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2 = £y x (0,L) € R3. We show existence of a solution (v, p) €

Msc- W2 (2) x W)(£2), p > 3, where v is the velocity of the fluid and
35Q30 p is the density, that is a small perturbation of a constant flow
76N10 (v=1[1,0,0], p =1). We also show that this solution is unique

in a class of small perturbations of (v, p). The term u - Vw in
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Navier-Stokes equations applying directly a fixed point method. Thus in order to show
Steady compressible flow existence of the solution we construct a sequence (v", p") that is
Inflow boundary condition bounded in W;(.Q) x W},(.Q) and satisfies the Cauchy condition in

Slip boundary conditions

' a larger space Lo (0, L; L2(£29)) what enables us to deduce that the
Strong solutions

weak limit of a subsequence of (v", p") is in fact a strong solution
to our problem.
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1. Introduction

The mathematical description of a flow of a viscous, compressible fluid usually lead to problems
of mixed character as the momentum equation is elliptic (in stationary case) or parabolic (in case
of time-dependent flow) in the velocity, while the continuity equation is hyperbolic in the density.
Therefore, the application of standard methods usually applied to elliptic or hyperbolic problems fails
in the mathematical analysis of the compressible flows and a combination of such techniques, as
well as development of new mathematical tools is required. As a result a consistent theory of weak
solutions to the Navier-Stokes equations for compressible fluids has been developed quite recently in
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the 90’s, mainly due to the work of Lions [12] and Feireisl [7]. An overview of these results is given
in the monograph [18]. A modification of this approach in case of steady flows with slip boundary
conditions has been developed by Mucha and Pokorny in a two dimensional case in [15] and in 3D
in [24].

The issue of regular solutions is less investigated and the problems are considered mainly with
Dirichlet boundary conditions. If we assume that the velocity does not vanish on the boundary, the
hyperbolicity of the continuity equation makes it necessary to prescribe the density on the part of
the boundary where the flow enters the domain. In [26] Valli and Zajaczkowski investigate a time-
dependent system with inflow boundary condition, obtaining also a result on existence of a solution to
stationary problem. The existence of regular solutions to stationary problems with an inflow condition
on the density has been investigated by Kellogg and Kweon [9] and Kweon and Song [11]. Their
results require some smallness assumptions on the data, and the regularity of solutions is a subject to
some constraints on the geometry of the boundary near the points where the inflow and outlow parts
of the boundary meet. In [10] Kellogg and Kweon consider a domain where the inflow and outflow
parts of the boundary are separated, obtaining regular solutions.

The lack of general existence results inhibits the development of qualitative analysis of compress-
ible flows. Therefore it is worth to mention here the papers by Plotnikov and Sokolowski who has
investigated shape optimization problems with inflow boundary condition in 2D [22] and 3D [23]
dealing with weak solutions. More recently Plotnikov, Ruban and Sokolowski have investigated shape
optimization problems working with strong solutions in [20] and [21].

It seems interesting both from the mathematical point of view and in the eye of applications to
investigate problems with inflow boundary condition on the density combined with slip boundary
conditions on the velocity, that enables to describe precisely the action between the fluid and the
boundary. Such problem is investigated in this paper. The domain is a three dimensional cylinder and
we assume that the fluid slips along the boundary with a given friction coefficient and there is no
flow across the wall of the cylinder. We show existence of a regular solution that can be considered a
small perturbation of a constant solution. The method of the proof is outlined in the next part of the
introduction and now we are in a position to formulate our problem more precisely.

The flow is described by the Navier-Stokes system supplied with the slip boundary conditions on
the velocity. The complete system reads

pv-Vv—puAv — (u+v)Vdivv +Vr(p) =0 in 2,

div(pv) =0 in £2,
n-T(v,7(p) w+ fv-t=b,, k=12 onTr,
n-v=d onl,
P = Pin on Iip, (11)

where v : R® — R3 is the unknown velocity field of the fluid and p : R? — R is the unknown density.
We assume that the pressure is a function of the density of a class C3. Further, ; and v are viscosity
coefficients satisfying 4 >0, v+2u > 0 and f > 0 is a friction coefficient. The domain £2 is a cylinder
in R3 of a form 2 = £29 x (0, L) where £2¢ € R? is a set with a boundary regular enough and L is a
positive constant (see Fig. 1). We want to show existence of a solution that can be considered a small
perturbation of a constant flow (v, p) = ([1,0,0], 1). Thus we denote the subsets of the boundary
I'=02 as I' =T U Tou U Ty, where Ip={xel': v-n<O0}, loyu={xe€l': v.-n>0}and I =
{xel': v-n=0}.

By n we denote the outward unit normal to I" and 71, 7, are the unit tangent vectors to I". Since
the boundary has singularities at the junctions of I, and oy with Iy, for the boundary traces
we will consider functional spaces that are algebraic sums of spaces defined on the boundary. More
precisely for s,q € R we shall denote W(I") := W) + WI(Tow) + WI(Ip). We assume that
be W;fl/p(l"), Pin € W;(I“in) and d € Wff]/p(l") are given functions and d =0 on Iy what means
that Ip is an impermeable wall.
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Fig. 1. The domain.

For simplicity we consider the momentum equation with zero r.h.s., but our proofs work without
any modification for the r.h.s. pF where F is small enough in L.

We shall make here some remarks concerning notation. Since we will usually use the spaces of
functions defined on £2, we will skip §£2 in notation of the spaces, for example we will write L,
instead of Ly($2). For the density we will use estimates in the space Ly, (0, L; L2($20)). For simplicity
we will denote this space by L., (Ly). A constant dependent on the data that can be controlled, but
not necessarily small, will be denoted by C, and E shall denote a constant that can be arbitrarily small
provided that the data is small enough.

In order to formulate our main result let us define a quantity Do that measures how the boundary
data b, d and pj, differ from the values of, respectively, fv-7;, n-v and p in appropriate norms. We
have v - 1; = rl.m and v -n=nM, thus we define

Do = |bi — fr"| Wiy + |d —n®| w2y 100 = Tl - (1.2)
Our main result is:

Theorem 1. Assume that D defined in (1.2) is small enough, f is large enough and p > 3. Then there exists a
solution (v, p) € W5(£2) x W (£2) to the system (1.1) and

IV = Vllyz + 1l = Allwy < EDo), (13)

where E(Dg) can be arbitrarily small provided that D¢ is small enough. This solution in unique in the class of
solutions satisfying the estimate (1.3).

The major difficulty in the proof of Theorem 1 is in the term u-Vw in the continuity equation, that
yields impossible a direct application of a fixed point argument. To overcome this problem one can
apply the method of elliptic regularization, known rather from the theory of weak solutions (see [18]).
This method has been applied to a similar problem in a two dimensional case in [19]. However, it
complicates considerably the computations since we have to find the bound on the artificial diffusive
term. Here we apply a method of successive approximations, that leads to a more direct proof. In
order to prove Theorem 1 we will construct a sequence (u", w") € Wg X W}J that converges to the
solution of (1.1). Due to the presence of the term u - Vw we cannot show directly the convergence
in Wg X Wllj, but we can show that (u", w") is a Cauchy sequence in a larger space H! x Loo(L2)
and thus converges in this space to the weak solution of (1.1). On the other hand, the sequence is
bounded in Wg X W},, what enables us to show that the weak solution is in fact strong. A similar
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approach has been applied in [4] to an evolutionary Navier-Stokes system in a framework of Besov
spaces. Another method based on the same idea is to construct an operator that maps certain ball to
itself in stronger topology and is a contraction in weaker topology, and apply a generalization of the
Banach theorem that gives a unique fixed point for such operator. Such approach has been applied,
among others, by Dutto and Novotny in [6] to show existence of a solution to steady compressible
Navier-Stokes equations in an exterior domain in 2D, and by Novotny and Pokorny in [17] to prove
existence for a system describing steady flow of viscoelastic fluid.

