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We investigate a steady flow of a viscous compressible fluid with
inflow boundary condition on the density and inhomogeneous
slip boundary conditions on the velocity in a cylindrical domain
Ω = Ω0 × (0, L) ∈ R

3. We show existence of a solution (v,ρ) ∈
W 2

p(Ω) × W 1
p(Ω), p > 3, where v is the velocity of the fluid and

ρ is the density, that is a small perturbation of a constant flow
(v̄ ≡ [1,0,0], ρ̄ ≡ 1). We also show that this solution is unique
in a class of small perturbations of (v̄, ρ̄). The term u · ∇w in
the continuity equation makes it impossible to show the existence
applying directly a fixed point method. Thus in order to show
existence of the solution we construct a sequence (vn,ρn) that is
bounded in W 2

p(Ω)× W 1
p(Ω) and satisfies the Cauchy condition in

a larger space L∞(0, L; L2(Ω0)) what enables us to deduce that the
weak limit of a subsequence of (vn,ρn) is in fact a strong solution
to our problem.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical description of a flow of a viscous, compressible fluid usually lead to problems
of mixed character as the momentum equation is elliptic (in stationary case) or parabolic (in case
of time-dependent flow) in the velocity, while the continuity equation is hyperbolic in the density.
Therefore, the application of standard methods usually applied to elliptic or hyperbolic problems fails
in the mathematical analysis of the compressible flows and a combination of such techniques, as
well as development of new mathematical tools is required. As a result a consistent theory of weak
solutions to the Navier–Stokes equations for compressible fluids has been developed quite recently in
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the 90’s, mainly due to the work of Lions [12] and Feireisl [7]. An overview of these results is given
in the monograph [18]. A modification of this approach in case of steady flows with slip boundary
conditions has been developed by Mucha and Pokorný in a two dimensional case in [15] and in 3D
in [24].

The issue of regular solutions is less investigated and the problems are considered mainly with
Dirichlet boundary conditions. If we assume that the velocity does not vanish on the boundary, the
hyperbolicity of the continuity equation makes it necessary to prescribe the density on the part of
the boundary where the flow enters the domain. In [26] Valli and Zajaczkowski investigate a time-
dependent system with inflow boundary condition, obtaining also a result on existence of a solution to
stationary problem. The existence of regular solutions to stationary problems with an inflow condition
on the density has been investigated by Kellogg and Kweon [9] and Kweon and Song [11]. Their
results require some smallness assumptions on the data, and the regularity of solutions is a subject to
some constraints on the geometry of the boundary near the points where the inflow and outlow parts
of the boundary meet. In [10] Kellogg and Kweon consider a domain where the inflow and outflow
parts of the boundary are separated, obtaining regular solutions.

The lack of general existence results inhibits the development of qualitative analysis of compress-
ible flows. Therefore it is worth to mention here the papers by Plotnikov and Sokolowski who has
investigated shape optimization problems with inflow boundary condition in 2D [22] and 3D [23]
dealing with weak solutions. More recently Plotnikov, Ruban and Sokolowski have investigated shape
optimization problems working with strong solutions in [20] and [21].

It seems interesting both from the mathematical point of view and in the eye of applications to
investigate problems with inflow boundary condition on the density combined with slip boundary
conditions on the velocity, that enables to describe precisely the action between the fluid and the
boundary. Such problem is investigated in this paper. The domain is a three dimensional cylinder and
we assume that the fluid slips along the boundary with a given friction coefficient and there is no
flow across the wall of the cylinder. We show existence of a regular solution that can be considered a
small perturbation of a constant solution. The method of the proof is outlined in the next part of the
introduction and now we are in a position to formulate our problem more precisely.

The flow is described by the Navier–Stokes system supplied with the slip boundary conditions on
the velocity. The complete system reads

ρv · ∇v − μ�v − (μ + ν)∇ div v + ∇π(ρ) = 0 in Ω,

div(ρv) = 0 in Ω,

n · T
(

v,π(ρ)
) · τk + f v · τk = bk, k = 1,2 on Γ,

n · v = d on Γ,

ρ = ρin on Γin, (1.1)

where v : R
3 → R

3 is the unknown velocity field of the fluid and ρ : R
3 → R is the unknown density.

We assume that the pressure is a function of the density of a class C3. Further, μ and ν are viscosity
coefficients satisfying μ > 0, ν +2μ > 0 and f > 0 is a friction coefficient. The domain Ω is a cylinder
in R

3 of a form Ω = Ω0 × (0, L) where Ω0 ∈ R
2 is a set with a boundary regular enough and L is a

positive constant (see Fig. 1). We want to show existence of a solution that can be considered a small
perturbation of a constant flow (v̄, ρ̄) ≡ ([1,0,0],1). Thus we denote the subsets of the boundary
Γ = ∂Ω as Γ = Γin ∪ Γout ∪ Γ0, where Γin = {x ∈ Γ : v̄ · n < 0}, Γout = {x ∈ Γ : v̄ · n > 0} and Γ0 =
{x ∈ Γ : v̄ · n = 0}.

By n we denote the outward unit normal to Γ and τ1, τ2 are the unit tangent vectors to Γ . Since
the boundary has singularities at the junctions of Γin and Γout with Γ0, for the boundary traces
we will consider functional spaces that are algebraic sums of spaces defined on the boundary. More
precisely for s,q ∈ R we shall denote W q

s (Γ ) := W q
s (Γin) + W q

s (Γout) + W q
s (Γ0). We assume that

b ∈ W 1−1/p
p (Γ ), ρin ∈ W 1

p(Γin) and d ∈ W 2−1/p
p (Γ ) are given functions and d = 0 on Γ0 what means

that Γ0 is an impermeable wall.
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Fig. 1. The domain.

For simplicity we consider the momentum equation with zero r.h.s., but our proofs work without
any modification for the r.h.s. ρ F where F is small enough in L p .

We shall make here some remarks concerning notation. Since we will usually use the spaces of
functions defined on Ω , we will skip Ω in notation of the spaces, for example we will write L2
instead of L2(Ω). For the density we will use estimates in the space L∞(0, L; L2(Ω0)). For simplicity
we will denote this space by L∞(L2). A constant dependent on the data that can be controlled, but
not necessarily small, will be denoted by C , and E shall denote a constant that can be arbitrarily small
provided that the data is small enough.

In order to formulate our main result let us define a quantity D0 that measures how the boundary
data b, d and ρin differ from the values of, respectively, f v̄ · τi , n · v̄ and ρ̄ in appropriate norms. We
have v̄ · τi = τ

(1)
i and v̄ · n = n(1) , thus we define

D0 = ∥∥bi − f τ (1)
i

∥∥
W 1−1/p

p (Γ )
+ ∥∥d − n(1)

∥∥
W 2−1/p

p (Γ )
+ ‖ρin − 1‖W 1

p(Γin). (1.2)

Our main result is:

Theorem 1. Assume that D0 defined in (1.2) is small enough, f is large enough and p > 3. Then there exists a
solution (v,ρ) ∈ W 2

p(Ω) × W 1
p(Ω) to the system (1.1) and

‖v − v̄‖W 2
p
+ ‖ρ − ρ̄‖W 1

p
� E(D0), (1.3)

where E(D0) can be arbitrarily small provided that D0 is small enough. This solution in unique in the class of
solutions satisfying the estimate (1.3).

The major difficulty in the proof of Theorem 1 is in the term u ·∇w in the continuity equation, that
yields impossible a direct application of a fixed point argument. To overcome this problem one can
apply the method of elliptic regularization, known rather from the theory of weak solutions (see [18]).
This method has been applied to a similar problem in a two dimensional case in [19]. However, it
complicates considerably the computations since we have to find the bound on the artificial diffusive
term. Here we apply a method of successive approximations, that leads to a more direct proof. In
order to prove Theorem 1 we will construct a sequence (un, wn) ∈ W 2

p × W 1
p that converges to the

solution of (1.1). Due to the presence of the term u · ∇w we cannot show directly the convergence
in W 2

p × W 1
p , but we can show that (un, wn) is a Cauchy sequence in a larger space H1 × L∞(L2)

and thus converges in this space to the weak solution of (1.1). On the other hand, the sequence is
bounded in W 2

p × W 1
p , what enables us to show that the weak solution is in fact strong. A similar
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approach has been applied in [4] to an evolutionary Navier–Stokes system in a framework of Besov
spaces. Another method based on the same idea is to construct an operator that maps certain ball to
itself in stronger topology and is a contraction in weaker topology, and apply a generalization of the
Banach theorem that gives a unique fixed point for such operator. Such approach has been applied,
among others, by Dutto and Novotný in [6] to show existence of a solution to steady compressible
Navier–Stokes equations in an exterior domain in 2D, and by Novotný and Pokorný in [17] to prove
existence for a system describing steady flow of viscoelastic fluid.

We start with removing the inhomogeneity from the boundary condition (1.1)4. To this end let us
construct u0 ∈ W 2

p(Ω) such that

n · u0|Γ = d − n(1). (1.4)

Due to the assumption of smallness of d − n(1) in W 2−1/p
p (Γ ) we can assume that

‖u0‖W 2
p
	 1. (1.5)

From now on we assume (1.5) in all our results. Now we consider

u = v − v̄ − u0 and w = ρ − ρ̄.

