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Future increases in land-based production will need to focus

more on sustainably intensifying existing production systems.

Unfortunately, our understanding of the global patterns of land

use intensity is weak, partly because land use intensity is a

complex, multidimensional term, and partly because we lack

appropriate datasets to assess land use intensity across broad

geographic extents. Here, we review the state of the art regarding

approaches for mapping land use intensity and provide a

comprehensive overview of available global-scale datasets on

land use intensity. We also outline major challenges and

opportunitiesfor mapping landuse intensity for cropland,grazing,

and forestry systems, and identify key issues for future research.
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Introduction
Unless fundamental changes in consumption occur,

land-based production of food, feed, fiber, and bioe-

nergy will have to increase substantially to meet human-

ity’s surging demands [1,2��]. As land resources are

becoming scarcer [3��] much of this rise in production

must come from sustainably intensifying existing pro-

duction systems [4]. Yet, land use science has so far

mainly focused on broad land cover conversions while

the spatial patterns in the intensity of cropland, grazing,

and forestry systems remain highly unclear for most

world regions.

The lack of datasets to adequately assess land use inten-

sity and changes therein is particularly apparent at the

global scale, where existing data on land use intensity are

either coarse in scale (e.g. national-scale statistics) or

connected to considerable uncertainties [5�,6��], or both.

Existing data gaps translate into large uncertainties when

assessing the world’s potential for increasing land-based

production, for minimizing the environmental trade-offs

of land use, or for assessing the outcomes of alternative

land use pathways such as expansion versus intensifica-

tion. Moreover, data gaps are particularly in developing

countries, which sometimes lack consistent data collec-

tion and sharing frameworks, yet where land systems

change is extensive.

Three reasons explain the scarcity of global-scale land use

intensity datasets. First, land use intensity is a complex

and multidimensional phenomenon. Land use intensity

can refer to the land area farmed, the frequency of

cultivation [7], the amount of capital-related inputs

(e.g. fertilizer [8], irrigation [9], technology [10], or

mechanization [11]), the crop yields from a particular

area [12,13], or the share of ecosystem productivity that

is appropriated by humans [14]. Second, indicator defi-

nitions may vary between disciplines or countries.

Finally, adequate approaches for measuring land use

intensity and for integrating various data sources are often

missing (see Erb et al., this issue).

Despite these issues, new opportunities are arising to

fill the existing data gaps and to derive new land use
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intensity indicators. Data availability is rapidly improving,

and new algorithms and computer processing capacities

allow for better use of these datasets. Here, our goals here

are to:

(a) Review approaches to measure and map land use

intensity at the global scale,

(b) Provide an overview of spatially explicit datasets on

land use intensity, and

(c) Outline research gaps and opportunities for mapping

land use intensity globally.

Measuring and mapping land use intensity
Conceptual framework

Our conceptual framework of land use intensity follows

Erb et al. (this issue), which refers to land-based pro-

duction in a broad sense, including agriculture, grazing,

and forestry. In short, Erb et al. argue that adequately

addressing land use intensity and its impact on society

and the environment requires considering the different

dimensions of land use intensity in a systemic way. Land

use activities take place in production systems, which are

defined as integrated socio-ecological systems with both

biophysical (e.g. soils, climate, topography) and socio-

economic properties (e.g. institutions, market integ-

ration, population). Land-based production then encom-

passes all activities that convert some combination of

inputs into outputs, dependent on the properties of the

system (Figure 1). Inputs in the classical sense refer to

the land area utilized, to capital (e.g. technology,

mechanization, agrochemicals applied), and labor (e.g.

the amount of labor, knowledge) [15]. Outputs refer to

the production itself (e.g. harvests). Beyond outputs,

land-based production impacts a range of ecosystem

functions and services, as well as biodiversity, human,

social, and natural capital, as well as land system resili-

ence. These, usually unintended, impacts are here

referred to as the outcomes of land-based production.

Measuring and mapping outcomes, as well as the trade-

offs between production output and outcomes (e.g. food

versus carbon storage or biodiversity loss), are at the heart

of sustainability science, but beyond the scope of this

manuscript.

Here, we focus on three types of metrics that provide

a quantitative, spatially explicit measure of land use

intensity itself and thus allow ranking land use systems

or places according to their intensity (Figure 1):

(1) Input metrics measure the intensity of land use along

input dimensions (e.g. fertilizer, cropping frequency,

rotation lengths).