We start with removing the inhomogeneity from the boundary condition (1.1)4. To this end let us
construct ug € W (£2) such that

n-uglp =d—nW. (14)
Due to the assumption of smallness of d —n» in W;_l/p(l“) we can assume that
luollyz < 1. (1.5)
From now on we assume (1.5) in all our results. Now we consider
u=v—v—uy and w=p—p.

One can easily verify that (u, w) satisfies the following system:

O U — AU — (v +p)Vdivu + 7' (1)Vw =F(u, w) in 2,

divu 4 0y, w+ (u+ug) - Vw =G(u, w) in 2,
n-2uD@)-ti+ fu-t;=B;, i=1,2 onl,
n-u=0 on
W= Wiy on [, (1.6)
where
Fu,w)=—-w(+v+ug)-V(u+ug) — (up-Vu) —u-Vug
+ uAug 4+ (v + p)Vdivug — ug - Vug — [/ (w + 1) — 7' (1) Vw,
Gu,w)=—(w+ 1)divug — wdivu (1.7)
and

Bi =b; —2un-D(uo) - i — fr.".

From now on we will denote /(1) =: y. We see that F and G also depend on Vu, ug, Vug, but for
simplicity we will write F(u, w) and G(u, w). In order to prove Theorem 1 it is enough to show the

existence of a solution (u, w) to the system (1.6) provided that ||B||W171/p(r) and ||uo||W%(_Q) are small
p

enough. As we already mentioned, we will construct a sequence that converges to the solution. The
sequence will be defined as
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O, U™ — AU — (v + W Vdive™ 4y vt = F(u",w") ing,

divu™ + 9 W™+ (U™ +ug) - VW = G (U, w") in 2,
n-2uD@™) .+ fu™l =8, i=1,2 onr,
n-u™l=0 onT,
w1 = wy, on I},. (1.8)

As we will see in the sequel, our method does not require any particular starting point for the se-
quence (u", w"), but only some smallness assumptions on the starting point (u°, w®), hence without
loss of generality we can set (u°, w®) = (0, 0). In order to show the existence of the sequence defined
in (1.8) we have to solve a linear system:

o u—puAu— W+ puw)Vdivu+yVw=F in§2,

divu + 0y, w4+ (U +up) - Vw =G in £2,
n-2uD@)-ti+ fu-ty,=B;, i=1,2 onrl,
n-u=0 onl,
W = Wip on [, (1.9)

where (F, G, @i, up) € Lp x W} x W2 x W2 are given functions and &-n=0on I'.

Let us now outline the strategy of the proof, and thus the structure of the paper. In Section 2 we
show the a priori estimate (2.35) on a solution to the linear system (1.9). We start with an energy
estimate in H! x Lo (Ly). Next the properties of the slip boundary conditions enables us to show
that the vorticity of the velocity on the boundary has the same regularity as the velocity, and this
fact makes it possible to find a bound on ||W||w},- Then the estimate (2.35) results directly from the

elliptic regularity of the Lamé system.

The linear system (1.9) is solved in Section 3. First we show the existence of a weak solution
using the Galerkin method modified to deal with the continuity equation. Next we can show that this
solution is in fact strong using a priori estimate and symmetry of the slip boundary conditions.

In Section 4 we show the estimate in Wg X W; on the sequence (u", w") and, as a result, the
Cauchy condition satisfied by this sequence in the space H! x Lo (L2). These results are derived by
application of the estimates for the linear system.

In Section 5 we apply the results of Section 4 passing to the limit with (u", w") and then showing
that the limit is a solution to (1.6). Finally we show that this solution is unique in a class of solutions
satisfying the estimate (1.3).

2. A priori bounds

The main result of this section is the estimate (2.35) in le, X W;. In order to show it we start with
an energy estimate in H! x Lso(L2). Next we consider the equation on the vorticity of the velocity
and apply the Helmholtz decomposition to derive the bound on ||w||W; and finally using the classical
elliptic theory we conclude (2.35).

In our proofs we shall not need explicit formulas on the functions F(u, w) and G(u, w), what will
be important is that they depend quadratically on u and w. More precisely, we will show a following
estimate

Lemma 2. Let (u, w) € W3 x W and let F (u, w) and G(u, w) be defined in (1.7). Then

[F.wy|, + |G w)|, <C[(lullyz+ ||w||W1)2 + lluollyz]- (2.1)
p p p p p
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Proof. Since by the imbedding theorem W; (£2) C Lo (£2), the estimate on ||G||W; is straightforward,
and the only part of F that deserves attention is §7’(w)Vw, where

St'(w):=x'(w+1)—7'(1). (2.2)

We will apply a fact that for a C!-function f we have

1
f(x)—f(y)=(x—y)/f’[tx+(1 —t)y]dt. (2.3)
0
Thus we have

1
st'(w)=w / 7w’ (tw + 1) dt.
0

Since 7 is a C3-function, the above implies
a7’ W) Vwl, < CE) Wl VWL, < CWIE,,.
The other parts of F can be estimated directly giving (2.1). O
Next, we derive the ‘energy’ estimate in H! x Loo(Ly). It is stated in the following lemma

Lemma 3. Let (u, w) be a solution to the system (1.9) with (F, G, B, win, u) € V* x Ly x Lo(I") x Lo (Ijp) X
W;, with ||l_1||W§ small enough and f large enough. Then

Nl + Wl wy) < CIFlv: +1G L, + I1Bllzyry + 1 Winlly (i ] (2.4)
where
V={veH (2): v-n|r=0} (2.5)
and V* is the dual space of V.

Proof. We apply a general identity
/(—,U,Au -+ wVdivu)vdx = /{Z,uD(u) Vv +vdivudivv}dx
Q Q

- / n-[2uD) + vdivuld]-vdo. (2.6)
r

For u, v satisfying the boundary conditions (1.9)3 4 the boundary term in (2.6) equals

/{22:[31'_f(”'fi)](v-l’i)}da.

i=1
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Thus multiplying (1.9); by u and integrating over 2 we get

n(

/{ZuDz(u)+vdiv2u}dx+/(f+T)lulzda—y/wdivudx
2 r 2

:/F~udx+/{31(u-t1)+Bz(u~t2)}d0. (2.7)

2 r

From now on (not only in this proof but also later) we will use the summation convention when
taking the sum over the tangential components. Applying (1.9); and the boundary conditions we get

1 _
/wdivudx:/cwdx—i—E/w2div(u+uo)dx
2 2 2

-5 [ wasu)do+ 5 [ Wi+ ul)do.
Tout Tin

For ||uo||leJ small enough we have by the imbedding theorem 1 + u(()l) > 0 a.e. on I,y what yields

fFout w21+ ug))do > 0. Moreover, for the friction f large enough on I}, the boundary term in (2.7)
will be positive. To derive the bound on |u|/y1 from (2.7) we apply a well-known Korn inequality:

/[Z,U,Dz(u) + vdivzu]dx+[f(u -1)%do > Cllull?,. (2.8)
2 r

As this is a standard result we skip the proof, let us only notice that we can modify the proof of
Lemma 2.1 in [14] and actually simplify it considerably using the fact that the friction is large enough.
Combining (2.8) with (2.7) we derive the following inequality