One can easily verify that (u, w) satisfies the following system:

∂x1 u − μ�u − (ν + μ)∇ div u + π ′(1)∇w = F (u, w) in Ω,

div u + ∂x1 w + (u + u0) · ∇w = G(u, w) in Ω,

n · 2μD(u) · τi + f u · τi = Bi, i = 1,2 on Γ,

n · u = 0 on Γ,

w = w in on Γin, (1.6)

where

F (u, w) = −w(u + v̄ + u0) · ∇(u + u0) − (u0 · ∇u) − u · ∇u0

+ μ�u0 + (ν + μ)∇ div u0 − u0 · ∇u0 − [
π ′(w + 1) − π ′(1)

]∇w,

G(u, w) = −(w + 1)div u0 − w div u (1.7)

and

Bi = bi − 2μn · D(u0) · τi − f τ (1)
i .

From now on we will denote π ′(1) =: γ . We see that F and G also depend on ∇u, u0,∇u0, but for
simplicity we will write F (u, w) and G(u, w). In order to prove Theorem 1 it is enough to show the
existence of a solution (u, w) to the system (1.6) provided that ‖B‖

W 1−1/p
p (Γ )

and ‖u0‖W 2
p(Ω) are small

enough. As we already mentioned, we will construct a sequence that converges to the solution. The
sequence will be defined as
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∂x1 un+1 − μ�un+1 − (ν + μ)∇ div un+1 + γ ∇wn+1 = F
(
un, wn) in Ω,

div un+1 + ∂x1 wn+1 + (
un + u0

) · ∇wn+1 = G
(
un, wn) in Ω,

n · 2μD
(
un+1) · τi + f un+1 · τi = Bi, i = 1,2 on Γ,

n · un+1 = 0 on Γ,

wn+1 = w in on Γin. (1.8)

As we will see in the sequel, our method does not require any particular starting point for the se-
quence (un, wn), but only some smallness assumptions on the starting point (u0, w0), hence without
loss of generality we can set (u0, w0) = (0,0). In order to show the existence of the sequence defined
in (1.8) we have to solve a linear system:

∂x1 u − μ�u − (ν + μ)∇ div u + γ ∇w = F in Ω,

div u + ∂x1 w + (ū + u0) · ∇w = G in Ω,

n · 2μD(u) · τi + f u · τi = Bi, i = 1,2 on Γ,

n · u = 0 on Γ,

w = w in on Γin, (1.9)

where (F , G, ū, u0) ∈ L p × W 1
p × W 2

p × W 2
p are given functions and ū · n = 0 on Γ .

Let us now outline the strategy of the proof, and thus the structure of the paper. In Section 2 we
show the a priori estimate (2.35) on a solution to the linear system (1.9). We start with an energy
estimate in H1 × L∞(L2). Next the properties of the slip boundary conditions enables us to show
that the vorticity of the velocity on the boundary has the same regularity as the velocity, and this
fact makes it possible to find a bound on ‖w‖W 1

p
. Then the estimate (2.35) results directly from the

elliptic regularity of the Lamé system.
The linear system (1.9) is solved in Section 3. First we show the existence of a weak solution

using the Galerkin method modified to deal with the continuity equation. Next we can show that this
solution is in fact strong using a priori estimate and symmetry of the slip boundary conditions.

In Section 4 we show the estimate in W 2
p × W 1

p on the sequence (un, wn) and, as a result, the

Cauchy condition satisfied by this sequence in the space H1 × L∞(L2). These results are derived by
application of the estimates for the linear system.

In Section 5 we apply the results of Section 4 passing to the limit with (un, wn) and then showing
that the limit is a solution to (1.6). Finally we show that this solution is unique in a class of solutions
satisfying the estimate (1.3).

2. A priori bounds

The main result of this section is the estimate (2.35) in W 2
p × W 1

p . In order to show it we start with

an energy estimate in H1 × L∞(L2). Next we consider the equation on the vorticity of the velocity
and apply the Helmholtz decomposition to derive the bound on ‖w‖W 1

p
and finally using the classical

elliptic theory we conclude (2.35).
In our proofs we shall not need explicit formulas on the functions F (u, w) and G(u, w), what will

be important is that they depend quadratically on u and w . More precisely, we will show a following
estimate

Lemma 2. Let (u, w) ∈ W 2
p × W 1

p and let F (u, w) and G(u, w) be defined in (1.7). Then

∥∥F (u, w)
∥∥

L + ∥∥G(u, w)
∥∥

W 1 � C
[(‖u‖W 2 + ‖w‖W 1

)2 + ‖u0‖W 2

]
. (2.1)
p p p p p



2176 T. Piasecki / J. Differential Equations 248 (2010) 2171–2198
Proof. Since by the imbedding theorem W 1
p(Ω) ⊂ L∞(Ω), the estimate on ‖G‖W 1

p
is straightforward,

and the only part of F that deserves attention is δπ ′(w)∇w , where

δπ ′(w) := π ′(w + 1) − π ′(1). (2.2)

We will apply a fact that for a C1-function f we have

f (x) − f (y) = (x − y)

1∫
0

f ′[tx + (1 − t)y
]

dt. (2.3)

Thus we have

δπ ′(w) = w

1∫
0

π ′′(t w + 1)dt.

Since π is a C3-function, the above implies∥∥δπ ′(w)∇w
∥∥

L p
� C(π)‖w‖∞‖∇w‖L p � C‖w‖2

W 1
p
.

The other parts of F can be estimated directly giving (2.1). �
Next, we derive the ‘energy’ estimate in H1 × L∞(L2). It is stated in the following lemma

Lemma 3. Let (u, w) be a solution to the system (1.9) with (F , G, B, w in, ū) ∈ V ∗ × L2 × L2(Γ ) × L2(Γin) ×
W 2

p , with ‖ū‖W 2
p

small enough and f large enough. Then

‖u‖H1 + ‖w‖L∞(L2) � C
[‖F‖V ∗ + ‖G‖L2 + ‖B‖L2(Γ ) + ‖w in‖L2(Γin)

]
, (2.4)

where

V = {
v ∈ H1(Ω): v · n|Γ = 0

}
(2.5)

and V ∗ is the dual space of V .

Proof. We apply a general identity∫
Ω

(−μ�u − (ν + μ)∇ div u
)

v dx =
∫
Ω

{
2μD(u) : ∇v + ν div u div v

}
dx

−
∫
Γ

n · [2μD(u) + ν div u Id
] · v dσ . (2.6)

For u, v satisfying the boundary conditions (1.9)3,4 the boundary term in (2.6) equals

∫ {
2∑

i=1

[
Bi − f (u · τi)

]
(v · τi)

}
dσ .
Γ
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Thus multiplying (1.9)1 by u and integrating over Ω we get

∫
Ω

{
2μD2(u) + ν div2 u

}
dx +

∫
Γ

(
f + n(1)

2

)
|u|2 dσ − γ

∫
Ω

w div u dx

=
∫
Ω

F · u dx +
∫
Γ

{
B1(u · τ1) + B2(u · τ2)

}
dσ . (2.7)

From now on (not only in this proof but also later) we will use the summation convention when
taking the sum over the tangential components. Applying (1.9)2 and the boundary conditions we get

∫
Ω

w div u dx =
∫
Ω

G w dx + 1

2

∫
Ω

w2 div(ū + u0)dx

− 1

2

∫
Γout

w2(1 + u(1)
0

)
dσ + 1

2

∫
Γin

w2
in

(
1 + u(1)

0

)
dσ .

For ‖u0‖W 2
p

small enough we have by the imbedding theorem 1 + u(1)
0 > 0 a.e. on Γout what yields∫

Γout
w2(1 + u(1)

0 )dσ > 0. Moreover, for the friction f large enough on Γin the boundary term in (2.7)
will be positive. To derive the bound on ‖u‖H1 from (2.7) we apply a well-known Korn inequality:

∫
Ω

[
2μD2(u) + ν div2 u

]
dx +

∫
Γ

f (u · τ )2 dσ � C‖u‖2
H1 . (2.8)

As this is a standard result we skip the proof, let us only notice that we can modify the proof of
Lemma 2.1 in [14] and actually simplify it considerably using the fact that the friction is large enough.
Combining (2.8) with (2.7) we derive the following inequality

C‖u‖2
H1 �

∫
Ω

F · u dx +
∫
Γ

Bi(u · τi)dσ + 1

2

∫
Ω

w2 div(ū + u0)dx

− 1

2

∫
Γin

w2
in

(
1 + u(1)

0

)
dσ . (2.9)

In order to derive (2.4) from (2.9) we have to estimate ‖w‖L∞(L2) in terms of ‖u‖H1 and the data.
To show this estimate we refer to Section 3 where the linear system (1.9) is solved. Namely, we have
w = S(G − div u) where the operator S is defined in (3.7) and thus the estimate (3.8) implies

‖w‖L∞(L2) � C
(‖G‖L2 + ‖u‖H1 + ‖w in‖L2(Γin)

)
. (2.10)

The above inequality combined with (2.9) yields (2.4). �
Now we consider the vorticity of the velocity α = rot u. The properties of the slip boundary condi-

tions enables us to express the tangential components of α on the boundary in terms of the velocity.
We arrive at the following system
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∂x1α − μ�α = rot F in Ω,

α · τ2 =
(

2χ1 − f

ν

)
u · τ1 + B1

ν
on Γ,

α · τ1 =
(

f

ν
− 2χ2

)
u · τ2 − B2

ν
on Γ,

divα = 0 on Γ, (2.11)

where χi denote the curvatures of the curves generated by tangent vectors τi . In order to show the
boundary relations (2.11)2,3 it is enough to differentiate (1.9)4 with respect to the tangential directions
and apply (1.9)3. A rigorous proof, modifying the proof in the two dimensional case from [16], is given
in Appendix A. The condition divα = 0 in Ω results simply from the fact that α = rot u. We introduce
this relation as a boundary condition (2.11)4, that completes the conditions on the tangential parts of
the vorticity. What is remarkable in the boundary conditions (2.11)2,3 is that the tangential parts of
the vorticity on the boundary has the same regularity as the velocity itself and the data. This feature
of slip boundary conditions makes it possible to show the higher estimate on the vorticity (see [13,
14,24]).