(2) Output metrics relate outputs from the production

system to inputs (e.g. yields, capital productivity, or

residue/felling ratios in forestry).
www.sciencedirect.com 
(3) System metrics relate the inputs or outputs of land-

based production to system properties (e.g. yield gaps

(actual versus potential yield), human appropriation

of net primary production (HANPP), or wood felling

in relation to wood increment).

Approaches for mapping land use intensity

Approaches for deriving global-scale metrics of land use

intensity at fine resolutions (i.e. 0.58 or finer) can be

broadly grouped into approaches based solely on remote

sensing image analysis, and methods that combine satel-

lite observations with ground-based inventory data to

derive grid-level land use intensity metrics (Table 1).

Satellite remote sensing

Remote sensing is arguably the most important technol-

ogy available for mapping land use and land cover

dynamics across broad geographic extents. Image access

has surged over the last few decades, the spatial, spectral,

and temporal resolution of observations have increased,

and data archives cover increasingly longer time periods,

altogether allowing for more detailed assessments of land

use changes than ever before. Strong advantages of

remote sensing include the systematic acquisition setup,

the spatially explicit nature of measurements, and their

consistency across political borders. Yet, land use inten-

sity changes are often related to subtle spectral changes,

and are thus notoriously hard to separate from the back-

ground variability in the system (e.g. phenology, atmos-

pheric or topographic effects). Apart from a few notable

exceptions (see below), satellite-based methods do

not generally provide direct measurements of land use

intensity.

In terms of input metrics, remote sensing provides

crucial information on the extent of land use, for

example the global extent of agriculture (see [6]).

Furthermore, satellite image time series allow in some

cases for determining cropping cycles (e.g. [16,17]), the

extent of fallow land [18�], or the frequency of fallow

periods [19]. Mapping grazing pressure and forest man-

agement effects across broad geographic extents remains

a challenge, although some promising applications exist

[20,21]. Advances have also been made regarding map-

ping individual crop types [22–24] or for distinguishing

irrigated from rainfed agriculture (e.g. [25,26]). Finally,

remote sensing can provide some information on the

spatial configuration of land use, such as field size ([27]

see Figure S1), which can be important for mapping

capital and labor intensity (e.g. large fields as indicator of

agri-business farming).

Remote sensing can also help to derive output metrics.

Examples include yield estimates [28,29] or timber

volumes extracted [30], although global applications of

this kind are still lacking. Likewise, satellites can assist in
Current Opinion in Environmental Sustainability 2013, 5:484–493
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Figure 1
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Schematic overview of land use intensity metrics. Metrics (orange boxes) are quantitative, spatially explicit measures of land use intensity derived by

relating different dimensions to each other. Input metrics measure the intensity of land use along different input dimensions (e.g. fertilizer/land, labor/

land). Output metrics relate outputs from the production system to inputs (e.g. yields, residue/felling ratios in forestry). System metrics relate the inputs

or outputs of land-based production to system properties (e.g. actual/potential yield ratios (i.e. yield gaps), wood felling to wood increment ratios).
generating land use intensity system metrics, for example

by measuring reference states and changes in ecosystem

properties such as net primary production [31], carbon

stocks [30] or forest tree species composition [32,33],

although many of these approaches are still experimental
Table 1

Data sources characterizing land use intensity across broad spatial e

Data source Description Extent 

Satellite imagery Measurements of the spectral

properties of land surfaces

Variable (local to

regional to global

coverage, dependin

the sensor system)

International

statistics

Reconciled national statistics

from various sources

National (global cov

Census (total

population)

Agriculture or forestry

statistics (usually

based on questionnaires)

National/subnationa

Survey (sample

of population)

Agriculture or forestry

statistics (usually

based on questionnaires

or interviews of a

stratified sample

of the population)

National/subnationa

Cadastre data Land property

boundaries and ass

ociated information

Individual propertie
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and cannot readily be applied across broad geographic

extents. Despite these promising developments though,

algorithms for mapping outputs and system metrics are

not mature enough to be routinely applied to map larger

regions.
xtents

Unit of observation Examples

g on

Pixel Land cover (e.g. cropping

area), land cover change

(e.g. logged area), vegetation

indices, NPP, albedo,

surface temperature

erage) Nations (sometimes

subnational)

FAO (e.g. labor, capital,

pesticide use, agricultural

production, land use area,

forestry use), FAO Forest

Resource Assessments

l Administrative units Population and housing

census, tax reports

l Individual, household, plot LUCAS database; living

standard surveys, national

forest inventories

s Property boundaries Land tenure, national

land registers

www.sciencedirect.com



Mapping land use intensity globally Kuemmerle et al. 487

Figure 2
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Map of cropland field sizes for Europe derived from interpolating ground-based survey data from the Land Use/Cover Area Frame Survey (LUCAS) of

the European Union using an ordinary Kriging approach.