1
Clluliz, g/F~udx+fB,'(u~ri)do+§/w2div(ﬁ+uo)dx
2 r 2

1
- 5/wizn(l +ul)do. (2.9)
Fin

In order to derive (2.4) from (2.9) we have to estimate ||w]|;(,) in terms of [lully:1 and the data.
To show this estimate we refer to Section 3 where the linear system (1.9) is solved. Namely, we have
w = S(G — divu) where the operator S is defined in (3.7) and thus the estimate (3.8) implies

WLy tz) < C(IGNL, + 1ullHy + I1WinllLy ) (210)
The above inequality combined with (2.9) yields (2.4). O

Now we consider the vorticity of the velocity o = rotu. The properties of the slip boundary condi-
tions enables us to express the tangential components of o on the boundary in terms of the velocity.
We arrive at the following system
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Ox, 00 — WA =TOtF in £2,

f B4
a-Ty)= 2)(1—; u~11+7 onl,

B
a-n:(i—ZXZ)u-rz——z onl,
% 1%
divae =0 onl, (211)

where x; denote the curvatures of the curves generated by tangent vectors 7;. In order to show the
boundary relations (2.11); 3 it is enough to differentiate (1.9)4 with respect to the tangential directions
and apply (1.9)s. A rigorous proof, modifying the proof in the two dimensional case from [16], is given
in Appendix A. The condition divee = 0 in £2 results simply from the fact that o = rotu. We introduce
this relation as a boundary condition (2.11)4, that completes the conditions on the tangential parts of
the vorticity. What is remarkable in the boundary conditions (2.11) 3 is that the tangential parts of
the vorticity on the boundary has the same regularity as the velocity itself and the data. This feature
of slip boundary conditions makes it possible to show the higher estimate on the vorticity (see [13,
14,24]).

In order to derive the bound on the vorticity we can follow [24, Lemma 4], and construct oy,
a divergence-free extension of the boundary data (2.11)3, for example as a solution to the Stokes
problem with zero r.h.s. and the boundary conditions (2.11), 3 supplied with «g - n = 0. The theory
of the Stokes system then yields

laolly < ClIul -1y + 1By 1-7m )] (2.12)
Then the function o — «g satisfies the system

—A (o — ag) =T10t[F — oy, u] + Acg  in £2,

(¢ —ag)-711=0 onl,
(¢ —0ag)-172=0 onl,
divie —og) =0 onl. (213)

Here we have used the fact that 9y, = rotdy, u to preserve the rotational structure of the r.h.s. For
the above system we have the following estimate (see [27])

lleellys < ClIFllL, + 18 ullL, + IIOfoIIW;)]- (2.14)

The term with g can be bounded by (2.12) and to deal with 9y, u we apply the interpolation inequal-
ity (A.3). We obtain the term |lu| 1 that we bound using (2.4) and finally arrive at

||06||W;7 < C(G)[IIFIILp + IIGIIW; + I WinllLo () + IIUIIW;fl/p(F) + IIBIIW;—W(D]

+6||u||W5. (2.15)

With the bound on the vorticity at hand the next step is to consider the Helmholtz decomposition of
the velocity (the proof can be found in [8]):

u=Ve+A, (2.16)
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where ¢|r =0 and divA = 0. We see that the field A satisfies the following system

rotA=c«o inS$2,
divA=0 inS$2,
A-n=0 onl. (217)

This is the standard rot-div system and we have ||A||W‘2] < C|\oe||W;, what by (2.15) can be rewritten
as

1Allwz < C@LIFIL, + Gy + Nullyp ) + 1By -y + IWinllwyn,]

+ellully; (2.18)
for any € > 0. Now we substitute the Helmholtz decomposition to (1.9);. We get
V[-W+21)A¢+yW]=F — 9 A+ LAA — 3y, b, (2.19)
but A¢ =divu and denoting the Lh.s. of the above equation by F we obtain

—Ww+2u)divu +yw=H, (2.20)

where VH = F. Combining the last equation with (1.9); we arrive at

YW+ Wy, + (U +ug)Vw =H, (2.21)
where 7 = ;5 and
H
H= +G. (2.22)
vV+20

Eq. (2.21) makes it possible to estimate the W},-norm of the density in terms of W;—norm of H. The
latter will be controlled since (2.19) enables us to bound ||VH|, and [|H||., using interpolation and
the energy estimate (2.4). The details are presented in the proof of Lemma 5, but first we estimate
”W”Wé in terms of H. The result is stated in the following lemma:

Lemma 4. Assume that w satisfies Eq. (2.21) with H € W;. Then
IWllwy < ClHI + IWinllwi ) ) (223)

Proof. In order to find a bound on [wl,, we multiply (2.21) by |w|P~2w and integrate over £2.
Integrating by parts and next using the boundary conditions we get

1 1 1
/|W|p_2WWx1 dx:—/axllwlpdx:— / |w|pda——/|w|pdo,
p p p
2 2 Iin

Tout
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since ¥ =0 on Iy, n¥ =—1 on I, and nY =1 on Iy Similarly, applying the boundary condi-
tions we get

/(u—l—uo) (Iw[P~2wVw)d /(u—i—uo) viw|P dx
U [ aivea LI e
:_E d1v(u+u0)|w|pdx+5 uy ' |wiPdo
2

Tout
1
— —/ugl)lwlpda.
p

Iin

Thus multiplying (2.21) by |w|P~2w we get

_ 1 o 1
V”W”fp—E/dIV(u+uO)IW|pdx+E / lwlP(1 +ul")do
2

Tout
<||H p-1, 1 P(1+uMYd 594
S IHIL, wilg, s [winlP(1+ug’)do. (2.24)
Tin

By the imbedding theorem the smallness of |u + UQ||W2 implies 1+ u(l) >0 ae. in £2 and y —

IIdiv(i + ug)|loo > 0. Thus the boundary term on the Lh.s. is positive and the term with div(u + ug)
can be combined with the first term of the Lh.s., what yields

p p—1 P
Cllwly, <IHIL Wl +Cllwill] . ).
and so

lwlie, < C[IHIL, + IWinllL, ] (2.25)

The derivatives of the density are estimated in a similar way. In order to find a bound on wy, we
differentiate (2.21) with respect to x;. If we assume that w € W; then (2.21) implies &l - Vw € W,
where

=[1+@+u)®, @+up)?, (@+uo)®]. (2.26)

Thus @1 - Vwy, == (Il - VW)y, — lly; - VW € Lp. Hence we can differentiate (2.21) with respect to x;,
multiply by |wy, |1’*2in and integrate. Since iy, = (U + uo)x;, we have

/ax,. (1w P2 w VW) dx < |V @+ uo) |, IVWIP, < Clli+ tollyy2 VWil
22
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Next, since i - Vwy, € Ly, we can write

~ -2
/u Wy 1P wy, Vwy, dx
2

1 N 1 - 1 -
:—/u-Vlwxi|pdx:——/|wxi|pdivudx+—/|wxi|pu-ndo
p PQ PF

1 N 1 1
=—5/|wxi|pdivudx—E/|win,xi|p(l+uél))da+5 / lwy, [P(1+ul”)do.
Fin Fout

For i = 2,3 we have wij,y € Lp(I3y) and hence the above defines the trace of |wy|? on Iy We
arrive at

_ 1 L 1
y”W"i”lL)p - E/dlv(u + u0)|Wxi|de+ E / |Wx,~|p(1 +uél)) do
12 Tout

1

-1 1 _

< Hg w17 +5/|win,xi|"(1+ug )do +Cllii+uollyz IVWIF, . (227)
Tin

For i =2, 3 it gives directly the bound on [wy,||L,. In order to estimate wy, we start the same way

differentiating (2.21) with respect to x; and multiplying by |wy, |”_2le. The difference in comparison
to wy, and wy, is that wy, is not given on I3,. In order to overcome this difficulty we can observe
that on I3, Eq. (2.21) reduces to

