that the problem in Section 2.1 is 
equivalent to the following variational problem. 

Find the functions (@(a), Y(.), U(a)) defined on IO, T[ and taking values in 
ZP(Q,) X L2(TI) X V, satisfying 

with the initial conditions 

4% 0) = u&J), g (X, 0) = ul(x) in 9,) 

cqx’, 0) = CD&‘), g (id, 0) = Ql(x’) 
(4) 

on T, . 

3. PRELIMINARY STUDIES 

Before defining the function spaces for the whole problem, it is necessary 
to establish some lemmas concerning the equations of the shell alone and of 
the fluid alone. 

3.1. The Elastic Problem 

We assume that the elastic coefficients hijhk have the usual symmetric 
(hiihk = hijkh = hkhii) and ellipticity properties, and we define 

b(u, v) = c j- Q(U) eij(v) dx. 
i.j *2 

(5) 
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As a result from the Korn inequality and its consequences [5], we have the 
following. 

LEMMA 1. The bilinear form b(u, v) equipped V with a norm equivalent to 
the usual norm of (IIP(L?~))~. 

Let P”’ be the dual space of v. We define the linear operator B E 5?( V, V’) 

by means of 

b(u, v) = (Bu, v) vu, v  E v, (6) 

where (,) represent the inner product in the duality between V and k-‘. 
Let D(B) be the domain of the unbounded operator B in (L2(Q2))3. Because 

of the coercivity and symmetric properties of b(u, v), the operator B is 
positive self-adjoint in (L2(Q2))3 with the domain D(B). 

On the other hand, it follows from the Sobolev theorem that the mapping 
from V into (L2(.Q2))3 is compact, and we have the next lemma. 

LEMMA 2. The operator B dejined by (6) is inversibb positive self-adjoint, 
and B-l is compact in (L2(Q2))3. 

3.2. Study of the Fluid 

From the notions developed in [2] for vibrations of a liquid contained in a 
rigid tank we shall establish compactness results. 

This problem related to the u = 0 case is written from (l)-(4): Find 
CD(.), Y(.) defined on IO, T[ taking their values in EP(Q,) x L2(I’,) and satis- 
fying 

with the initial conditions 

@(XI, 0) = q)(x’), g (x’, 0) = c&(x’) on r, . (9) 

3.2.1. Recalls 

We set 

a@ ay aw -=-= 
an at -g-l -@- , 
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and we studied the problem (7), (8): Find Q(t) E IP(Q,) such that 

with the initial conditions (9). 
For the resolution, we introduce the subspace of Hl(SZ,) defined by 

A@=0 in 1;2,, 
a@ 
--=0 on Z;, 
an @=p, on r,, (10) 

where cp E IP2(I’J. 
We define [6] the operator A E P(IIP/~(I’,), H-l12(I’,)) by setting 

4 = (wan) /q 9 which leads to the following evolution problem on the 
manifold r, : 

We show that the problem has a unique solution which is a linear combina- 
tion of stationary solutions such as 0(x, t) = 4(x) eiwt. The operator A-l 
is compact in L2(rI), so the circular eigenfrequencies w and the eigenfunctions 

944 =: 5w Ir, are given by the spectral problem 

j-r1 &I do = f s, P# da v$h E Hyr,). (11) 
1 

We obtain d(x) by solving Eqs. (10). Let us recall the following lemma. 

LEMMA 3. There exists for (11) un infinite set of eigenvaiues (o,, = 0, 
< w1 2s ... < W, --f oo)), and the corresponding ez&nfunctions am form an 
orthogonal and total sequence in H1/2(rl). 

We recall, too, that the first eigenfunction &x’) corresponding to w,, = 0 
is a constant [2]. 

3.2.2. Consequences 

Let W (resp. S,) be the subspace of I?@,) (resp. L2(r,)) orthogonal with 
respect to the constant functions; d(@) = t&, 1 V@ I2 dx defines a norm on 
W, and by a lemma due to Deny and Lions [7] we have the following. 