Source: LUCAS primary data 2009, http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/data/lucas_primary_data_2009.
Combining satellite data and ground-based inventory

data

A range of land use intensity metrics primarily rely on

ground-based inventory data, often combined with

remote sensing information. Three approaches are

frequently used to translate inventory data into spatially

explicit land use intensity metrics.

First, interpolation techniques can derive maps

from point-based measurements such as national forest
www.sciencedirect.com 
inventories [34], the Land Use/Cover Area Frame Survey

(LUCAS) of the European Union [35], or national farm-

level surveys. A wide array of deterministic and geosta-

tistical interpolation techniques can be used to derive

grid-based land use intensity metrics from such point

datasets (for a review see [36]). The potential of these

techniques is illustrated by advances in mapping tree

species [37,38] or age-class distributions [39] based on

forestry inventory data, or maps of field size and agricul-

tural landscape patterns derived from the LUCAS data
Current Opinion in Environmental Sustainability 2013, 5:484–493
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(Figure 2). Despite this potential though, no global

ground-observation dataset which would allow for inter-

polating broad-scale land use intensity metrics currently

exists to our knowledge.

A second group of methods disaggregates spatially aggre-

gated data. Most datasets containing land use intensity

information are available in aggregated form, because

microdata (e.g. farm-level surveys, tax records) cannot

be made available widely due to privacy issues, are

difficult to interpret (e.g. individual forest inventory

plots), are often not geocoded, or were only gathered

for administrative units (e.g. timber harvests). Disaggre-

gation techniques commonly combine harmonized land

use statistics with high-resolution land cover information,

for example to map forest growing stock [40] or the extent

of different crops [13,41]. More complex disaggregation

techniques use a wider range of ancillary data, for

example crop-type maps to produce global N and P

fertilizer application maps [8], or census data and land

cover maps to produce rainfed and irrigated agriculture

maps [9,42�,43], which can then be used to map the

cropping intensity of agriculture [44]. Similarly, livestock

patterns in Europe [45] and globally [46] were mapped by

disaggregating livestock statistics.

A third group of land use intensity metrics combines

measurements, either from satellites or on the ground,

with model outputs. This is particularly important regard-

ing system metrics, which typically rely on a reference

value that is less straightforward to measure than inputs

and outputs alone. For example, global yield gaps [47,48�]
were mapped by first deriving efficiency frontiers using

econometric modeling, and then calculating the gap

between actual and potential yields at the grid level

[10]. Another example is HANPP [14], which is defined

as the difference between the fraction of actual NPP

remaining in an ecosystem after harvest (e.g. determined

with methods that combine ground-based and remote

sensing data) and potential productivity from dynamic

global vegetation models.

Available global metrics and data gaps
A review of available global-scale, gridded land use

intensity metrics reveals that a number of such metrics

are already available, but large data gaps remain in terms

of dimensions and sectors covered (Table S1).

Cropland systems

The data situation is arguably best in terms of cropland

intensity metrics. A range of maps depict global cropland

area, crop distribution, cropping frequency, and the

extent of irrigated as well as fallow cropland. Several

maps also depict the amount of organic and mineral

fertilizer applied. Fewer datasets capture output or sys-

tem metrics, the most notable of these are a comprehen-

sive yield dataset and several global yield gap maps.
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Moreover, time series for some metrics (e.g. cropland

area) exist (Table S1). Although a comparatively high

number of cropland intensity datasets exist, it should be

noted though that these datasets are often connected to

considerable uncertainty.

Data gaps exist particularly with regard to capital-related

inputs (e.g. spatially explicit datasets on mechanization,

pesticide application, or investment in agriculture) and

labor inputs (e.g. the number, share, and skill-level of the

agricultural workforce). We also currently lack detailed

information on the extent and pattern of agroforestry,

crop rotations, shifting cultivation systems, and organic

versus conventional cropping. Finally, the quality of

many of the existing cropland intensity metrics could

be improved further.