¥ Win + (@ + u0) P Win x, + (@ + o) P Win x, + [1+ (@ + uo) PV ]wy, =H,

what can be rewritten as

1

= m["l — P Win — (il + Ug)7 - Ve Wig |

Wy,
Thus we have

Wi L,y < C[IIHlnnllemn) + ”Win”WIlJ(rm)}

Using this bound in (2.27), i =1, we arrive at the estimate

p =1, = p p P
lwx I, < ClIHx 1L, 1w, I, +lu+uollwz IVWIL, + I1HIL ) + ”Wm”w},(nn)]' (2.28)

The boundary term |H||L,r;,) can by replaced by ||H||W117 due to the trace theorem. Thus combining
(2.27) (for x2 and x3) with (2.28) we get

p p—1 - p p p
IIVWIILP < C[IIVHIIL,, IIVWIILp + llu +uo||WgIIVW||Lp + IIHIIW}J + ”Win”W;U«in)]' (2.29)

The term |u + u0||WI§||VW||fP can be put on the Lh.s. due to the smallness assumption and thus we
get
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IVwllL, < C[IIHIIW; + ”Win”W;(rin)]s (2.30)
what combined with (2.25) yields
Wl < C[IIHIIW; +I1HlL,(ry + IIWinIIW;(nn)]. (2.31)
Applying again the trace theorem to the term ||H||.,(r;,) we arrive at (2.23). O

The next step is to estimate H in terms of the data. The result is in the following:

Lemma 5. Let H be defined in (2.22). Then V8§ > 0 we have

IHlyy < dllully: +CO[IFIL, + ICHwy + 1Bl y1-17 ) + IIWinIIW;(pm)] (2.32)

Proof. Applying first the interpolation inequality (A.3) and then the estimate (2.4) we get

|HllL, <81IVHIIL, + C@ED[IIF L, + IGlL, + IBllLyry + 1WinllLy i ]- (2.33)
Next, by (2.19) we have
IVH||L, <C[IIFllL, + IGlwy + 1Ally2 + l10x, @1z, ]

where u = V¢ + A is the Helmholtz decomposition. Now we use the bound (2.18) on ||A||W127. We

obtain a term llully,1 that we estimate using the trace theorem and the interpolation inequal-
p

—1/p s
a)
ity (A.3). The same inequality is applied to estimate [|dx, ¢||.,. We arrive at

IVHL, < CIF L, +1Glwy + 1Bl 1-1p ) + 1Winllwy ]
+8illullyz + CED[IIFNL, + G, + IBllL,r)]- (2.34)
Combining (2.33) and (2.34) we get (2.32). O

Now we are ready to show the a priori estimate in Wg X W;, on the solution of the linear problem.

Lemma 6. Let (u, ) be a solution to (1.9) with (F, G, B, Wiy il) € Ly x W} x Wy~ V/P(I") x W (i) x W2,
with ”’:‘ng small enough and f large enough. Then

llullwz + Wiy < C[IFIL, + IGllwy + IIBIIW;—W(F) + IIWinIIW;(pm)} (2.35)
Proof. If (u, w) is a solution to (1.9), then in particular the velocity satisfies the Lamé system

O U — AU — 4+ u)Vdivu=F —yVw in £,
n-2uD@)-ti+ fu-t;=B;, i=1,2 onrl,
n-u=0 on/. (2.36)
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The classical theory of elliptic equations (Agmon, Douglis, Nirenberg [2,3]) yields
ullwg < CIFlL, + Wiy + 1Bl -0 )+ ]

Applying the interpolation inequality (A.3) to the term ||u||W117 and then the energy estimate (2.4) we
get

llullwz < ClIFIlL, + ICHwy + IWllwy + 1Bl 11 ) + IWinllLy (5 ]- (2.37)

In order to complete the proof we combine (2.23) and (2.32) obtaining
Iwliwy < dllullyz + CO[IFIL, + IGlwy + IIBIIW;—W(F) + ||Win||wllj(rm)]a (2.38)

and choosing for example § = % where C is the constant from (2.37) we arrive at (2.35). O

3. Solution of the linear system

In this section we show the existence of the sequence (u", w") defined in (1.8). To this end we
have to solve the linear system (1.9) where (F,G, i, up) € Ly x W x W) x W} are given functions
such that u-n =0 on I'. First we apply the Galerkin method to prove the existence of a weak solution
and next we show that this solution is strong. For simplicity we will denote i + ug by u.

3.1. Weak solution

Let us recall the definition of the space V (2.5). A natural definition of a weak solution to the
system (1.9) is a couple (u, w) € V x Loo(Ly) such that

/{v~8x1u+2,uD(u):Vv+vdivudivv—ywdivv}dx—i—/f(u-‘L',-)(v-ri)dcr
2 r

:/F~vdx+/B,-(v-fi)da (3.1)

2 r

is satisfied Vv € V and (1.9), is satisfied in D’(£2), i.e. V¢ € C®(£2):

—/wﬂ -Vodx — / wo diviidx + / wodo = /cp(G —divu)dx + / winop do, (3.2)
2 2 Tout 2 Iin

where u is defined in (2.26). Let us introduce an orthonormal basis of V: {w;}{2;. We consider finite

dimensional spaces: VN = {Z?’Zl ajwi: o € R} C V. The sequence of approximations to the velocity

will be searched for in a standard way as uV = Zf-\; cf\’wi. Due to Eq. (1.9); we have to define the

approximations to the density in an appropriate way. Namely, we set wN = S(GN — divu"), where
S:Ly(2) = Loo(Ly) is defined as

w+u-Vw=v inD'(£2),

(3.3)
W = Wiy on [i,.

w=S() <= {
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We want the image of S to be in the space Lo, (L2) so that we can apply the theory of transport
equation treating x; as a ‘time’ variable to show that S is well defined. In order to solve the system
on the r.h.s. of (3.3) we can search for a change of variables x = 1/ (z) satisfying the identity

0z, = O0x; +1U - Vx. (3.4)
We construct the mapping v in the following:

Lemma 7. Let ||| w32 be small enough. Then there exists a set U C R3 and a diffeomorphism x = y (z) defined

on U such that 2 = y(U) and (3.4) holds. Moreover, if z, — z and v (z,) — Iy then nl(z) = 0, where n is
the outward normal to U.

Remark 1. The last condition states that the first component of the normal to v ~!(I) vanishes, but
since y is defined only on U we formulate this condition using the limits. It means simply that the
image U = ¢ ~1(£2) is also a cylinder with a flat wall. It will be important in the construction of the
operator S.

Proof of Lemma 7. The identity (3.4) means that ¢ must satisfy

oy! _ yr A
Poiriw, L=rw, =rm. (35)
z 021 021

A natural condition is that v (I3,) = Iin. Thus we can search for (21, 22, 23) = V¥2,,2,(z1), where for
all (z2, z3) such that (z2, z3, 0) € I3, the function v, 2, (-) is a solution to a system of ODE:

OV 1y =140 Wzyzy), OV =0 Wpzy), 0¥y, 5 =1 (Yzy.z),
sz,a (O) = (07 225 23)-

(3.6)

The r.h.s. of the system (3.6) is a Lipschitz function with a constant K = ||Vi| o and thus provided
that ||ﬁ||w§ is small enough the system (3.6) has a unique solution defined on some interval (0, bz, z,),

where b, ;, depends on z,z3 and ||Vullw. Provided that the latter is small enough the function
Y (2) = Yz,,7;(z1) will be defined on U such that £2 =y (U).