In order to derive the bound on the vorticity we can follow [24, Lemma 4], and construct α0,
a divergence-free extension of the boundary data (2.11)2,3, for example as a solution to the Stokes
problem with zero r.h.s. and the boundary conditions (2.11)2,3 supplied with α0 · n = 0. The theory
of the Stokes system then yields

‖α0‖W 1
p
� C

[‖u‖
W 1−1/p

p (Γ )
+ ‖B‖

W 1−1/p
p (Γ )

]
. (2.12)

Then the function α − α0 satisfies the system

−μ�(α − α0) = rot[F − ∂x1 u] + μ�α0 in Ω,

(α − α0) · τ1 = 0 on Γ,

(α − α0) · τ2 = 0 on Γ,

div(α − α0) = 0 on Γ. (2.13)

Here we have used the fact that ∂x1α = rot ∂x1 u to preserve the rotational structure of the r.h.s. For
the above system we have the following estimate (see [27])

‖α‖W 1
p
� C

[‖F‖L p + ‖∂x1 u‖L p + ‖α0‖W 1
p

]
. (2.14)

The term with α0 can be bounded by (2.12) and to deal with ∂x1 u we apply the interpolation inequal-
ity (A.3). We obtain the term ‖u‖H1 that we bound using (2.4) and finally arrive at

‖α‖W 1
p
� C(ε)

[‖F‖L p + ‖G‖W 1
p
+ ‖w in‖L2(Γin) + ‖u‖

W 1−1/p
p (Γ )

+ ‖B‖
W 1−1/p

p (Γ )

]
+ ε‖u‖W 2

p
. (2.15)

With the bound on the vorticity at hand the next step is to consider the Helmholtz decomposition of
the velocity (the proof can be found in [8]):

u = ∇φ + A, (2.16)
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where φ|Γ = 0 and div A = 0. We see that the field A satisfies the following system

rot A = α in Ω,

div A = 0 in Ω,

A · n = 0 on Γ. (2.17)

This is the standard rot–div system and we have ‖A‖W 2
p
� C‖α‖W 1

p
, what by (2.15) can be rewritten

as

‖A‖W 2
p
� C(ε)

[‖F‖L p + ‖G‖W 1
p
+ ‖u‖

W 1−1/p
p (Γ )

+ ‖B‖
W 1−1/p

p (Γ )
+ ‖w in‖W 1

p(Γin)

]
+ ε‖u‖W 2

p
(2.18)

for any ε > 0. Now we substitute the Helmholtz decomposition to (1.9)1. We get

∇[−(ν + 2μ)�φ + γ w
]= F − ∂x1 A + μ�A − ∂x1φ, (2.19)

but �φ = div u and denoting the l.h.s. of the above equation by F̄ we obtain

−(ν + 2μ)div u + γ w = H̄, (2.20)

where ∇ H̄ = F̄ . Combining the last equation with (1.9)2 we arrive at

γ̄ w + wx1 + (ū + u0)∇w = H, (2.21)

where γ̄ = γ
ν+2μ and

H = H̄

ν + 2μ
+ G. (2.22)

Eq. (2.21) makes it possible to estimate the W 1
p -norm of the density in terms of W 1

p-norm of H . The
latter will be controlled since (2.19) enables us to bound ‖∇H‖Lp and ‖H‖Lp using interpolation and
the energy estimate (2.4). The details are presented in the proof of Lemma 5, but first we estimate
‖w‖W 1

p
in terms of H . The result is stated in the following lemma:

Lemma 4. Assume that w satisfies Eq. (2.21) with H ∈ W 1
p . Then

‖w‖W 1
p
� C

[‖H‖W 1
p
+ ‖w in‖W 1

p(Γin)

]
. (2.23)

Proof. In order to find a bound on ‖w‖Lp we multiply (2.21) by |w|p−2 w and integrate over Ω .
Integrating by parts and next using the boundary conditions we get

∫
Ω

|w|p−2 w wx1 dx = 1

p

∫
Ω

∂x1 |w|p dx = 1

p

∫
Γout

|w|p dσ − 1

p

∫
Γin

|w|p dσ ,
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since n(1) ≡ 0 on Γ0, n(1) ≡ −1 on Γin and n(1) ≡ 1 on Γout. Similarly, applying the boundary condi-
tions we get

∫
Ω

(ū + u0) · (|w|p−2 w∇w
)
dx = 1

p

∫
Ω

(ū + u0) · ∇|w|p dx

= − 1

p

∫
Ω

div(ū + u0)|w|p dx + 1

p

∫
Γout

u(1)
0 |w|p dσ

− 1

p

∫
Γin

u(1)
0 |w|p dσ .

Thus multiplying (2.21) by |w|p−2 w we get

γ̄ ‖w‖p
L p

− 1

p

∫
Ω

div(ū + u0)|w|p dx + 1

p

∫
Γout

|w|p(1 + u(1)
0

)
dσ

� ‖H‖L p ‖w‖p−1
Lp

+ 1

p

∫
Γin

|w in|p(1 + u(1)
0

)
dσ . (2.24)

By the imbedding theorem the smallness of ‖ū + u0‖W 2
p

implies 1 + u(1)
0 > 0 a.e. in Ω and γ̄ −

‖div(ū + u0)‖∞ > 0. Thus the boundary term on the l.h.s. is positive and the term with div(ū + u0)

can be combined with the first term of the l.h.s., what yields

C‖w‖p
L p

� ‖H‖L p ‖w‖p−1
Lp

+ C‖w in‖p
L p(Γin),

and so

‖w‖L p � C
[‖H‖L p + ‖w in‖L p(Γin)

]
. (2.25)

The derivatives of the density are estimated in a similar way. In order to find a bound on wxi we
differentiate (2.21) with respect to xi . If we assume that w ∈ W 1

p then (2.21) implies ũ · ∇w ∈ W 1
p ,

where

ũ := [
1 + (ū + u0)

(1), (ū + u0)
(2), (ū + u0)

(3)
]
. (2.26)

Thus ũ · ∇wxi := (ũ · ∇w)xi − ũxi · ∇w ∈ L p . Hence we can differentiate (2.21) with respect to xi ,
multiply by |wxi |p−2 wxi and integrate. Since ũxi = (ū + u0)xi , we have

∫
Ω

ũxi · (|wxi |p−2 wxi ∇w
)

dx �
∥∥∇(ū + u0)

∥∥
L∞‖∇w‖p

L p
� C‖ū + u0‖W 2

p
‖∇w‖L p .
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Next, since ũ · ∇wxi ∈ L p , we can write

∫
Ω

ũ · |wxi |p−2 wxi ∇wxi dx

= 1

p

∫
Ω

ũ · ∇|wxi |p dx = − 1

p

∫
Ω

|wxi |p div ũ dx + 1

p

∫
Γ

|wxi |pũ · n dσ

= − 1

p

∫
Ω

|wxi |p div ũ dx − 1

p

∫
Γin

|win,xi |p(1 + u(1)
0

)
dσ + 1

p

∫
Γout

|wxi |p(1 + u(1)
0

)
dσ .

For i = 2,3 we have win,xi ∈ L p(Γin) and hence the above defines the trace of |wxi |p on Γout. We
arrive at

γ̄ ‖wxi ‖p
L p

− 1

p

∫
Ω

div(ū + u0)|wxi |p dx + 1

p

∫
Γout

|wxi |p(1 + u(1)
0

)
dσ

� ‖Hxi ‖L p ‖wxi ‖p−1
Lp

+ 1

p

∫
Γin

|win,xi |p(1 + u(1)
0

)
dσ + C‖ū + u0‖W 2

p
‖∇w‖p

L p
. (2.27)

For i = 2,3 it gives directly the bound on ‖wxi ‖Lp . In order to estimate wx1 we start the same way
differentiating (2.21) with respect to x1 and multiplying by |wx1 |p−2 wx1 . The difference in comparison
to wx2 and wx3 is that wx1 is not given on Γin. In order to overcome this difficulty we can observe
that on Γin Eq. (2.21) reduces to

γ̄ w in + (ū + u0)
(2)win,x2 + (ū + u0)

(3)win,x3 + [
1 + (ū + u0)

(1)
]

wx1 = H,

what can be rewritten as

wx1 = 1

1 + (ū + u0)(1)

[
H − γ̄ w in − (ū + u0)τ · ∇τ w in

]
.

Thus we have

‖wx1‖L p(Γin) � C
[‖H|Γin‖L p(Γin) + ‖w in‖W 1

p(Γin)

]
.