LEMMA 4. d(Q) = so, 1 V@ I2 dx def; nes on W an equivalent norm to the 

usual norm of Hl(SZ,). 
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Let WI be 

WI= @ltW/A@=OinD,,g 
I 

=OOnzl’. 
I 

Following (lo), we have (Green’s formula) 

As, on the one hand, A E 5?(iWz(~,), H-“/“(I’,)) and, on the other hand, 
the trace operator is continuous from W(Q,) into EW(I’,), the topology 
induced by d(D) on the subspace W, is equivalent to the topology of Hli2(I’r), 
and we have the following. 

LEMMA 5. The sequence {&(x)>E1 , obtained by solwing (10) with the 

boundary condition involving the eigenfunctions {q~,,(x’)}f~ of A, is an orthogonal 
total sequence in WI . 

3.2.3. Back to the Problem (7), (8) 

Let TI be 

T,= @,w,,g 
I 

=YEs, . 
=1 I 

(12) 

TI corresponds, by means of (lo), to the domain D(A) of the unbounded 
operator A in L2(I’,). 

The results mentioned in Section 3.2.1 lead us to look for the stationary 
solutions of (7), (8), such as 

@(x, t) = i+(x) eiYt, Y(x, t) = y(x) eivt 

with 

(~~Y)~WX Sl. 

So we can avoid the trivial solution C$ = const, which corresponds to v = 0. 
After a substitution in (7), (8) we obtain the following spectral problem: 

Find (4, y) E W x S, such that 

\ VqWjbdx-j- y#du=O w E w-4), 
4 =1 
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We notice that we have 

and, when using Green’s formula, 

s,, W W dx = lrly$ da = jr1 54 da- 

The above spectral problem is therefore equivalent to 

I 
rly[do-t 

s g J-4 
V$V$dx =0 V($, r;) E Tl x 4 . (13) 

Recalling the notations of [2] stated in Section 3.2.1, we can set 

Y=4 with T=@ll,, 

(=A* with + = Y Ir, . 

Another form of (13) is 

where D(A) represents the domain of A. 
Problem (7), (8) consists now, as is quite natural, of the spectral decomposi- 

tion of A. We can formulate the previous results (Lemmas 3 and 5) as follows. 

LEMMA 6. There exists, for the problem (7), (8), an injinite positive sequence 
of circular eigenfrequencies w, . The corresponding ezgenfunctions constitute the 

sequences {$,,}, {~J,J, where {+,,}n=l,...,m is orthogonal and total in W, and, 

G?JA=n,....m is orthogonal and total in S, and such that 

We define the symmetric unbounded operator C,: Tl -+ S, by setting 

cl+=Y (=21,). 
1 
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It verifies that 

Lemma 6 shows the existence of a discrete spectrum for C,; hence, by a 
theorem from [S, p. 4621, we have the following. 

LEMMA 7. C;l: S, -+ Tl is a compact operator (for the topology induced 

on Tl by W). 

The operator C;’ is generally known as the Neumann operator of the 
problem [9]. 

3.2.5. Extension of the Results 

The preceding methods can be extended without difficulties to the following 
boundary value problem: 

A@=0 in Q;-?1 x IO, TL 
a@ ay (15) 
-=- 
an at 

$+gY=o 

on ai2, x IO, T[. 

Let us set 

fp=@ and A =!!!? 9J > 
8% an as2, 

where A E 5?(fW(~Q, H-1~z(lN2,)). F rom the compactness of the mapping 

from EW2(Xr1) into L2(X?r) we get the compactness of A-l into L2(XQ. 
Let Y be the subspace of P(Z’,) orthogonal with respect to the constant 

functions, and let T be 

T= @EW,A@=OinQ,,~ 
I I I an an, 

~9 . 

The solution of (15) leads to the spectral problem 

I y( da - y” 
g s 

V+V$dx=O WE T, aR 
1 f4 

(16) 

which is similar to (13). 
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We define C: T+ 9’ by setting (@j&z) /so, = C$. 
By similar methods we can prove the existence of a discrete spectrum and 

we have the following lemma. 

LEMMA 8. The operator dejked by C-l: Y --f T is compact (T is equipped 
with the topology of W). 

4.. SPECTRAL PROBLEM ASSOCIATED WITH THE INITIAL PROBLEM 

4.1. Description of the Problem 

Let Jj be the Cartesian product of the three sets 

$s = w x P(F,) x v. 

$j is equipped with the topology of the product and E, = (4, 5, V) represents 
a member of $3. 