Now we show that ¥ (z) = V¥, z;(z1) is a diffeomorphism. The derivatives with respect to z; are
given by (3.5) and the remaining derivatives can be expressed in terms of u so we can see that
Jv =1+ E(u), where E(u) is small (and thus Jv > 0) provided that ||ﬂ||w§ is small.

To see that ¥ is 1 — 1 we can write it in a form ¥ (z) = z + €(z), where ||Ve|1, is small. Assume
that ¥ (z') = ¥(z%) and z' # z%. Then there exists i such that |z} — 22| > 1|z! — Z2| (the lowercase
denotes the coordinate). On the other hand, we have |z} — 22| = |€i(z") — €;(2%)| < | V€|l 2" — 2],
what contradicts the smallness of ||Ve|,.

We have shown that the mapping i given by (3.6) is a diffeomorphism defined on U such that
¥ (U) = 2. Let us denote ¢ = ¢~ 1. Now it is natural to define the subsets of 3y as dy = Uin U Uout U
Up where Uj, = Iy, Uout = {z: z=1lim¢(Xy), xn = Iout} and Ug ={z: z=1im¢ (xy), x, — lp}.

In order to complete the proof we have to show that n!(z) = 0 for z € Ug. But to this end it is
enough to observe that

Dy (2)([1.0,0]) = [1+ ' (x), i*(x), u* (®)].
where x = v (z). But for x € I'y the vector on the r.h.s. is tangent to I since ii-n = 0. We can conclude

that on Ug the image in ¢ of a straight line {(s, z2,2z3): s € (0,b)} is a curve tangent to I'p, and thus
Up is a sum of such lines and so we have n'(z) = 0. The proof of Lemma 7 is completed. O
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Now we can define S(v) for a continuous function v as

¢1(x)
S(V)(X) = win (0, g2(x), p3(x)) + f V(¥ (s, 2(%), ¢3(x))) ds. (3.7)
0

The condition n' =0 on ¢ (Ip) guarantees that a straight line (s, z,22): s € (0, b) has a picture in £2
and thus we integrate along a curve contained in £2. It means that S is well defined for continuous
functions defined on 2 and the construction of i clearly ensures that S satisfies (3.3). Next we have
to extend S on L,(£2). To this end we need an estimate in Lo (Ly). It is given by the following

Lemma 8. Let S be defined in (3.7). Then

”5(")HL90(L2) < C[IWinllLy i + VI, 2) - (3.8)
Proof. Let £2, be denoted an x;-cut of £2 and let X := (x2, x3). Then by (3.7) we have

$1(x) 2
IIS(v)IIfZ(Qxlf / [win(0,¢z(x),¢3<x>)+ / V(W(S,¢2(X),¢3(X)))dsj| dx

2y 0
$1(x)

<20winl, ) +C f / v2( (5. ¢2(%). $3(x))) ds X

2y 0

2 2
< C[”Win”[_z(rin) + ||V||L2(Q)]'

The above holds for every x; € (0, L) what implies (3.8). O

Now we can define S(v) for v € L,(£2) using a standard density argument. Let us take a sequence
of smooth functions v, — v in Ly(£2). By (3.8) the sequence S(v,) satisfies

|S(va) ”Loo(LZ) < C[IWinllLo () + Supp VallL, - (3.9)

The bound on the rhs. is uniform in n and thus S(vp) —* n in L(L2), and 5 satisfies the esti-
mate (3.8). In particular for ¢ € C*°(£2) we have

/S(vn)ﬂ-V¢dx—>/nﬂ-V¢>dx and /S(vn)¢divﬂdx—>/n¢divﬂdx.
2 2 2

ko)

In order to show that n = S(v), i.e. n solves the system on the r.h.s. of (3.3) we have to show that
fFouts(vn)¢d0 — /Fout n¢do. To this end notice that the proof of Lemma 8 implies in particular
that [|S(va)llL, () Satisfies the estimate (3.9). Thus S(vy) — ¢ in Ly(Jour) for some ¢ € Ly(Lout),
and in particular frout S(vp)pdo — fraut ¢{¢pdo. We have to verify that n|r,,, = ¢. This would not be
obvious if we only had S(v;) € Loo(L2), but indeed the proof of lemma 8 implies a stronger condition
that supremum (not only the essential supremum) of ”S(Vﬂ)”Lz(QX]) is bounded, thus we must have
¢ =Nlr,,.- We have shown that @i - Vip = v in D’'(£2), thus indeed n = S(v).

Having the operator S well defined we are ready to proceed with the Galerkin method. Taking
F=FNu=uN=3%;cNw;, v=ay, k=1...N, and w = wN = S(GN —divu") in (3.1), where FN and
GN are orthogonal projections of F and G on VN, we arrive at a system of N equations
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BN(uN,wx) =0, k=1...N, (3.10)
where BN : VN — VN is defined as

BN (N, vN) = /{sNaxlvN +2uD(EN) : vvN +diveN divvN} dx
2

—)//S(GN—divSN)divadx-i-/[f(gN.tj)—Bi](vN.rj)dU

2 r

—/FN-dex. (311)

2

Now, if u™ satisfies (3.10) for k=1...N and w" = S(GN — divu"), then a pair ", w") satisfies
(3.1)-(3.2) for (v, ¢) € (VN x C®(£2)). We will call such a pair an approximate solution to (3.1)-(3.2).
The following lemma gives existence of solution to the system (3.10):

Lemma 9. Let F, G € L%(£2), wi, € Ly(Iln), B € Ly(I") and assume that f is large enough and ||1_1||W§ is
small enough. Then there exists uN € VN satisfying (3.10) fork = 1... N. Moreover,

[uM],» < C(DATA). (312)

Proof. In order to solve the system (3.10) we will apply a well-known result in finite dimensional
Hilbert spaces, Lemma 15 in Appendix A. Thus we define the operator PN : VN — VN 35

ZBN ,op)wy forgN e vV, (313)

In order to apply Lemma 15 we have to show that (P(¢N),£N) > 0 on some sphere in VV. Since
BN(.,-) is linear with respect to the second variable, we clearly have

(p(s”),s”)=BN(S”,€N)=2u/02(5N)ax+u/div25Ndx

2
/5 0x, & dx—i—/f - Tj) dO )// —divEN)divgNdx
I I3
—/F-sNdx—/Bi(sN-fi)da. (3.14)
2 r

Using the Korn inequality similarly as in the proof of the energy estimate (2.4) we get

L+1> CHgNHHl (315)
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for f large enough. We have to find a bound on I3. Denoting n" = S(GN — diveEN) we have

—fn”divé”dx:/n”(axln’v+ﬂ~VnN)dx—/nNGNdx‘ (3.16)
2 2 2

Using (3.8) we get

—/n”G”dX> —In" 12 16M 2 = =€ IS, (6™, + 16" 1 + Iwinllarip)- - (317)
2

With the first integral on the r.h.s. of (3.16) we have

/ N (N +1a-vpN)dx= f N @d, 0N (2) ]y (2) dz

2 U
= f N (23,0 (2)dz + / N @, N @[ J¥(2) —1]dz.  (318)
U u

The first integral can be rewritten as a boundary integral and since n'(z) =0 on ¢ (Ip), it reduces to

1 1 1
5 / [n”(z)]zn‘(z>da(z>:—5 / [n”(z)]zda(z>+5 / (N @] do(2) > - / w2 do ().

ou Uin Uout Iin

In the last passage we used the fact that ¢|;, is the identity and that nl(z) > 0 on Ugy, what is true
provided that ¢ does not differ too much from the identity on Iyy, what in turn holds under the
smallness assumptions on u.