Using this bound in (2.27), i = 1, we arrive at the estimate

‖wx1‖p
L p

� C
[‖Hx1‖L p ‖wx1‖p−1

Lp
+ ‖ū + u0‖W 2

p
‖∇w‖p

L p
+ ‖H‖p

L p(Γin) + ‖w in‖p
W 1

p(Γin)

]
. (2.28)

The boundary term ‖H‖Lp(Γin) can by replaced by ‖H‖W 1
p

due to the trace theorem. Thus combining

(2.27) (for x2 and x3) with (2.28) we get

‖∇w‖p
L p

� C
[‖∇H‖L p ‖∇w‖p−1

Lp
+ ‖ū + u0‖W 2

p
‖∇w‖p

L p
+ ‖H‖p

W 1
p
+ ‖w in‖p

W 1
p(Γin)

]
. (2.29)

The term ‖ū + u0‖W 2
p
‖∇w‖p

Lp
can be put on the l.h.s. due to the smallness assumption and thus we

get
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‖∇w‖L p � C
[‖H‖W 1

p
+ ‖w in‖W 1

p(Γin)

]
, (2.30)

what combined with (2.25) yields

‖w‖W 1
p
� C

[‖H‖W 1
p
+ ‖H‖L p(Γin) + ‖w in‖W 1

p(Γin)

]
. (2.31)

Applying again the trace theorem to the term ‖H‖Lp(Γin) we arrive at (2.23). �
The next step is to estimate H in terms of the data. The result is in the following:

Lemma 5. Let H be defined in (2.22). Then ∀δ > 0 we have

‖H‖W 1
p
� δ‖u‖W 2

p
+ C(δ)

[‖F‖L p + ‖G‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin)

]
. (2.32)

Proof. Applying first the interpolation inequality (A.3) and then the estimate (2.4) we get

‖H‖L p � δ1‖∇H‖L p + C(δ1)
[‖F‖L2 + ‖G‖L2 + ‖B‖L2(Γ ) + ‖w in‖L2(Γin)

]
. (2.33)

Next, by (2.19) we have

‖∇H‖L p � C
[‖F‖L p + ‖G‖W 1

p
+ ‖A‖W 2

p
+ ‖∂x1φ‖L p

]
,

where u = ∇φ + A is the Helmholtz decomposition. Now we use the bound (2.18) on ‖A‖W 2
p
. We

obtain a term ‖u‖
W 1−1/p

p (Γ )
, that we estimate using the trace theorem and the interpolation inequal-

ity (A.3). The same inequality is applied to estimate ‖∂x1φ‖Lp . We arrive at

‖∇H‖L p � C
[‖F‖L p + ‖G‖W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin)

]
+ δ1‖u‖W 2

p
+ C(δ1)

[‖F‖L2 + ‖G‖L2 + ‖B‖L p(Γ )

]
. (2.34)

Combining (2.33) and (2.34) we get (2.32). �
Now we are ready to show the a priori estimate in W 2

p × W 1
p on the solution of the linear problem.

Lemma 6. Let (u, w) be a solution to (1.9) with (F , G, B, w in, ū) ∈ L p × W 1
p × W 1−1/p

p (Γ )× W 1
p(Γin)× W 2

p ,
with ‖ū‖W 2

p
small enough and f large enough. Then

‖u‖W 2
p
+ ‖w‖W 1

p
� C

[‖F‖L p + ‖G‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin)

]
. (2.35)

Proof. If (u, w) is a solution to (1.9), then in particular the velocity satisfies the Lamé system

∂x1 u − μ�u − (ν + μ)∇ div u = F − γ ∇w in Ω,

n · 2μD(u) · τi + f u · τi = Bi, i = 1,2 on Γ,

n · u = 0 on Γ. (2.36)
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The classical theory of elliptic equations (Agmon, Douglis, Nirenberg [2,3]) yields

‖u‖W 2
p
� C

[‖F‖L p + ‖w‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖u‖W 1
p

]
.

Applying the interpolation inequality (A.3) to the term ‖u‖W 1
p

and then the energy estimate (2.4) we
get

‖u‖W 2
p
� C

[‖F‖L p + ‖G‖W 1
p
+ ‖w‖W 1

p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖L2(Γin)

]
. (2.37)

In order to complete the proof we combine (2.23) and (2.32) obtaining

‖w‖W 1
p
� δ‖u‖W 2

p
+ C(δ)

[‖F‖L p + ‖G‖W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin)

]
, (2.38)

and choosing for example δ = 1
2C where C is the constant from (2.37) we arrive at (2.35). �

3. Solution of the linear system

In this section we show the existence of the sequence (un, wn) defined in (1.8). To this end we
have to solve the linear system (1.9) where (F , G, ū, u0) ∈ L p × W 1

p × W 2
p × W 2

p are given functions
such that ū ·n = 0 on Γ . First we apply the Galerkin method to prove the existence of a weak solution
and next we show that this solution is strong. For simplicity we will denote ū + u0 by ū.

3.1. Weak solution

Let us recall the definition of the space V (2.5). A natural definition of a weak solution to the
system (1.9) is a couple (u, w) ∈ V × L∞(L2) such that

∫
Ω

{
v · ∂x1 u + 2μD(u) : ∇v + ν div u div v − γ w div v

}
dx +

∫
Γ

f (u · τi)(v · τi)dσ

=
∫
Ω

F · v dx +
∫
Γ

Bi(v · τi)dσ (3.1)

is satisfied ∀v ∈ V and (1.9)2 is satisfied in D′(Ω), i.e. ∀φ ∈ C̄∞(Ω):

−
∫
Ω

wũ · ∇φ dx −
∫
Ω

wφ div ũ dx +
∫

Γout

wφ dσ =
∫
Ω

φ(G − div u)dx +
∫
Γin

w inφ dσ , (3.2)

where ũ is defined in (2.26). Let us introduce an orthonormal basis of V : {ωi}∞i=1. We consider finite

dimensional spaces: V N = {∑N
i=1 αiωi: αi ∈ R} ⊂ V . The sequence of approximations to the velocity

will be searched for in a standard way as uN = ∑N
i=1 cN

i ωi . Due to Eq. (1.9)2 we have to define the
approximations to the density in an appropriate way. Namely, we set w N = S(G N − div uN ), where
S : L2(Ω) → L∞(L2) is defined as

w = S(v) ⇐⇒
{

∂x1 w + ū · ∇w = v in D′(Ω),

w = w in on Γin.
(3.3)
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We want the image of S to be in the space L∞(L2) so that we can apply the theory of transport
equation treating x1 as a ‘time’ variable to show that S is well defined. In order to solve the system
on the r.h.s. of (3.3) we can search for a change of variables x = ψ(z) satisfying the identity

∂z1 = ∂x1 + ū · ∇x. (3.4)

We construct the mapping ψ in the following:

Lemma 7. Let ‖ū‖W 2
p

be small enough. Then there exists a set U ⊂ R
3 and a diffeomorphism x = ψ(z) defined

on U such that Ω = ψ(U ) and (3.4) holds. Moreover, if zn → z and ψ(zn) → Γ0 then n1(z) = 0, where n is
the outward normal to U .

Remark 1. The last condition states that the first component of the normal to ψ−1(Γ0) vanishes, but
since ψ is defined only on U we formulate this condition using the limits. It means simply that the
image U = ψ−1(Ω) is also a cylinder with a flat wall. It will be important in the construction of the
operator S .

Proof of Lemma 7. The identity (3.4) means that ψ must satisfy

∂ψ1

∂z1
= 1 + ū1(ψ),

∂ψ2

∂z1
= ū2(ψ),

∂ψ3

∂z1
= ū3(ψ). (3.5)

A natural condition is that ψ(Γin) = Γin. Thus we can search for ψ(z1, z2, z3) = ψz2,z3 (z1), where for
all (z2, z3) such that (z2, z3,0) ∈ Γin the function ψz2,z3(·) is a solution to a system of ODE:

{
∂sψ

1
z2,z3

= 1 + ū1(ψz2,z3), ∂sψ
2
z2,z3

= ū2(ψz2,z3), ∂sψ
3
z2,z3

= ū3(ψz2,z3),

ψz2,z3(0) = (0, z2, z3).
(3.6)

The r.h.s. of the system (3.6) is a Lipschitz function with a constant K = ‖∇ū‖∞ and thus provided
that ‖ū‖W 2

p
is small enough the system (3.6) has a unique solution defined on some interval (0,bz1,z2 ),

where bz1,z2 depends on z2, z3 and ‖∇ū‖∞ . Provided that the latter is small enough the function
ψ(z) = ψz2,z3 (z1) will be defined on U such that Ω = ψ(U ).

Now we show that ψ(z) = ψz2,z3 (z1) is a diffeomorphism. The derivatives with respect to z1 are
given by (3.5) and the remaining derivatives can be expressed in terms of ū so we can see that
Jψ = 1 + E(ū), where E(ū) is small (and thus Jψ > 0) provided that ‖ū‖W 2

p
is small.

To see that ψ is 1 − 1 we can write it in a form ψ(z) = z + ε(z), where ‖∇ε‖L∞ is small. Assume
that ψ(z1) = ψ(z2) and z1 �= z2. Then there exists i such that |z1

i − z2
i | � 1

3 |z1 − z2| (the lowercase
denotes the coordinate). On the other hand, we have |z1

i − z2
i | = |εi(z1) − εi(z2)| � ‖∇ε‖L∞|z1 − z2|,

what contradicts the smallness of ‖∇ε‖L∞ .
We have shown that the mapping ψ given by (3.6) is a diffeomorphism defined on U such that

ψ(U ) = Ω . Let us denote φ = ψ−1. Now it is natural to define the subsets of ∂U as ∂U = U in ∪ Uout ∪
U0 where U in = Γin, Uout = {z: z = limφ(xn), xn → Γout} and U0 = {z: z = limφ(xn), xn → Γ0}.