We have already seen the interest of stationary solutions which are related 
to the notion of a spectral problem (Section 3.2.1). We therefore search the 
stationary solutions of the problem under the form of 

@(x, t) = iv+(x) eiYt, 

(17) 
24(x, t) = u(x) eiYt, Y(x’, t) = y(x’) eiYt, 

where the triplet P = (#, y, U) belongs to $3 in order to eliminate the trivial 
solution (4 = const, u = 0, y = 0) corresponding to Y = 0. 

The problem (l)-(4) leads then to 

C j- 
2.j 4 

44 ~(4 dx - v2 ~nz~.(4 dx - v2 ~z~~,d(d da 

- zlPfkn) (4 w du = 0 s 
vv E v. (20) 
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4.2. The Reduced Problem 

Let 53 be the subspace of W x L2(I’r) x I’ defined by 

The fact that b belongs to 53 leads in particular to 

j 
4 

(vn) da + jr1 5 do = 0. 

LEMMA 9. R is a closed subspace of sj. 

For the purpose of demonstration, we consider a Cauchy sequence in 52, 
that is bn = (A , yn , u,). We show that lim,,, I& = t, = (4, y, u) belongs 
to R. 

This follows, on the one hand, from O# = 0 in the sense of distributions in 
Ql so 

On the other hand, we consider the limit of the sequences in the equation 

Fundamental Remark. Equation (18) is verified if we search P in the space 
9. The application of Green’s formula in a symmetrical way leads to 

jn, W W dx = jr1 Y# do + jzl (4 # do 

This fundamental remark implies the reduction of Eqs. (19) and (20). 

LEMMA 10. The problem (18)-(20) becomes the following: Find the scalar v  
and P = (4, y, u) such that 
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We are now able to state Property 1, which correlates the problem of 
vibration to the analysis of a spectral problem. 

Property 1. The following spectral problem is associated with the prob- 
lem (l)-(4): Find v2 and P E A such that 

Jqp, II) = v2Jqp, b) vlj E R (23) 

with 

Remark. The problem (18)-(20) is equivalent to the problem (23), (24) 
on the subspace of L2(I’,) x V, for which we have 

5. RESOLUTION OF THE PRECEDING SPECTRAL PROBLEM 

5.1. 

JW, b) and JW’, 6) are two continuous symmetric bilinear forms on 
R equipped with the topology of !$ Let $$’ be the strong dual of 9, There 
exists two self-adjoint operators ‘9JI and !JI E 9(Ej, 5’) such that 

The norm induced on A by (YIP, 5) is the norm induced by W x (J~~(SZ~))~. 

5.2 

For the spectral analysis (23), a first difficulty comes through the fact that 
1111 is not necessary a positive operator. Hence, we consider the hypothesis of 
V-coerciwity with regurd to (L2(i22))3: Th ere exist two constants A,, > 0 and 
% > 0 such that 

; s,, u&) ‘ii(u) dx - pf J‘, (gn) (4” do + &1, PC I u I2 dx 2 010 II u llt . 

(26) 
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This hypothesis is connected with the geometry of the system and appears 
to be justified because the coefficient pf(gn) is generally small; on the other 
hand, it is obviously verified in the case of thin shells of thickness h, where 
the integration in 52, is replaced by an integration on the mean surface y2 

(it is therefore sufficient to choose A0 3 (gn) pf/p,h). 
Under the hypothesis (26), let the operator %R’ be defined by 

(WP, lj) = (!mP, I)) + X,(9lP, I)). (27) 

(24), (26), and Lemma 1 lead to the coercivity of the self-adjoint operator llJz’. 

5.3 

It remains to prove that “llJ1’ is compact in regard to ‘S.” This property is 
equivalent to the following one: From every sequence {P,> E si such that 
(‘WP, , P,) < const, we can extract a subsequence which converges 

strongly for the norm (‘SP, P). 1111’ is the sum of the two operators !JXr and 
%I&, , defined by 

We recall here that P (resp. 4) represents the triplet (4, y, u) (resp. (I$, 5,~)) 
as an element of 5% 

It follows from Lemma 2 and the hypothesis (26) that !?XJZ;~ is compact in 
(L2(Q,))3. On the other hand, we have 

s 
yn2 do < const and 

I 
(u,~E)~ do < const, 

r1 El 

owing to the continuity property of the trace operator from A?(&!,) into 
L2(&‘,). The sequence P, is such that a$,/& E Y and j a&/&z I2 < const. 