With the second integral on the r.h.s. of (3.18) we have

/n”(z)aa N @[Jy(2) —1]dz > —supy|J¥ — 1|/ nN(2)(GN - divx V) (2) dz
U

U
> _EHnN”LZ(U)[H " HLZ(U) + HdiVXEN”LZ(U)]

2 2
2 _E[”GN“LZ(Q) + HENHHl(.Q) + ||Win||%2(1—}n)]'

Combining this estimate with (3.15) we get

(PM(EN). €M) > [V [}y — DIEY |1 @) — D2, (319)

where D = [[Fll;2(0) + 1G] 12(@) + IWinllLy 53 + 1BllLyr)- Thus there exists C = C(u, 2, D) such
that (PN(EN),eN) > 0 for ||| = C, and applying Lemma 15 we conclude that 3g*: PN(g*) =0
and [|£*|| < C. Moreover, since {wy}_, is the basis of VN, we have PN(£*) =0 « BN(&*, ) =0,
k=1...N. Thus &* is a solution to (3.10). O

Now showing the existence of the weak solution is straightforward. The result is in the following:
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Lemma 10. Assume that F, G € Ly(£2), win € Lo(Iin), B € Lo(I'). Assume further that f is large enough
and ||ﬂ||W§ is small enough. Then there exists (u, w) € V. x W that is a weak solution to the system (1.9).

Moreover, the weak solution satisfies the estimate (2.4).

Proof. The estimates (3.8) and (3.12) imply that [|uN||g1 + WV |1, < C(DATA). Thus

N

u¥ ~y inH! and wV

—~*w inLg (L)

for some (u, w) € H' x Loo(Ly). It is very easy to verify that (u, w) is a weak solution. First, passing to
the limit in (3.1) for (u™, wM) we see that u satisfies (3.1) with w. On the other hand, taking the limit
in (3.2) we verify that w = S(G — divu). We conclude that (u, w) satisfies (3.1)-(3.2), thus we have
the weak solution. To show the boundary condition on the density we can rewrite the r.h.s. of (3.3)
as

7@ i® v
Wy, + Wy, = ——— IinD'(2)
T+a® 72 " 14a® 7" T 1 4@ ’

W = Wip on [jy,

Wi + (3.20)

and, treating x; as a ‘time’ variable, adapt Di Perna-Lions theory of transport equation (see [5]) that
implies the uniqueness of solution to (3.20) in the class Lo (L2). The proof is thus complete. O

3.2. Strong solution

Having the weak solution of the linear system (1.9) we can show quite easily that this solution
is strong if the data has the appropriate regularity. The following lemma gives existence of a strong
solution to (1.9).

Lemma 11. Let F € Ly, G € W, win € W) (ITn), B € W;_”p(l") and assume that f is large enough and
||11|\Wg is small enough. Then there exists (u, w) € Wg X W; that is a strong solution to (1.9) and satisfies the
estimate (2.35).

Proof. Since (1.9) is a linear system, the a priori estimate (2.35) will imply the regularity of the
weak solution once we can deal with the singularity of the boundary at the junctions of Iy with
In and Ty This however can be done easily since 2 is symmetric w.r.t. the plane {x; = 0}
and the slip boundary conditions preserve this symmetry. More precisely, for {x = (—x1, X2, X3):
X = (X1,X2,X3) € 2} we can consider a vector field

i®) = [—u' @, v?®), v’ ®)]. (3.21)

Then on I}, we have i-n=u-nand n-D(W)-t;+1u-7j=n-D(u) - 7; +u - 7;. Hence we can extend the
weak solution on the negative values of x; using (3.21) and, applying the estimate (2.35), show that
the extended solution is in W; X W;. An identical argument can be applied on Iy and we conclude
that (u, w) is a strong solution to (1.9). O

4. Bounds on the approximating sequence

In this section we will show the bounds on the sequence {(u", w™")} of solutions to (1.8). The term
u-Vw in the continuity equation makes it impossible to show directly the convergence in W% X W; to
the strong solution of (1.6). We can show however that the sequence of iterated solutions is bounded
in Wﬁ X W;, and using this bound we can conclude it is a Cauchy sequence in H! x Lo (L), and thus
converges in this space to some couple (u, w). On the other hand, the boundedness implies weak
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convergence in Wg X W;, and the limit must be (u, w). The following lemma gives the boundedness
of (", w") in W2 x W},

Lemma 12. Let {(u", w")} be a sequence of solutions to (1.8) starting from (u°, w®) = (0, 0). Then
[0 g + Wy < M. (41)
where M can be arbitrarily small provided that ||ug|| w3 (extension of the boundary data (1.4), not to be con-
fused with u® from (u°, w9), the starting point of the sequence (u", w")), ||B||W;71/p(1,), IWinllw s, and
||L‘1||le7 are small enough and f is large enough.
Proof. The estimate (2.35) for the iterated system reads
+1 +1
7 g+ [ g

< C[||F(u", W”)||L,, + e, wh) wy 1By ) + IWinllwi ) )- (4.2)

Denoting A, = ||u”\|Wg + ||W”|\W117 and b = ||”0||W,§ + ||B||W1
p
we get

) + ”Wi“”W;(Rn)' from (2.1) and (4.2)

Anp1 < CA2 4 b, (4.3)

thus A, is bounded by a constant that can be arbitrarily small provided that Ap and b are small
enough. Indeed let us fix 0 < 4§ < 4]_c and assume that b < §. Then (4.3) entails an implication A, <
2b = Apy1 < 2b and we can conclude that

1
8<l_1’
b<s = Ap;<28 VneN. (44)

A0<2b

Hence if we fix 0 <€ < % and assume that ||u0||W% + ||B|\W;71/p(1_) + ||Win||w},(rm) < € then starting

the iteration from (u®, w®) = (0, 0) we have
Ju| wit [w"| wi S 25 vneN. O (4.5)

The next lemma almost completes the proof of the Cauchy condition in H! x Lo (L) for the
sequence of iterated solutions.

Lemma 13. Let the assumptions of Lemma 12 hold. Then we have
HunH — ™t HHl +| w — HLOO(LZ) SEM)([|u" —u™ HHl +|w" = wr ”LOO(Lz))’ (4.6)

where M is the constant from (4.1).
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Proof. Subtracting (1.8),, from (1.8), we arrive at

8)(1 (un+1 _ um+l) _ MA(unJ’_l _ um+1) _ (V + M)v div(un"rl _ um+l)

+ ]/V(WH-H _ Wm+1) — F(un, W") _ F(um, Wm)’

div(un+1 _ um+1) + 8x1 (Wn—H _ Wm+1) + (un + UO) A V(Wn-H _ Wm+l)

=Gu", w") —Gu™, w") + (u" —u™) - vw™,

n-2uD(™ —u™ ) g f (W —u™) g =0,
n- (un-H _ um+1)|r =0,
Wn+1 _ Wm+] |1" —0.

in
The estimate (2.4) applied to this system yields

™t =™ g =W

< |F(u™, w") — F(u™, w™)

ve G W) =G W), + [ —u™) - vwT .