In order to complete the proof we have to show that n1(z) = 0 for z ∈ U0. But to this end it is
enough to observe that

Dψ(z)
([1,0,0])= [

1 + ū1(x), ū2(x), ū3(x)
]
,

where x = ψ(z). But for x ∈ Γ0 the vector on the r.h.s. is tangent to Γ0 since ū ·n = 0. We can conclude
that on U0 the image in ψ of a straight line {(s, z2, z3): s ∈ (0,b)} is a curve tangent to Γ0, and thus
U0 is a sum of such lines and so we have n1(z) = 0. The proof of Lemma 7 is completed. �
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Now we can define S(v) for a continuous function v as

S(v)(x) = w in
(
0, φ2(x),φ3(x)

)+
φ1(x)∫
0

v
(
ψ
(
s, φ2(x),φ3(x)

))
ds. (3.7)

The condition n1 = 0 on φ(Γ0) guarantees that a straight line (s, z1, z2): s ∈ (0,b) has a picture in Ω

and thus we integrate along a curve contained in Ω . It means that S is well defined for continuous
functions defined on Ω and the construction of ψ clearly ensures that S satisfies (3.3). Next we have
to extend S on L2(Ω). To this end we need an estimate in L∞(L2). It is given by the following

Lemma 8. Let S be defined in (3.7). Then

∥∥S(v)
∥∥

L∞(L2)
� C

[‖w in‖L2(Γin) + ‖v‖L2(Ω)

]
. (3.8)

Proof. Let Ωx1 be denoted an x1-cut of Ω and let x̄ := (x2, x3). Then by (3.7) we have

∥∥S(v)
∥∥2

L2(Ωx1 )
=

∫
Ωx1

[
w in

(
0, φ2(x),φ3(x)

)+
φ1(x)∫
0

v
(
ψ
(
s, φ2(x),φ3(x)

))
ds

]2

dx̄

� 2‖w in‖2
L2(Γin) + C

∫
Ωx1

φ1(x)∫
0

v2(ψ(
s, φ2(x),φ3(x)

))
ds dx̄

� C
[‖w in‖2

L2(Γin) + ‖v‖2
L2(Ω)

]
.

The above holds for every x1 ∈ (0, L) what implies (3.8). �
Now we can define S(v) for v ∈ L2(Ω) using a standard density argument. Let us take a sequence

of smooth functions vn → v in L2(Ω). By (3.8) the sequence S(vn) satisfies

∥∥S(vn)
∥∥

L∞(L2)
� C

[‖w in‖L2(Γin) + supn ‖vn‖L2

]
. (3.9)

The bound on the r.h.s. is uniform in n and thus S(vn) ⇀∗ η in L∞(L2), and η satisfies the esti-
mate (3.8). In particular for φ ∈ C̄∞(Ω) we have∫

Ω

S(vn)ũ · ∇φ dx →
∫
Ω

ηũ · ∇φ dx and
∫
Ω

S(vn)φ div ũ dx →
∫
Ω

ηφ div ũ dx.

In order to show that η = S(v), i.e. η solves the system on the r.h.s. of (3.3) we have to show that∫
Γout

S(vn)φ dσ → ∫
Γout

ηφ dσ . To this end notice that the proof of Lemma 8 implies in particular
that ‖S(vn)‖L2(Γout) satisfies the estimate (3.9). Thus S(vn) ⇀ ζ in L2(Γout) for some ζ ∈ L2(Γout),
and in particular

∫
Γout

S(vn)φ dσ → ∫
Γout

ζφ dσ . We have to verify that η|Γout = ζ . This would not be
obvious if we only had S(vn) ∈ L∞(L2), but indeed the proof of lemma 8 implies a stronger condition
that supremum (not only the essential supremum) of ‖S(vn)‖L2(Ωx1 ) is bounded, thus we must have
ζ = η|Γout . We have shown that ũ · ∇η = v in D′(Ω), thus indeed η = S(v).

Having the operator S well defined we are ready to proceed with the Galerkin method. Taking
F = F N , u = uN =∑

i cN
i ωi , v = ωk , k = 1 . . . N , and w = w N = S(G N − div uN ) in (3.1), where F N and

G N are orthogonal projections of F and G on V N , we arrive at a system of N equations



2186 T. Piasecki / J. Differential Equations 248 (2010) 2171–2198
BN(uN ,ωk
)= 0, k = 1 . . . N, (3.10)

where BN : V N → V N is defined as

BN(ξ N , v N)=
∫
Ω

{
ξ N∂x1 v N + 2μD

(
ξ N) : ∇v N + div ξ N div v N}dx

− γ

∫
Ω

S
(
G N − div ξ N)div v N dx +

∫
Γ

[
f
(
ξ N · τ j

)− Bi
](

v N · τ j
)

dσ

−
∫
Ω

F N · v N dx. (3.11)

Now, if uN satisfies (3.10) for k = 1 . . . N and w N = S(G N − div uN ), then a pair (uN , w N ) satisfies
(3.1)–(3.2) for (v, φ) ∈ (V N × C̄∞(Ω)). We will call such a pair an approximate solution to (3.1)–(3.2).

The following lemma gives existence of solution to the system (3.10):

Lemma 9. Let F , G ∈ L2(Ω), w in ∈ L2(Γin), B ∈ L2(Γ ) and assume that f is large enough and ‖ū‖W 2
p

is

small enough. Then there exists uN ∈ V N satisfying (3.10) for k = 1 . . . N. Moreover,

∥∥uN
∥∥

H1 � C(D AT A). (3.12)

Proof. In order to solve the system (3.10) we will apply a well-known result in finite dimensional
Hilbert spaces, Lemma 15 in Appendix A. Thus we define the operator P N : V N → V N as

P N(ξ N)=
∑

k

BN(ξ N ,ωk
)
ωk for ξ N ∈ V N . (3.13)

In order to apply Lemma 15 we have to show that (P (ξ N ), ξ N ) > 0 on some sphere in V N . Since
BN (·,·) is linear with respect to the second variable, we clearly have

(
P
(
ξ N), ξ N)= BN(ξ N , ξ N)= 2μ

∫
Ω

D2(ξ N)dx + ν

∫
Ω

div2 ξ N dx

︸ ︷︷ ︸
I1

+
∫
Ω

ξ N∂x1ξ
N dx +

∫
Γ

f
(
ξ N · τi

)2
dσ

︸ ︷︷ ︸
I2

−γ

∫
Ω

S
(
G N − div ξ N)div ξ N dx

︸ ︷︷ ︸
I3

−
∫
Ω

F · ξ N dx −
∫
Γ

Bi
(
ξ N · τi

)
dσ . (3.14)

Using the Korn inequality similarly as in the proof of the energy estimate (2.4) we get

I1 + I2 � C
∥∥ξ N

∥∥2
H1 (3.15)
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for f large enough. We have to find a bound on I3. Denoting ηN = S(G N − div ξ N ) we have

−
∫
Ω

ηN div ξ N dx =
∫
Ω

ηN(∂x1η
N + ū · ∇ηN)dx −

∫
Ω

ηN G N dx. (3.16)

Using (3.8) we get

−
∫
Ω

ηN G N dx � −∥∥ηN
∥∥

L2

∥∥G N
∥∥

L2 � −C
∥∥G N

∥∥
L2

(∥∥G N
∥∥

L2
+ ∥∥ξ N

∥∥
H1 + ‖w in‖L2(Γin)

)
. (3.17)

With the first integral on the r.h.s. of (3.16) we have

∫
Ω

ηN(∂x1η
N + ū · ∇ηN)dx =

∫
U

ηN(z)∂z1η
N(z) Jψ(z)dz

=
∫
U

ηN(z)∂z1η
N(z)dz +

∫
U

ηN(z)∂z1η
N(z)

[
Jψ(z) − 1

]
dz. (3.18)

The first integral can be rewritten as a boundary integral and since n1(z) = 0 on φ(Γ0), it reduces to

1

2

∫
∂U

[
ηN(z)

]2
n1(z)dσ(z) = −1

2

∫
U in

[
ηN (z)

]2
dσ(z) + 1

2

∫
Uout

[
ηN(z)

]2
dσ(z) � −

∫
Γin

w2
in dσ(x).

In the last passage we used the fact that φ|Γin is the identity and that n1(z) > 0 on Uout, what is true
provided that φ does not differ too much from the identity on Γout, what in turn holds under the
smallness assumptions on ū.

With the second integral on the r.h.s. of (3.18) we have

∫
U

ηN(z)∂z1η
N(z)

[
Jψ(z) − 1

]
dz � − supU | Jψ − 1|

∫
U

ηN(z)
(
G N − divx ξ N)(z)dz

� −E
∥∥ηN

∥∥
L2(U )

[∥∥G N
∥∥

L2(U )
+ ∥∥divx ξ N

∥∥
L2(U )

]
� −E

[∥∥G N
∥∥2

L2(Ω)
+ ∥∥ξ N

∥∥2
H1(Ω)

+ ‖w in‖2
L2(Γin)

]
.

Combining this estimate with (3.15) we get

(
P N(ξ N), ξ N)� C

[∥∥ξ N
∥∥2

H1(Ω)
− D

∥∥ξ N
∥∥

H1(Ω)
− D2], (3.19)

where D = ‖F‖L2(Ω) + ‖G‖L2(Ω) + ‖w in‖L2(Γin) + ‖B‖L2(Γ ) . Thus there exists C̃ = C̃(μ,Ω, D) such

that (P N (ξ N ), ξ N ) > 0 for ‖ξ‖ = C̃ , and applying Lemma 15 we conclude that ∃ξ∗: P N (ξ∗) = 0
and ‖ξ∗‖ � C̃ . Moreover, since {ωk}N

k=1 is the basis of V N , we have P N(ξ∗) = 0 ⇔ BN(ξ∗,ωk) = 0,
k = 1 . . . N . Thus ξ∗ is a solution to (3.10). �

Now showing the existence of the weak solution is straightforward. The result is in the following:
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Lemma 10. Assume that F , G ∈ L2(Ω), w in ∈ L2(Γin), B ∈ L2(Γ ). Assume further that f is large enough
and ‖ū‖W 2

p
is small enough. Then there exists (u, w) ∈ V × W that is a weak solution to the system (1.9).

Moreover, the weak solution satisfies the estimate (2.4).