IJsing Lemma 8, we can show the compactness property of D&l. ‘$JV, 
being the sum of two compact operators (in regard to (L2(.C?2))3 and W) is 
therefore “compact in regard to R” 

These results are gathered in the following theorem. 

THEOREM. IIJZ’ is a coercive, self-adjoint operator on R, and !$l’-l is compact 
in si (for the topology induced by (RF’, $)). 

We can therefore apply a classical theorem of spectral analysis [8, p. 2371 
in order to obtain the following property. 
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Property 2. The spectral problem 

(9x’P, b) - a(%P, Ij) = 0 VJJER 

285 

(28) 

has an infinite sequence of real eigenvalues: 

o<a,<cY,<*~*<ci,<~~~, hi aQ = $-co. 

The corresponding eigenfunctions P,, = ($la , y,, , u,) form on si an ortho- 
gonal and total sequence, such that 

6. CONSEQUENCES: RESOLUTION OF THE INITIAL PROBLEM 

Referring to the problem (l)-(4) with which we have connected the spectral 
problem (23), k’(P, h) = G.N(P, lj), the circular eigenfrequencies are given 

by 
vn2 = a n - x 01 (2% 

and the corresponding eigenfunctions P, form an orthogonal and total 
sequence in W x (L2(Q2))3 such that 

A$,=0 in Q 17 

on r 11 

in sz 29 i=l,2,3, 

u, = 0 on z 3, 

7 4:%J % = 0 on .z 27 

~w&Jni =PP,~+, -p&b -4 k * 4 on &. (30) 

It must be observed that the system is unstable (in the usual sense in linear 
vibration mechanic) if c+, - A, is negative for the first values of 1~. 
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Conclusion. For the initial hydroelastic problem, we have proved the 
existence of an infinite sequence of eigenfrequencies such as Km,,, vIL ::= CO. 

The eigenfunction given by the triplets (& ,31n , u,) are the corresponding 
vibration shapes. The system is completely characterized from the mechanical 
point of view by the knowledge of the vibration modes. 

Remark. If meas Za = 0, we can introduce [S, p. 1151 the space 
p = (H1(Q,))3/W, where .% is the set of rigid solid displacements. The results 
of the theoretical analysis remain the same if we take W x L2(r,) x p as a 
new definition of the space &. For the following numerical analysis, we shall 
use Eqs. (IS)-(20) with $ = W(QJ x L2(r,) x (H1(Qa))3. The solutions 
are then defined to within a rigid body displacement. 

7. NUMERICAL ANALYSIS BY THE FINITE ELEMENT METHOD 

According to the chosen application we shall deal with the problem of 
axisymmetric vibrations of an axisymmetric shell partially filled with liquid, 
within the thin shell theory. 

7.1. Matrix Equations of the Discretized Problem 

In this analysis v is not necessary zero on Z3 . Taking into account the 
preceding Remark in Section 6, the function space here considered is 

$ = zP(Q,) x L2(T*) x (H1(S2,))3. 

Equations (18)-(20) of the weak problem recalled here, 

are discretized by the finite element method. The domain is covered by a 
finite number of simplex models such as the open simplexes are disjoint, and 
two adjacent simplexes have a common side. The trial functions used are 
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piecewise interpolation polynomials [ 111. The unknowns are then the nodal 
values of the functions. CP, %!*, CD* are, after assembly procedure, the 
column matrices constituted by the nodal values of the functions y, u, $. 
The matrix formulation of the discretized problem is 

(in sr the overbar represents the transpose quantity). The different 
submatrices of the system (31) ((S, K, k) E R; (M, A,, A,, F) E .4!‘) are asso- 
ciated with the bilinear forms of the functional equations (18)-(20) and 
constitute the matrices resulting from the application of the finite element 
method. Their detailed definitions will be found in Section 7.3. 

fi and &I are, respectively, the stiffness and mass matrices of the mechan- 
ical system. 

7.2. Description of the Elements 

The function spaces Hr(QJ, L2(I’,), (EP(Q,))” of the variational coupled 
problem are approximated. Because of the symmetry of the physical problem, 
the analysis becomes twodimensional. As a result, the simplexes on which 
the interpolations are to be constructed are torus (axis :0X). The cross section 
will be represented in a meridian plane (X, Y). 