In order to derive (4.6) from the above inequality we have to examine the Lh.s. The part with G is
the most straightforward and we have

|G w") — G, Wm)HLZ SEM([[u" —u™|y + [ w" —w" “Loo(Lz))' (4.7)

The function F is more complicated and we have to look at the difference more carefully. A direct
calculation yields F(u", w") — F(u™, w™) = F{"™ + F,™, where

[Fi™

e B~ [~ 0], ) (3)
and
Fy™ ==’ (w") — 87’ (w™) VW' 4 87" (Ww™) V(W' — w™) =: Fy T + Fyy, (4.9)

where §77/(-) is defined in (4.11). Since we are interested in the V*-norm of Fg‘m, we have to multiply
F31" and F}3' by v € V and integrate. With F)' we get

/(Sn’(wm)V(W" —w") - vdx

=- / st/ (w™)(w" — w™) divvdx — /(wn —whV[sr'(w™)]- vdx,

and thus we have to estimate §7/(w™) in terms of w™. Using (2.3) we can write

1
s’ (wh) =wh / " (tw™ + 1) dt, (4.10)
0
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what yields
[o'(w™)[, < CEfw™],. 1<g<oo. (411)

Now we have to estimate ||V8n’(wm)||Lp. Since 77 is a C3-function, we can take the gradient of (4.10)
and verify that

[var' (W), < CEvwm|, . (412)

Thus we have

’/Sn’(wm)(w” — w™) divvdx

<o (wm) [ w" = w™ I divvile,

<Clw g fwt =Wl (413)

Next, since p > 3, by the Sobolev imbedding theorem we have

= wmy o (W] v < = w5 (), i

<Clw™yylw" = w1Vl (4.4)

Combining (4.13) and (4.14) we get

[F23 - < EQMDw" —w™ ”LOO(LZ)' (4.15)
In order to estimate FgT we will use again (2.3) to write
1
s/(wh) = 8x’ (W) = (w" — w™) / p"[tw" + (1 —yw™ + 1] dt, (4.16)
0
what yields ||8z"(W™") — §t/(W™)||1, < Cl|lw" — w™||1,. With this observation we can estimate
‘/ o/ (w") —om(w™) [V w" - vdx| < [[srr"(w") — 8" (w™) |, [ VW IVl
< E(w ) [ = w ] IV,
what yields
[E25 - S EMD[w? —w™], (417)

Combining the estimates on F{™, F3 ' and F)' we get

[F Q" w") = F(u™ wm)],

< E(M)[Hu” - w" ”Hl + Hwn —wh ”LOO(LZ)]' (418)
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The part that remains to estimate is (u" —u™) - Vw™. We shall notice here that this is the term which
makes it impossible to show the convergence in Wﬁ X W; directly. Namely, if we would like to apply
the estimate (2.35) to the system for the difference then we would have to estimate |(u™ — u™) -
Vwm||W11] what cannot be done as we do not have any knowledge about ||W||w,§~

Fortunately we only need to estimate the Ly-norm of this awkward term, what is straightforward.
Namely, we have

@ =um™) v < fu —um| W] < Clwm ]y et = e, 419)
since q = % < 6 for p > 3. We have thus completed the proof of (4.6). O

Now, Lemma 12 implies that the constant E(M) < 1 provided that the data is small enough and
the starting point (u°, w%) = (0, 0). It completes the proof of the Cauchy condition in H! x Loo(Ly)
for the sequence {(u", w")}.

Remark 2. Lemmas 12 and 13 hold for any starting point (u°, w°) small enough in W} x W, not
necessarily (0, 0), but we can start the iteration from (0, 0) without loss of generality.

5. Proof of Theorem 1

In this section we prove our main result, Theorem 1. First we show existence of the solution
passing to the limit with the sequence (u", w™") and next we show that this solution is unique in the
class of solutions satisfying (1.3).

Existence of the solution. Since we have the Cauchy condition on the sequence (u",w") only in
the space H'(£2) x Loo(Ly), first we have to show the convergence in the weak formulation of the
problem (1.6), transferring the derivatives of the density on the test function. The sequence (u", w")
satisfies in particular the following weak formulation of (1.8)

/{v SO u 4 ZMD(u"H) Vv 4+ vdivu™ ! divy — ywt! divv}dx
2

+/f(u“+1 -ri)(v-r,-)da:fF(u”,w”)~vdx+/Bi(v~ri)do (5.1)

r 2 r

and

— / w'Ha" - Ve + divi"¢]dx + / w g do
2 Tout
= /qb(G(u", w") —divu") dx + / Win¢ do (5.2)
Q2 T
Y(v,$) € V x C®(£2), where i" = [1 + " +ug), @" +ug)@, W" + ug)®1.
Now using the convergence in H' x Lo (L) combined with the bound (4.1) in W] x W} we can

pass to the limit in (5.1)-(5.2). The convergence in all the terms on the r.h.s. of (5.1) is obvious and
the only nontrivial step to show the convergence of F(u", w") is to show that

/Sn’(w")VW“-vdxe/én/(w)Vw-vdx,
2 2
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what is equivalent to
- / s’ (w)(w" — w)divvdx — f(w” —w)Vér'(w) - vdx
2 2

+ /[Sn/(wn) — 8’ (w)]Vw" - vdx — 0. (5.3)
2

The first and second integral on the lLh.s. converges by (4.11) and (4.12) respectively (both with w
instead of w™). Finally, we easily verify that [|§7"(w") — 8" (w)||L, < C()||w" — w], what entails
convergence of the third integral. Hence (5.3) holds.

We conclude that (u, w) satisfies

/{v'axlu—i—Z,uD(u):Vv+vdivudivv—ywdivv}dx—i—/f(u-ri)(v‘ri)da
2 T

:/F(u,w)-vdx—i—/B,-(v-‘c,-)do (5.4)

2 r

Vv € V. In (5.2) we have to check the convergence in the boundary term. We can use the same
argument as in the proof of the existence of solution to the linear system when we have passed to the
limit with finite dimensional approximations. Namely, in fact w" satisfies the Cauchy condition not
only in Lo (L2). A stronger fact holds that w" is a Cauchy sequence in Ly(£2,) for every x; € [0, L],
where 2y, denotes the xi-cut of £2. In particular w" — ¢ in Ly(Jour) for some ¢ € Ly(Jour) and
since supy, cfo,17 W llL,(s2,,) < 0o we conclude that ¢ = w|r,,. This result combined with the obvious
convergence of other terms in (5.2) implies

—/w[ﬂ-V¢+divﬂ¢>]dx+ / W¢da:/gb(G(u,w)—divu)dx-l—/wmqbda (5.5)
2 2

Tout Tin

V¢ € C®(2), where il = [14 (u + ug)V, (u + ug)?, (u +ug)®].

Hence we have shown that (u, w) satisfies (5.4)-(5.5), the weak formulation of (1.6). Now we want
to show that the strong formulation also holds.

The bound in W7 x W, implies (u", w™) — (i, w) in W3 x W} for some (i, w) € W7 x W . On
the other hand, we have (u™, w) — (u, w) in H' x Loo(L3), thus we conclude that (i1, W) = (u, w).

Hence we can integrate by parts in (5.4)—(5.5) to obtain

/[F(u, W) — pAu — (u+v)Vdivu + yVw] - vdx
2

:f[Bi(v ) —n-[2uD) + vdivuld] - v — f(u- ) (v - 1) ] do (5.6)
r

and

/[le + (U +ug) - Vw]pdx = /[G(u, w) —divu]pdx. (5.7)
2 2
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From these equations we conclude that (1.6); » are satisfied a.e. in §2 and (1.6)3 is satisfied a.e. on I".
It remains to verify that (1.6)4 is satisfied a.e. on I" and (1.6)5 holds a.e. on I7j,. The condition (1.6)4
results from the convergence u" — u in H'.

Finally, w" — w in W implies that w"|;, — trw|r, in Ly(I3,). On the other hand w"|r, — wiy
in W;(Fin) since it is a constant sequence. We conclude that w|r, = wi.