Proof. The estimates (3.8) and (3.12) imply that ‖uN‖H1 + ‖w N‖L∞(L2) � C(D AT A). Thus

uN ⇀ u in H1 and w N ⇀∗ w in L∞(L2)

for some (u, w) ∈ H1 × L∞(L2). It is very easy to verify that (u, w) is a weak solution. First, passing to
the limit in (3.1) for (uN , w N ) we see that u satisfies (3.1) with w . On the other hand, taking the limit
in (3.2) we verify that w = S(G − div u). We conclude that (u, w) satisfies (3.1)–(3.2), thus we have
the weak solution. To show the boundary condition on the density we can rewrite the r.h.s. of (3.3)
as ⎧⎨

⎩ wx1 + ū(2)

1 + ū(1)
wx2 + ū(3)

1 + ū(1)
wx3 = v

1 + ū(1)
in D′(Ω),

w = w in on Γin,

(3.20)

and, treating x1 as a ‘time’ variable, adapt Di Perna–Lions theory of transport equation (see [5]) that
implies the uniqueness of solution to (3.20) in the class L∞(L2). The proof is thus complete. �
3.2. Strong solution

Having the weak solution of the linear system (1.9) we can show quite easily that this solution
is strong if the data has the appropriate regularity. The following lemma gives existence of a strong
solution to (1.9).

Lemma 11. Let F ∈ L p , G ∈ W 1
p , w in ∈ W 1

p(Γin), B ∈ W 1−1/p
p (Γ ) and assume that f is large enough and

‖ū‖W 2
p

is small enough. Then there exists (u, w) ∈ W 2
p × W 1

p that is a strong solution to (1.9) and satisfies the

estimate (2.35).

Proof. Since (1.9) is a linear system, the a priori estimate (2.35) will imply the regularity of the
weak solution once we can deal with the singularity of the boundary at the junctions of Γ0 with
Γin and Γout. This however can be done easily since Ω is symmetric w.r.t. the plane {x1 = 0}
and the slip boundary conditions preserve this symmetry. More precisely, for {x̃ = (−x1, x2, x3):
x = (x1, x2, x3) ∈ Ω} we can consider a vector field

ũ(x̃) = [−u1(x), u2(x), u3(x)
]
. (3.21)

Then on Γin we have ũ ·n = u ·n and n · D(ũ) · τi + ũ · τi = n · D(u) · τi + u · τi . Hence we can extend the
weak solution on the negative values of x1 using (3.21) and, applying the estimate (2.35), show that
the extended solution is in W 2

p × W 1
p . An identical argument can be applied on Γout and we conclude

that (u, w) is a strong solution to (1.9). �
4. Bounds on the approximating sequence

In this section we will show the bounds on the sequence {(un, wn)} of solutions to (1.8). The term
u ·∇w in the continuity equation makes it impossible to show directly the convergence in W 2

p ×W 1
p to

the strong solution of (1.6). We can show however that the sequence of iterated solutions is bounded
in W 2

p × W 1
p , and using this bound we can conclude it is a Cauchy sequence in H1 × L∞(L2), and thus

converges in this space to some couple (u, w). On the other hand, the boundedness implies weak
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convergence in W 2
p × W 1

p , and the limit must be (u, w). The following lemma gives the boundedness

of (un, wn) in W 2
p × W 1

p .

Lemma 12. Let {(un, wn)} be a sequence of solutions to (1.8) starting from (u0, w0) = (0,0). Then

∥∥un
∥∥

W 2
p
+ ∥∥wn

∥∥
W 1

p
� M, (4.1)

where M can be arbitrarily small provided that ‖u0‖W 2
p

(extension of the boundary data (1.4), not to be con-

fused with u0 from (u0, w0), the starting point of the sequence (un, wn)), ‖B‖
W 1−1/p

p (Γ )
, ‖w in‖W 1

p(Γin) and

‖ū‖W 2
p

are small enough and f is large enough.

Proof. The estimate (2.35) for the iterated system reads

∥∥un+1
∥∥

W 2
p
+ ∥∥wn+1

∥∥
W 1

p

� C
[∥∥F

(
un, wn)∥∥

L p
+ ∥∥G

(
un, wn)∥∥

W 1
p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin)

]
. (4.2)

Denoting An = ‖un‖W 2
p
+‖wn‖W 1

p
and b = ‖u0‖W 2

p
+‖B‖

W 1−1/p
p (Γ )

+‖w in‖W 1
p(Γin) , from (2.1) and (4.2)

we get

An+1 � C A2
n + b, (4.3)

thus An is bounded by a constant that can be arbitrarily small provided that A0 and b are small
enough. Indeed let us fix 0 < δ < 1

4C and assume that b < δ. Then (4.3) entails an implication An �
2b ⇒ An+1 � 2b and we can conclude that

δ <
1

4
,

b < δ,

A0 < 2b

⎫⎪⎪⎬
⎪⎪⎭ �⇒ An < 2δ ∀n ∈ N. (4.4)

Hence if we fix 0 < ε < 1
4 and assume that ‖u0‖W 2

p
+ ‖B‖

W 1−1/p
p (Γ )

+ ‖w in‖W 1
p(Γin) < ε then starting

the iteration from (u0, w0) = (0,0) we have

∥∥un
∥∥

W 2
p
+ ∥∥wn

∥∥
W 1

p
� 2δ ∀n ∈ N. � (4.5)

The next lemma almost completes the proof of the Cauchy condition in H1 × L∞(L2) for the
sequence of iterated solutions.

Lemma 13. Let the assumptions of Lemma 12 hold. Then we have

∥∥un+1 − um+1
∥∥

H1 + ∥∥wn+1 − wm+1
∥∥

L∞(L2)
� E(M)

(∥∥un − um
∥∥

H1 + ∥∥wn − wm
∥∥

L∞(L2)

)
, (4.6)

where M is the constant from (4.1).
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Proof. Subtracting (1.8)m from (1.8)n we arrive at

∂x1

(
un+1 − um+1)− μ�

(
un+1 − um+1)− (ν + μ)∇ div

(
un+1 − um+1)

+ γ ∇(
wn+1 − wm+1)= F

(
un, wn)− F

(
um, wm),

div
(
un+1 − um+1)+ ∂x1

(
wn+1 − wm+1)+ (

un + u0
) · ∇(

wn+1 − wm+1)
= G

(
un, wn)− G

(
um, wm)+ (

un − um) · ∇wm,

n · 2μD
(
un+1 − um+1) · τi + f

(
un+1 − um+1) · τi |Γ = 0,

n · (un+1 − um+1)∣∣
Γ

= 0,

wn+1 − wm+1|Γin = 0.

The estimate (2.4) applied to this system yields

∥∥un+1 − um+1
∥∥

H1 + ∥∥wn+1 − wm+1
∥∥

L∞(L2)

�
∥∥F

(
un, wn)− F

(
um, wm)∥∥

V ∗ + ∥∥G
(
un, wn)− G

(
um, wm)∥∥

L2
+ ∥∥(un − um) · ∇wm

∥∥
L2

.

In order to derive (4.6) from the above inequality we have to examine the l.h.s. The part with G is
the most straightforward and we have

∥∥G
(
un, wn)− G

(
um, wm)∥∥

L2
� E(M)

(∥∥un − um
∥∥

H1 + ∥∥wn − wm
∥∥

L∞(L2)

)
. (4.7)

The function F is more complicated and we have to look at the difference more carefully. A direct
calculation yields F (un, wn) − F (um, wm) = F n,m

1 + F n,m
2 , where

∥∥F n,m
1

∥∥
V ∗ � E(M)

(∥∥un − um
∥∥

H1 + ∥∥wn − wm
∥∥

L∞(L2)

)
(4.8)

and

F n,m
2 = −[

δπ ′(wn)− δπ ′(wm)]∇wn + δπ ′(wm)∇(
wn − wm)=: F n,m

2,1 + F n,m
2,2 , (4.9)

where δπ ′(·) is defined in (4.11). Since we are interested in the V ∗-norm of F n,m
2 , we have to multiply

F n,m
2,1 and F n,m

2,2 by v ∈ V and integrate. With F n,m
2,2 we get

∫
Ω

δπ ′(wm)∇(
wn − wm) · v dx

= −
∫
Ω

δπ ′(wm)(wn − wm)div v dx −
∫
Ω

(
wn − wm)∇[

δπ ′(wm)] · v dx,

and thus we have to estimate δπ ′(wm) in terms of wm . Using (2.3) we can write

δπ ′(wm)= wm

1∫
π ′′(t wm + 1

)
dt, (4.10)
0
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what yields

∥∥δπ ′(wm)∥∥
Lq

� C(π)
∥∥wm

∥∥
Lq

, 1 � q � ∞. (4.11)

Now we have to estimate ‖∇δπ ′(wm)‖Lp . Since π is a C3-function, we can take the gradient of (4.10)
and verify that

∥∥∇δπ ′(wm)∥∥
L p

� C(π)
∥∥∇wm

∥∥
L p

. (4.12)

Thus we have∣∣∣∣
∫
Ω

δπ ′(wm)(wn − wm)div v dx

∣∣∣∣� ∥∥δπ ′(wm)∥∥
L∞
∥∥wn − wm

∥∥
L2

‖div v‖L2

� C
∥∥wm

∥∥
W 1

p

∥∥wn − wm
∥∥

L∞(L2)
‖v‖V . (4.13)

Next, since p > 3, by the Sobolev imbedding theorem we have∣∣∣∣
∫
Ω

(
wn − wm)∇[

δπ ′(wm)] · v dx

∣∣∣∣� ∥∥wn − wm
∥∥

L2

∥∥∇δπ ′(wm)∥∥
L p

‖v‖L6

� C
∥∥wm

∥∥
W 1

p

∥∥wn − wm
∥∥

L∞(L2)
‖v‖V . (4.14)