Grazing systems

Global data on grazing systems are particularly scarce

(Table S1). While indicators of livestock densities and

major livestock products (meat, milk, eggs) exist, con-

siderable gaps relate to the extent of grazing land and the

amount and types of biomass grazed. Likewise, infor-

mation on other input indicators is missing, particularly

regarding the spatial pattern of feed and forage pro-

duction and consumption, fertilizer applied to pastures,

grassland drainage, and the patterns of labor and capital

inputs connected to livestock systems.

Forestry systems

Very few global forestry intensity metrics exist (Table

S1). A number of datasets provide information on the

current extent, biomass, and growing stock of forests, and

the area of forest management can be approximated via

the exclusion of wilderness areas [49]. However, major

gaps include a better understanding of the characteristics

of forests (e.g. tree species composition, age-class or

diameter-class distributions, increment), the spatial pat-

terns and types of forest management (e.g. close-to-

nature versus monoculture, rare versus frequent man-

agement), and the inputs (e.g. fertilizer, labor, mechan-

ization) and outputs (e.g. timber volumes extracted, non-

timber goods) of forestry.

Discussion
Challenges for mapping land use intensity globally

Despite considerable recent progress, the mapping of

global land use intensity continues to face major chal-

lenges. First, fine-scale land use intensity data with global

coverage remains scarce, particularly regarding grazing

and forestry systems. Statistical data are frequently only

available at the national scale, systematic ground-based

data collection covers only a few regions, and remote

sensing struggles to capture the often subtle spectral

effects of land use intensity changes. Data gaps are

unfortunately largest in developing countries, many of

which experience rapid land use change, and are thought
www.sciencedirect.com
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Table 2

Research priorities for global-scale, spatially explicit datasets needed to improve and extend the existing set of land use intensity metrics

Dataset or metric needed Potential mapping approach

Cropland systems

Improved maps of cropland extent, especially

for uncertain regions

(e.g. SubSaharan Africa) and cropping systems (e.g.

shifting cultivation), as well as cropland abandonment

Satellite remote sensing, at multiple scales (including images fine enough to capture

land use patterns), potentially in combination with census data or local sampling surveys

Improved maps of cropping cycles, incl. fallow cycles Analyses of satellite image time series, combined with crop calendars [61,62] and

agricultural census data [44] and/or crowd-sourced information on farming practices

Labor intensity or mechanization Disaggregation of statistical data (e.g. agricultural labor force) with ancillary data (e.g.

remoteness, population density, land use systems). Harmonized collection of statistical

data, preferably at subnational scale, needed. New remote sensing datasets (e.g. field

size) could improve estimations

Pesticide use Disaggregation approach similar to those used to generate global fertilizer application

maps. Structured collection and access to data on pesticide use (e.g. via farm surveys)

and sales (e.g. subnational statistics) needed

Capital investment and capital productivity Structured data collection needed. Capital productivity could be mapped by relating

investments to revenues (e.g. using yield maps and price estimates)

Organic farming extent Disaggregation/downscaling of national or subnational data on organic farming extent.

Close links to several of the above metrics (e.g. pesticide use)

Grazing systems

Share of feed/forage from natural vegetation

(versus cropland and permanent pastures)

Collection and homogenization of feed/forage data at the subnational scale needed,

potentially in combination with crowd-sourced information on grazing practices. Such

information could be used together with cropland extent and livestock density maps [63]

Extent of grazing and types of vegetation that

is grazed (e.g. grasslands, forests)

Improved vegetation maps from remote sensing in combination with disaggregated

livestock statistics and information on grazing practices (see above)

Forage quality Remote sensing (vegetation structure, productivity) possibly in combination with

ecosystem models, and crowd-sourced information on livestock systems

Improved maps of the share of animals in feedlots

versus grazing/free-ranging animals

Collection and homogenization of such data at the subnational scale needed.

Disaggregation/downscaling could be substantially improved by implementing

information on grazing systems (type of vegetation grazed, forage quality)

Improved estimates of fertilizer (mineral and

manure) used in grazing systems and

manure transferred to cropland

Disaggregation/downscaling could be substantially improved by implementing

information on grazing systems (type of vegetation grazed, feed from natural vegetation

versus farmland, forage quality)

Water management on grazing land Information on grazing extent in combination with information on irrigation equipment,

climate data and satellite remote sensing

Labor or capital inputs to grazing systems Collection and homogenization of data on labor (e.g. # persons engaged with grazing/

livestock husbandry) and capital-related inputs (e.g. fences, fertilizer, vaccination) of

grazing systems needed. Disaggregation/downscaling would be possible using

indicators on livestock distribution and grazing practices

Forestry systems

Forest management types (e.g. agroforestry versus

plantations versus managed natural forest

versus unmanaged forests)

Collection and homogenization of subnational data on the extent of plantations needed.