Let Mi be the node of coordinates (Xi, Yi) and (ri, $i, z+*) (resp. 

5i > *i 3 vi*), the values of the unknown functions at the node Mi before 
assemblage. 

We also put 

xij = xj - xi ) Yij = Yj - Yi . 

7.2.1. Fluid Finite Elements 

Three types of finite elements are considered. 

(a) Rectangular (Fig. 2). We proceed on a quadratic development of 
the solution 

4(X, Y) = a, + a,X + a,Y + a,XY, 

8)(X, Y) = b, + b,X + b,Y + b,XY. 
(32) 

This corresponds to a Lagrangian-type interpolation formula in the element 
domain (nodal unknowns: $r , $2, $3, $&. 

40915 rlz-3 
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Frc. 2. Rectangular element. 

FIG. 3. Triangular element. 

(b) Triangular (Fig. 3). Th e c h osen interpolation is linear and results 

from the truncated developments: 

4(X, y> = co + c,x + CJ, 

#(X, Y) = 4, + 4X + 4Y 

(nodal unknowns: $r ,+s ,&I. 

FIG. 4. Isoparametric element. 

(c) Isoparametric trapezoidal (Fig. 4). A point M of the cross section 

is represented by the coordinate lines: 5 = cons& 7 = const. The inter- 
polation functions chosen for $ and # are defined from 

It is clear that the continuity condition for C$ and 4 is satisfied along the 
element boundaries. 

7.2.2. Element of the Free Surface (Fig. 5) 

This element has the shape of a circular ring generated by a linear segment 
M,M, of the meridian straight line of the free surface. The functions y, 5 
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FIG. 5. Free surface ring. 

FIG. 6. Conical frustrum element. 

are linearly interpolated with respect to Y (nodal unknowns: (yl , ya); (5, , 5,) 

for the test function). 

7.2.3. Elastic Shell Element (Fig. 6) 

The shell, supposed to be thin, is represented schematically by conical 
frustrum elements of revolution around the axis OX generated by the segment 
M,M, (. 

We consider here a local system of coordinates (x, y). Let us put 

s = x/L. 

L is the length of the segment MIMz . 
The components [z+(s), Us] of the displacement vector u of the shell are 

respectively interpolated by Lagrangian and Hermitian polynomials [12]: 

(35) 

with 

L,(s) = [l - s 0 0 S 0 01, 

L,(s) = [O 1 - 39 + 2s 3 L(s - 2s2 + s”) 0 39 - 2s3 L(-s2 + q, 

and 

%l 

u21 

B 1 

u12 

u22 

B2 1 , v* = z’ll 

v21 

.-EL 

v12 

v22 

Y2 I> /3 = 2 (resp. y  = +) . 
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uij , zlij (; = 1, 2; j = 1, 2) are the values of the ith components of the dis- 
placement vector u (resp. v) at the node Mj . Let us recall that v  is the test 
function associated with u. 

pi (resp. ri) are the values at the node Mi of the angle of rotation of the 
normal to the middle surface of the shell. 

Let us recall here that the thin shell theory [ 131 is a surface theory. Then, 
the particular geometry of the body allows the introduciton of kinematic 
simplifying assumptions. 

The deformation of the shell can then be expressed in terms of the middle 
surface displacement (ur , ~a) and of the rotations of the associated normals. 
Therefore the tensor E (Q) takes into account the curvatures of the middle 
surface. Due to the chosen interpolation functions, the continuity condition 

for ui (resp. UJ is satisfied along the element boundaries. 

7.3. Description of the Discretized Problem 

The above-described finite elements will allow us to state the matrices 
corresponding to the approximation of the bilinear symmetric forms of Eqs. 

(18)-(20). 
In the following paragraphs, we describe in detail the matrix equation put 

down in Section 7.1. 

7.3.1. Approximation of so, pfV#V# dx 

(a) Rectangular element. Let $* and #* be 

+*jj, **f# 

The matrix FR corresponding to the formpF&* is 

FR = 23rp,B LLYdXdY B 1 
with 

(b) Triangular element. We obtain the matrix FT corresponding to 
pF,#* through the relation 

FT = 2irpB [j LLYdXdY B, 
triangle 1 
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where 

I,=O l [ 1 1 0 
and ’ -ylZ]. 