Combining (4.13) and (4.14) we get

∥∥F n,m
2,2

∥∥
V ∗ � E(M)

∥∥wn − wm
∥∥

L∞(L2)
. (4.15)

In order to estimate F n,m
2,1 we will use again (2.3) to write

δπ ′(wn)− δπ ′(wm)= (
wn − wm) 1∫

0

p′′[t wn + (1 − t)wm + 1
]

dt, (4.16)

what yields ‖δπ ′(wn) − δπ ′(wm)‖L2 � C‖wn − wm‖L2 . With this observation we can estimate

∣∣∣∣
∫
Ω

[
δπ ′(wn)− δπ ′(wm)]∇wn · v dx

∣∣∣∣� ∥∥δπ ′(wn)− δπ ′(wm)∥∥
L2

∥∥∇wn
∥∥

L p
‖v‖L6

� E
(∥∥wn

∥∥
W 1

p

)∥∥wn − wm
∥∥

L∞(L2)
‖v‖V ,

what yields

∥∥F n,m
2,1

∥∥
V ∗ � E(M)

∥∥wn − wm
∥∥

L∞(L2)
. (4.17)

Combining the estimates on F n,m
1 , F n,m

2,1 and F n,m
2,2 we get

∥∥F
(
un, wn)− F

(
um, wm)∥∥ ∗ � E(M)

[∥∥un − wn
∥∥

1 + ∥∥wn − wm
∥∥ ]

. (4.18)
V H L∞(L2)
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The part that remains to estimate is (un − um) ·∇wm . We shall notice here that this is the term which
makes it impossible to show the convergence in W 2

p × W 1
p directly. Namely, if we would like to apply

the estimate (2.35) to the system for the difference then we would have to estimate ‖(un − um) ·
∇wm‖W 1

p
what cannot be done as we do not have any knowledge about ‖w‖W 2

p
.

Fortunately we only need to estimate the L2-norm of this awkward term, what is straightforward.
Namely, we have

∥∥(un − um) · ∇wm
∥∥

L2
�
∥∥un − um

∥∥
Lq

∥∥∇wm
∥∥

L p
� C

∥∥wm
∥∥

W 1
p

∥∥un − um
∥∥

H1 , (4.19)

since q = 2p
p−2 < 6 for p > 3. We have thus completed the proof of (4.6). �

Now, Lemma 12 implies that the constant E(M) < 1 provided that the data is small enough and
the starting point (u0, w0) = (0,0). It completes the proof of the Cauchy condition in H1 × L∞(L2)

for the sequence {(un, wn)}.

Remark 2. Lemmas 12 and 13 hold for any starting point (u0, w0) small enough in W 2
p × W 1

p , not
necessarily (0,0), but we can start the iteration from (0,0) without loss of generality.

5. Proof of Theorem 1

In this section we prove our main result, Theorem 1. First we show existence of the solution
passing to the limit with the sequence (un, wn) and next we show that this solution is unique in the
class of solutions satisfying (1.3).

Existence of the solution. Since we have the Cauchy condition on the sequence (un, wn) only in
the space H1(Ω) × L∞(L2), first we have to show the convergence in the weak formulation of the
problem (1.6), transferring the derivatives of the density on the test function. The sequence (un, wn)

satisfies in particular the following weak formulation of (1.8)∫
Ω

{
v · ∂x1 un+1 + 2μD

(
un+1) : ∇v + ν div un+1 div v − γ wn+1 div v

}
dx

+
∫
Γ

f
(
un+1 · τi

)
(v · τi)dσ =

∫
Ω

F
(
un, wn) · v dx +

∫
Γ

Bi(v · τi)dσ (5.1)

and

−
∫
Ω

wn+1[ũn · ∇φ + div ũnφ
]

dx +
∫

Γout

wn+1φ dσ

=
∫
Ω

φ
(
G
(
un, wn)− div un+1)dx +

∫
Γin

w inφ dσ (5.2)

∀(v, φ) ∈ V × C̄∞(Ω), where ũn = [1 + (un + u0)
(1), (un + u0)

(2), (un + u0)
(3)].

Now using the convergence in H1 × L∞(L2) combined with the bound (4.1) in W 2
p × W 1

p we can
pass to the limit in (5.1)–(5.2). The convergence in all the terms on the r.h.s. of (5.1) is obvious and
the only nontrivial step to show the convergence of F (un, wn) is to show that∫

δπ ′(wn)∇wn · v dx →
∫

δπ ′(w)∇w · v dx,
Ω Ω
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what is equivalent to

−
∫
Ω

δπ ′(w)
(

wn − w
)

div v dx −
∫
Ω

(
wn − w

)∇δπ ′(w) · v dx

+
∫
Ω

[
δπ ′(wn)− δπ ′(w)

]∇wn · v dx → 0. (5.3)

The first and second integral on the l.h.s. converges by (4.11) and (4.12) respectively (both with w
instead of wm). Finally, we easily verify that ‖δπ ′(wn) − δπ ′(w)‖Lp � C(π)‖wn − w‖Lp what entails
convergence of the third integral. Hence (5.3) holds.

We conclude that (u, w) satisfies

∫
Ω

{
v · ∂x1 u + 2μD(u) : ∇v + ν div u div v − γ w div v

}
dx +

∫
Γ

f (u · τi)(v · τi)dσ

=
∫
Ω

F (u, w) · v dx +
∫
Γ

Bi(v · τi)dσ (5.4)

∀v ∈ V . In (5.2) we have to check the convergence in the boundary term. We can use the same
argument as in the proof of the existence of solution to the linear system when we have passed to the
limit with finite dimensional approximations. Namely, in fact wn satisfies the Cauchy condition not
only in L∞(L2). A stronger fact holds that wn is a Cauchy sequence in L2(Ωx1 ) for every x1 ∈ [0, L],
where Ωx1 denotes the x1-cut of Ω . In particular wn → ζ in L2(Γout) for some ζ ∈ L2(Γout) and
since supx1∈[0,L] ‖w‖L2(Ωx1 ) < ∞ we conclude that ζ = w|Γout . This result combined with the obvious
convergence of other terms in (5.2) implies

−
∫
Ω

w[ũ · ∇φ + div ũφ]dx +
∫

Γout

wφ dσ =
∫
Ω

φ
(
G(u, w) − div u

)
dx +

∫
Γin

w inφ dσ (5.5)

∀φ ∈ C̄∞(Ω), where ũ = [1 + (u + u0)
(1), (u + u0)

(2), (u + u0)
(3)].

Hence we have shown that (u, w) satisfies (5.4)–(5.5), the weak formulation of (1.6). Now we want
to show that the strong formulation also holds.

The bound in W 2
p × W 1

p implies (unk , wnk ) ⇀ (ū, w̄) in W 2
p × W 1

p for some (ū, w̄) ∈ W 2
p × W 1

p . On

the other hand, we have (unk , wnk ) → (u, w) in H1 × L∞(L2), thus we conclude that (ū, w̄) = (u, w).
Hence we can integrate by parts in (5.4)–(5.5) to obtain

∫
Ω

[
F (u, w) − μ�u − (μ + ν)∇ div u + γ ∇w

] · v dx

=
∫
Γ

[
Bi(v · τi) − n · [2μD(u) + ν div u Id

] · v − f (u · τi)(v · τi)
]

dσ (5.6)

and

∫ [
wx1 + (u + u0) · ∇w

]
φ dx =

∫ [
G(u, w) − div u

]
φ dx. (5.7)
Ω Ω
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From these equations we conclude that (1.6)1,2 are satisfied a.e. in Ω and (1.6)3 is satisfied a.e. on Γ .
It remains to verify that (1.6)4 is satisfied a.e. on Γ and (1.6)5 holds a.e. on Γin. The condition (1.6)4
results from the convergence un → u in H1.

Finally, wn ⇀ w in W 1
p implies that wn|Γin ⇀ trw|Γin in L p(Γin). On the other hand wn|Γin → w in

in W 1
p(Γin) since it is a constant sequence. We conclude that w|Γin = w in.

Uniqueness. In order to prove the uniqueness of the solution consider (v1,ρ1) and (v2,ρ2) being
two solutions to (1.1) satisfying (1.3). We will prove that

‖v1 − v2‖2
H1 + ‖ρ1 − ρ2‖2

L2
= 0. (5.8)

For simplicity let us denote u := v1 − v2 and w := ρ1 − ρ2. We will show that

‖u‖H1 � E‖w‖L2 (5.9)

and

‖w‖L2 � C‖u‖H1 , (5.10)

what obviously implies (5.8). Subtracting Eqs. (1.1) for (v1,ρ1) and (v2,ρ2) we get

w v2 · ∇v2 + ρ1u · ∇v2 + ρ1 v1 · ∇u − μ�u − (μ + ν)∇ div u + Iπ∇w + w∇ Iπ = 0,

ρ1 div u + w div v2 + u · ∇ρ2 + v1 · ∇w = 0,

n · 2μD(u) · τ |Γ = 0,

n · u|Γ = 0,

w|Γin = 0, (5.11)

where

Iπ =
1∫

0

π ′((tρ1) + (1 − t)ρ2
)

dt. (5.12)

Notice that Iπ ∈ W 1
p since ρi ∈ W 1

p and π ∈ C3. In order to show (5.9) we follow the proof of (2.4)
multiplying (5.11)1 by ρ1u (it will be clarified soon why take the test function ρ1u instead of u).
Using (2.6) we get∫

Ω

(
2μD2(u) + νρ1 div2 u

)
dx

+
∫
Ω

{
2μ

[
(ρ1 − 1)D(u) : ∇u + D(u) : (u ⊗ ∇ρ1)

]+ ν(div u)u · ∇ρ1
}

dx

︸ ︷︷ ︸
I1

−
∫
Ω

{
wu∇ρ1 + ρ2

1 u2 · ∇v2 + uwρ1 v2 · ∇v2
}

dx

︸ ︷︷ ︸
I

+
∫
Ω

ρ2
1 (v1 · ∇u) · u dx

︸ ︷︷ ︸
I
2 3



T. Piasecki / J. Differential Equations 248 (2010) 2171–2198 2195
+
∫
Ω

ρ1 wu · ∇ Iπ dx

︸ ︷︷ ︸
I4

−
∫
Ω

wu · ∇(Iπρ1)dx

︸ ︷︷ ︸
I5

−
∫
Ω

Iπ wρ1 div u dx +
∫
Γ

ρ1 f u2 dσ = 0.