Uniqueness. In order to prove the uniqueness of the solution consider (v1, p1) and (v3, o) being
two solutions to (1.1) satisfying (1.3). We will prove that

lvi = vall3: + o1 — p2llf, =0. (5.8)

For simplicity let us denote u:=vy — v, and w := p1; — p2. We will show that

lullgr < EllwllL, (5.9)

and

Wiz, < Clluligr, (5.10)

what obviously implies (5.8). Subtracting Eqs. (1.1) for (v1, p1) and (v3, p) we get

wvy-Vva+piu-Vva+p1vy - Vu— pAu — (u+v)Vdivu + I Vw + wVI; =0,

prdivu +wdivvy4+u-Vpy+vy-Vw =0,

n-2uD()-t|r =0,

n-ulr=0,

w|p, =0, (5.11)

where
1
Iz =/n’((tp1) + (1 —t)pp)dt. (5.12)
0

Notice that I; € W; since p; € W}, and 7 € C3. In order to show (5.9) we follow the proof of (2.4)
multiplying (5.11); by pju (it will be clarified soon why take the test function pju instead of u).
Using (2.6) we get

/(Z/LDZ(U) + vp1 divZu) dx
2

+ /{2M[(p1 — D) : Vu+D() : (u® Vo) ]+ v(divu)u - Vo }dx
2

Ih

— f{wuVm + p?u? - Vvy +uwpvy - sz}dx—f-/-p%(m -Vu) - udx
2 2

Iy I3
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+/p1wu~V1ndx—/wu-V(I,,m)dx—/lnwp] divudx+/p1fu2do=0.
2 2 Q r

I I5

We have |I1]|+ |I2] < E(||u||%{1 + ||w||%2) and in order to deal with I3 let us split it into two parts:

1 2 3
213=/{(p12v§)—1)ax]|u|2+p12v§ Vo, [ul? + p?v! )8X3|u|2}dx+/8x1|u|2dx.

2 2
3 13
We have [I}] < E||u||?_', and 1% = [} [u]*nD do = I lul?>do + i |u|>do . In order to examine I4
and Is we have to differentiate (5.12) what yields
Vig =1Vp1 + 12V, (5.13)
where
1 1
I =/n”(t,01 +(1-0p)tdt and I2 = /ﬂ”(tm +(1—t)p2)(1 —t)dt.
0 0
We have

<ol |, IVorle, lulis Wi, <E(lulf + Iwli,),

‘/m ILuwV py dx
o

and the same for fQ 01 I?Tqu,oz dx. Thus the application of (5.13) to I4 yields |I4] < E(||u||i11 +
||w||f2). To estimate |I5| it is enough to use (5.13) to compute V(I;01) and then with the same
arguments as in case of I4 we get |I5] < E(Ilullf_ﬂ + ||W||%2). Summarizing our estimates we can write

1 1
||u||i,1+/<p1f—5)|u|2da+/p1f|u|2do+f<p1f+5)|u|2da
It

in 0 Tout

g/lﬂwpl divudx + E[|w|/,. (5.14)
2

The boundary integrals over I'y and Iy will be nonnegative for any f > 0 and the integral over
I, will be nonnegative for f large enough on [3,. Now in order to obtain (5.9) from (5.14) we can
express o1 divu in terms of w using Eq. (5.11); (this is why we have tested (5.11); with pju instead
of u) and rewrite (5.14) as

llull?, <—/Inwzdivvzdx—/lnwu~V,02dx—/l,rv1w-dex+E||w||%2. (5.15)
2 2 2

Is I7 Ig
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We verify easily that |Ig] + |I7] < E(||u||f_,1 + ||w||%2). We have to put a little more effort to find a
bound on Ig. Let us integrate by parts:

213:/IﬂwVWzdx:—/wzdiv(lﬂw)dx—i-/wzlnv] -ndo.
2 2 r

The boundary term reduces to /Fout Iz Wzv?) do > 0 and in order to deal with the first term on the
L.h.s. notice that

div(l;vy) =divvil; + I}Tv1 -Vp1+ 172.[\/1 -V 2,

hence

Zlgg—/wzdivvﬂ,, dx—/wzvl Vil dx—/wzvl -Vpl2 dx.
2 2 2

12

3
3 I

1
I 8

8
Obviously we have |I§| < E||w||%2. In order to bound I§ we can apply the continuity equation that
yields v; - Vp; = —pjdivv;, what implies 13| = | [, w?py div v;I} dx| < E||w||%2. In the term I3 we
can rewrite the mixed component as vi-Vp; =u-Vp,+ vy -V, and conclude that |I§| < E(||u||?_ﬂ +

||w||f2). Combining the above results with (5.14) we get (5.9).
In order to show (5.9) we express the pointwise value of w using (5.11):

X1 X1
wz(x1,xz) = /st(s,xz)ds=— %Wdivu(s,xz)ds
0 Vi
X
1
—/W(wzdivvz—i-wu~Vp2)(s,xz)ds
v
1

X
1 1 2 3
-3 / T)[vg ) g, w? + vg )3x3W2](S,X2)dS
o V1
= w?+wi+wi.

We estimate directly the first two components of the Lh.s. obtaining

/w%dxgenwn%z +C@©)ulf, Ye>0
2

and [, widx < E(|wl|?, + |ul|?,). To complete the proof we have to find a bound on w3. To this end
notice that

L
1 1
/w%dx:E/[W[v?)axzwz+v§3)8x3w2]dxdx1,
2 0Py |
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where Py, = 20 x (0, x1). Integrating by parts in the inner integral we get

2 1 ( 2 V(Z) V(B) w? ) @ 4,3 3)
/w3dx=§/{—/w [Bva1 + Ox, m]dx—i— / (1)[V o +vin ]do}d)q
Q 0 ;

X1 9%

The boundary integral reduces to frgmap w2v .ndo =0, what implies fQ wg dx < E|\w||%2 and (5.10)
X1
easily follows completing the proof of the uniqueness, and hence the proof of the theorem. 0O

Appendix A

Vorticity on the boundary. In order to show the boundary relation (2.11)3 4 we have to differentiate
(1.9)4 with respect to tangential directions at a given point xo € I". Without loss of generality we can
assume that n(xg) = (1,0, 0), 71(x9) = (0,1,0) and t2(xg) = (0,0, 1). Then we can rewrite (1.9)3 as
(all the quantities are taken at xgp):

p(ul o +u?q) + fu? =By, (A1)
u(u1,3+u3,1)+fu3:Bz. ’
Differentiating (1.9)4 with respect to the tangential direction 7; we get
d 1
—n)-u+u,,=0. A2
(d‘L’1 ) 2 (A2)

If we denote by x; the curvature of the curve generated by 7; then we have —n = x171 and (A.2)
can be rewritten as xi(tq-u) + ul ,=0. Combining this equation with (A.1); we get

B
u?p—uly= (2X1 - i)(u -T1) + =
I I

what is exactly (2.11)3. (2.11)4 can be shown in the same way differentiating (1.9)4 with respect to
the tangential direction 7.

Lemma 14 (Interpolation inequality). Ve > 0, 3C (€, p, §2) such thatV f € W},(Q):

I fll, <€V FillL, +ClflL,- (A3)

Proof. Inequality (A.3) results from the inequality || f|l., < C(p, 9)||f||$v1||f||1 ¥ for 2 < p < 0o,

where 6§ = "(g—;z) (see [1, Theorem 5.8]). Using Cauchy inequality with € we get A.3. O

The last auxiliary result we use is a following fact on finitely dimensional Hilbert spaces (the proof
can be found in [25]):

Lemma 15. Let X be a finite dimensional Hilbert space and let P : X — X be a continuous operator satisfying

IM >0: (P(£),£)>0 for|&] =M. (A4)

Then 3&*: ||£*|| < M and P(§*) = 0.
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