-XI, 0 

(c) hoparametric element. The calculus of the discretized bilinear 
form pFI+* is done after the following change of variables: 

x = x2 + 5x21, 

We get 

y = Yl + rly1, + 57y,, * 

9,(5,7) = [Cl - 7) f 76 70 - 5) (1 - 7) (1 - 01 z ($I 

4: 
and 

where B is the matrix which represents W~I as a function of the nodal 
unknowns. 

The assemblage of the elementary matrices FI , FT , FR gives the sub- 
matrix F of the set (31). 

7.3.2. Approximation of pf Jr1 ylC, do and pf Jr1 $5 do 

The matrices associated with these two bilinear forms are transposed one 
by the other. Using the notations of Section 7.2.2, let us put 

y* = [;;I , +* = [$;I 1 5* = [k:] , 4” = [$j , 

setting, furthermore, 

The elementary matrices associated with pf Jr1 y# da and pf jr,+< da 
are, respectively, 

with 

[S 
Y2 

a, = 2rrpJV TTYdY N 1 (4 = 4, Yl 
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where 

The assemblage of these elementary matrices forms the submatrix 

of the set (31). 

7.3.3. Approximation of gpf Jr1 yc da. 

Using the interpolations defined in Section 7.2.2, the elementary matrix 
associated with this form is ga, . a, has been defined in Section 7.3.2. 

The assemblage of these elementary matrices on the whole free surface 
provides the submatrix S of the set (31). 

7.3.4. (a) Approximation of Ci,i sJz, uii(u) cii(v) dx. 

The geometry of the element has been described in Section 7.2.3. The 
calculus of the associated elementary matrix is carried out in the local system 
of coordinates (x, y). After a change of basis, the assemblage procedure is 
done in the global system of coordinates (X, Y). 

The relations between displacements and strains are the following [13]: 

4 u1 dY u2 cos 01 
%=-&’ %=Y-&+y, 

d22C, 1 dY du, 
(36) 

K$ = 
dx2 ’ 

KzE--- 
Y dx dx 

K~ and K~ are the variations of curvature of the middle surface, respectively, 
in the directions (x, x). 

The same relations (36) are also utilized for the test function z~(z)r , ZIP). 
The relations between the generalized stresses (resulting from an integra- 

tion of the three-dimensional stresses with respect to the thickness of the 
shell) and the generalized strains, are the following: 

with 

u = DE 

(i= <= 
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where D is the classical matrix of the characteristic coefficients of the 
material in linear orthotropic elasticity (the indexes L, C indicate longitudinal 
or circumferential stiffness). 

Relations (35) and (36) permit the calculation of E as a function of u* 
and v* in the form 

E(S, u*) = A(s) u*, 

E(S, v*) = A(s) v*. 

The matrix associated with the bilinear symmetric form 

on the shell element is u*&$‘o*, where 

Kc’ = 27rL j’ A(s) DA(s) (Y, + sY,,) ds. 
0 

Kc’ is the elementary matrix which represents the bilinear form in the local 
basis. 

The submatrix K of the set (31) is obtained afterwards by assembling the 
matrices 

Kc = %?Kc’%, 

where 

g?.fER O [ 1 
with 

R+:;l R 
sin 01 0 

a cos 01 0 . 
0 I 

] 

(b) Approximation of so, pc(uv) dx. Let mc’ be the matrix which repre- 
sents this form for a shell element. 

We obtain in the local basis (x, y) 

mc’ = 2rrpcL I 1 P(s) (Yl + sY,,) ds. 
0 
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Using the polynomial interpolation and the notations of Section 7.2.3, we 
have 

P(s) =L,(s)L,(s) +L,(s)L,(s). 

In the (X, Y) coordinate system, the elementary matrix 4~~’ becomes 

%vC = &,‘K 

The matrix M of the set (31) is then obtained by assembling the matrices 
9&c. 

(c) Approximation of - szl &gn) (in) (vn) do. We obtain the matrix 
relation ->k,‘v*. Using the same notation as in Section 7.2.3, the corre- 
sponding kc’ matrix is 

kc’ = 2rpfLg sin DL 
s- 

‘L,(s) L,(s) (Y, + Ylzs) ds. 
0 

kc = gk,‘W leads to the submatrix k of the set (31). 