We have |I1| + |I2| � E(‖u‖2
H1 + ‖w‖2

L2
) and in order to deal with I3 let us split it into two parts:

2I3 =
∫
Ω

{(
ρ2

1 v(1)
1 − 1

)
∂x1 |u|2 + ρ2

1 v(2)
1 ∂x2 |u|2 + ρ2

1 v(3)
1 ∂x3 |u|2}dx

︸ ︷︷ ︸
I1
3

+
∫
Ω

∂x1 |u|2 dx

︸ ︷︷ ︸
I2
3

.

We have |I1
3| � E‖u‖2

H1 and I2
3 = ∫

Γ
|u|2n(1) dσ = − ∫

Γin
|u|2 dσ + ∫

Γout
|u|2 dσ . In order to examine I4

and I5 we have to differentiate (5.12) what yields

∇ Iπ = I1
π∇ρ1 + I2

π∇ρ2, (5.13)

where

I1
π =

1∫
0

π ′′(tρ1 + (1 − t)ρ2
)
t dt and I2

π =
1∫

0

π ′′(tρ1 + (1 − t)ρ2
)
(1 − t)dt.

We have ∣∣∣∣
∫
Ω

ρ1 I1
π uw∇ρ1 dx

∣∣∣∣� ∥∥ρ1 I1
π

∥∥
L∞‖∇ρ1‖L p ‖u‖L6‖w‖L2 � E

(‖u‖2
H1 + ‖w‖2

L2

)
,

and the same for
∫
Ω

ρ1 I2
π uw∇ρ2 dx. Thus the application of (5.13) to I4 yields |I4| � E(‖u‖2

H1 +
‖w‖2

L2
). To estimate |I5| it is enough to use (5.13) to compute ∇(Iπρ1) and then with the same

arguments as in case of I4 we get |I5| � E(‖u‖2
H1 + ‖w‖2

L2
). Summarizing our estimates we can write

‖u‖2
H1 +

∫
Γin

(
ρ1 f − 1

2

)
|u|2 dσ +

∫
Γ0

ρ1 f |u|2 dσ +
∫

Γout

(
ρ1 f + 1

2

)
|u|2 dσ

�
∫
Ω

Iπ wρ1 div u dx + E‖w‖2
L2

. (5.14)

The boundary integrals over Γ0 and Γout will be nonnegative for any f � 0 and the integral over
Γin will be nonnegative for f large enough on Γin. Now in order to obtain (5.9) from (5.14) we can
express ρ1 div u in terms of w using Eq. (5.11)2 (this is why we have tested (5.11)1 with ρ1u instead
of u) and rewrite (5.14) as

‖u‖2
H1 � −

∫
Ω

Iπ w2 div v2 dx

︸ ︷︷ ︸
I

−
∫
Ω

Iπ wu · ∇ρ2 dx

︸ ︷︷ ︸
I

−
∫
Ω

Iπ v1 w · ∇w dx

︸ ︷︷ ︸
I

+E‖w‖2
L2

. (5.15)
6 7 8
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We verify easily that |I6| + |I7| � E(‖u‖2
H1

+ ‖w‖2
L2

). We have to put a little more effort to find a
bound on I8. Let us integrate by parts:

2I8 =
∫
Ω

Iπ v1∇w2 dx = −
∫
Ω

w2 div(Iπ v1)dx +
∫
Γ

w2 Iπ v1 · n dσ .

The boundary term reduces to
∫
Γout

Iπ w2 v(1)
1 dσ > 0 and in order to deal with the first term on the

l.h.s. notice that

div(Iπ v1) = div v1 Iπ + I1
π v1 · ∇ρ1 + I2

π v1 · ∇ρ2,

hence

2I8 � −
∫
Ω

w2 div v1 Iπ dx

︸ ︷︷ ︸
I1
8

−
∫
Ω

w2 v1 · ∇ρ1 I1
π dx

︸ ︷︷ ︸
I2
8

−
∫
Ω

w2 v1 · ∇ρ2 I2
π dx

︸ ︷︷ ︸
I3
8

.

Obviously we have |I1
8| � E‖w‖2

L2
. In order to bound I2

8 we can apply the continuity equation that

yields vi · ∇ρi = −ρi div vi , what implies |I2
8| = | ∫

Ω
w2ρ1 div vi I1

π dx| � E‖w‖2
L2

. In the term I3
8 we

can rewrite the mixed component as v1 ·∇ρ2 = u ·∇ρ2 + v2 ·∇ρ2 and conclude that |I3
8| � E(‖u‖2

H1 +
‖w‖2

L2
). Combining the above results with (5.14) we get (5.9).

In order to show (5.9) we express the pointwise value of w using (5.11)2:

w2(x1, x2) =
x1∫

0

w ws(s, x2)ds = −
x1∫

0

ρ1

v(1)
1

w div u(s, x2)ds

−
x1∫

0

1

v(1)
1

(
w2 div v2 + wu · ∇ρ2

)
(s, x2)ds

− 1

2

x1∫
0

1

v(1)
1

[
v(2)

1 ∂x2 w2 + v(3)
1 ∂x3 w2](s, x2)ds

=: w2
1 + w2

2 + w2
3.

We estimate directly the first two components of the l.h.s. obtaining∫
Ω

w2
1 dx � ε‖w‖2

L2
+ C(ε)‖u‖2

H1
∀ε > 0

and
∫
Ω

w2
2 dx � E(‖w‖2

L2
+‖u‖2

H1 ). To complete the proof we have to find a bound on w2
3. To this end

notice that

∫
Ω

w2
3 dx = 1

2

L∫
0

∫
Px

1

v(1)
1

[
v(2)

1 ∂x2 w2 + v(3)
1 ∂x3 w2]dx dx1,
1
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where Px1 = Ω0 × (0, x1). Integrating by parts in the inner integral we get

∫
Ω

w2
3 dx = 1

2

L∫
0

{
−
∫

Px1

w2
[
∂x2

v(2)
1

v(1)
1

+ ∂x3

v(3)
1

v(1)
1

]
dx +

∫
∂ Px1

w2

v(1)
1

[
v(2)

1 n(2) + v(3)
1 n(3)

]
dσ

}
dx1.

The boundary integral reduces to
∫
Γ0∩∂ Px1

w2 v ·n dσ = 0, what implies
∫
Ω

w3
3 dx � E‖w‖2

L2
and (5.10)

easily follows completing the proof of the uniqueness, and hence the proof of the theorem. �
Appendix A

Vorticity on the boundary. In order to show the boundary relation (2.11)3,4 we have to differentiate
(1.9)4 with respect to tangential directions at a given point x0 ∈ Γ . Without loss of generality we can
assume that n(x0) = (1,0,0), τ1(x0) = (0,1,0) and τ2(x0) = (0,0,1). Then we can rewrite (1.9)3 as
(all the quantities are taken at x0):

{
μ
(
u1,2 +u2,1

)+ f u2 = B1,

μ
(
u1,3 +u3,1

)+ f u3 = B2.
(A.1)

Differentiating (1.9)4 with respect to the tangential direction τ1 we get

(
d

dτ1
n

)
· u + u1,2 = 0. (A.2)

If we denote by χ1 the curvature of the curve generated by τ1 then we have d
dτ1

n = χ1τ1 and (A.2)

can be rewritten as χ1(τ1 · u) + u1,2 = 0. Combining this equation with (A.1)1 we get

u2,1 −u1,2 =
(

2χ1 − f

μ

)
(u · τ1) + B1

μ
,

what is exactly (2.11)3. (2.11)4 can be shown in the same way differentiating (1.9)4 with respect to
the tangential direction τ2.

Lemma 14 (Interpolation inequality). ∀ε > 0, ∃C(ε, p,Ω) such that ∀ f ∈ W 1
p(Q ):

‖ f ‖L p � ε‖∇ f ‖L p + C‖ f ‖L2 . (A.3)

Proof. Inequality (A.3) results from the inequality ‖ f ‖Lp � C(p,Ω)‖ f ‖θ

W 1
2
‖ f ‖1−θ

L2
for 2 � p < ∞,

where θ = n(p−2)
2p (see [1, Theorem 5.8]). Using Cauchy inequality with ε we get A.3. �

The last auxiliary result we use is a following fact on finitely dimensional Hilbert spaces (the proof
can be found in [25]):

Lemma 15. Let X be a finite dimensional Hilbert space and let P : X → X be a continuous operator satisfying

∃M > 0: (
P (ξ), ξ

)
> 0 for ‖ξ‖ = M. (A.4)

Then ∃ξ∗: ‖ξ∗‖ � M and P (ξ∗) = 0.
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