7.3.5. Approximation of SE1 pA(vn) do and s,, p,(un) 4 da 

After discretization on a finite element (on the wetted surface of the shell), 
the bilinear reciprocally symmetric forms are 

u*a2** and $*aav*. 

Let us recall that these forms represent coupling terms between the fluid 
and the shell. Using the results of Section 7.2.3 as well as the linear interpola- 
tion of 9 (resp. 4) along Z1 (Sections 7.2.1(b) and 7.2.1(c)), we have 

a2 = 27rp,L 
I- 

’ L2(s) [ 1 - s s] ( Y1 + sY,,) ds. 
O 

The elementary matrices associated with the discretized bilinear forms are 

where 
V* c2 = [ 1 ** ’ c,z IL* 1 1 4* * 

After a change of basis, the assemblage is made on the following elementary 
matrices: 

a2 [““I 0 0 
We then obtain the submatrix gz $,a] of the set (31). 
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7.4. Resolution of the Discretized Problem-Numerical Results 

7.4.1. Resolution 

295 

Let us recall here that, in the case of axisymmetric vibrations, the velocity 
potential is determined to within an additive constant (function of time only). 
Consequently, we show that if F is the n x n submatrix associated with the 
bilinear form [o” ,+V+V4 dx, then the order of F is n - 1. 

The set (31) then becomes 

with 

- 
I O _I -- 
I O 
- - I 

Kll 

R ’ @& @%l 

---i--- 

R ' 0 @%2 

s j  0 

--- --- 

0 !  K+k 

and we therefore have a relation between 9Y*, %!*, and @*: 

2y2Y*, %*, !D’*) = 0. 

The reduction of the set (31) can be done by considering the following 
equation: 

(38) 

where the first quantity in square brackets is A’, the mass matrix of the 
set (31) and where fY* a= a’* L 1 a,* 
and F” is an arbitrary vector. (aR* represents the column matrix constituted 

by all the unknowns @* except one.) 
Once (37) solved, the set (38) gives QR *. The method avoids the use of the 

constraint relation 2. For the resolution, we use the algorithms of a general 
existing code ordinarily used for the static and dynamic analysis of structures 
by the finite element method (displacement method) [14]. 
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As a matter of fact, the procedure for recovering the QR* corresponds to a 
regular, mixed problem of linear elasticity where the boundary conditions 
hold (at the same point) simultaneously on the displacements and the forces 
components [15]. 

7.4.2. Numerical Results 

The computation is carried out on a structure composed of two tanks 
with an intermediate bulkhead separating the two liquids. This structure 
constitutes the first stage of the civil launch vehicle Diamant B (Fig. 7). 

The tanks considered here are cylindrical shells with ellipsoidal bottoms 
partially filled with liquid (the chosen configuration leads to a level of liquids 
corresponding to 10% of burned propellant). 

The modelization used for each tank, through the different finite elements 
previously described, is shown in Fig. 8. Figures 9 and 10 represent the 
shapes of the free surface and of the shell and the velocity potential along the 
axis of revolution. 

Figure 11 shows a comparison between the first five numerical and experi- 
mental eigenfrequencies. 

The good agreement obtained shows the precision of the presented method. 

FIG. 7. Launcher configuration. 
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FIG. 8. Axisymmetrical elements. (i) Fluid elements: (1) rectangular, (2) iso- 
parametric, (3) triangular, (4) free surface. (ii) Shell elements: (5) stiffness and mass. 
(iii) Coupling elements: fluid-shell, fluid-free surface. 

Mode Shape Pressure along the axis 

FIG. 9. Second structural mode: mode shape, - initial configuration, ----- 
deformed configuration. 

Mode shape 

‘~ t-- L’ 
Pressure along the axis 

/P 
d? L 

FIG. 10. Fourth structural mode: mode shape, - initial configuration, ----- 
deformed configuration. 
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FIG. 11. Frequencies: Comparison with experimental results. 

From the values of the velocity potential y at the bottom of the tanks, we 
get the values of the pressure at these points. These values are used as known 
quantities in a numerical model of the Pogo loop stability. 
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