Disaggregation/downscaling could be improved by remote sensing information (forest

types, forest structure) and ancillary data (e.g. wilderness datasets)

Improved forest type maps New remote sensing data (e.g. high-resolution, multi/hyperspectral sensors such as the

upcoming Sentinel-2 sensor) or joint use of data (Lidar, radar, and optical data) may

allow for moving beyond broad forest types (currently broadleaved, mixed and needle-

leaved forests)

Forest harvesting rates Disaggregation of forest harvesting statistics using forest area maps, forest

management types, and market accessibility proxies (e.g. travel distance to markets,

infrastructure network, terrain ruggedness)

Improve standing volume/biomass maps Remote sensing, for example via combining information on forest types and forest

structure [64�,65,66�]

Increment map and share of harvest in increment Dynamic global vegetation models in combination with improved forest, extent, forest

type, and forest harvesting maps

Age-class distributions and management

frequency maps (e.g. rare versus frequent)

Collection and homogenization of national/subnational data on forest age and

management cycles needed. Information could come partly from remote sensing (e.g.

logging histories), survey data, or crowd-sourcing

Forestry inputs (e.g. fertilizer, labor,

mechanization, drainage)

Collection and homogenization of national/subnational data on different inputs is

needed. Such data could be disaggregated using maps of forestry extent and/or forest

management types (see above)

www.sciencedirect.com Current Opinion in Environmental Sustainability 2013, 5:484–493
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to harbor major potentials for further intensifying land-

based production. Second, existing datasets are often

inconsistent in time (e.g. due to changes in survey

methods or data processing), space (e.g. political

boundary changes), or map legends, requiring substantial

homogenization efforts. Third, uncertainty of existing

land use intensity metrics is often high (e.g. due to

positional inaccuracy, unreliable input data, or processing

algorithms limitations), as highlighted by the large dis-

crepancies of alternative global cropland extent maps

[50�] or fertilizer application maps [8,51], and remain

largely unquantified, because formal validation is often

lacking. Where alternative maps exist, uncertainties can

be reduced by combing several maps into a ‘hybrid’ map

[52,53]. Errors may also vary substantially in space and

there is a risk of error propagation in more complex

datasets (e.g. land cover maps are needed to derive crop

distributions, which are needed to disaggregate fertilizer

statistics). Fourth, interpolation or disaggregation often

relies on covariates (e.g. location factors) which may result

in endogeneity problems in subsequent analyses. For

example, the FAO’s Gridded Livestock of the World

[46] uses remote sensed vegetation measures to distribute

livestock, and thus cannot be used to analyze the effects

of livestock density on vegetation. This endogeneity is

sometimes difficult to trace, emphasizing the need to

clearly document how datasets were constructed. Fifth,

global datasets are typically coarse, resulting in substan-

tial bias in area estimates [54] or when downscaling data

[55]. Finally, substantial conceptual challenges remain in

order to frame land use intensity globally (see Erb et al.,
this issue).

Opportunities for an improved mapping of land use

intensity

Progress in data access and algorithm development pro-

vide opportunities for developing new and improved

global land use intensity metrics. Advances in remote

sensing are rapid, with a growing number of sensors and

increasing access to image archives (e.g. the USGS Land-

sat archive), as well as new algorithms able to handle

complex data structures (e.g. machine learning, geosta-

tistical, or data mining tools). We see three main avenues

for an improved mapping of land use intensity: First,

longer and more consistent image time series which

capture phenology may help to map cropping cycles

and to reconstruct land use histories. Second, multi-scale

applications (e.g. joint use Landsat and MODIS or Sen-

tinel 1/2/3 images) seem promising regarding overcoming

resolution-dependent limitations. Finally, merging data

from different sensor systems (e.g. optical, radar, or

LIDAR) may provide new insights into land use intensity.

Despite these opportunities, however, the integration

of remote sensing and ground-based data will remain

crucial. Although statistically rigorous, ground-based

surveys are increasingly implemented, for example
Current Opinion in Environmental Sustainability 2013, 5:484–493 
sampling-based national forest inventories [34] or the

LUCAS survey in the European Union [35], there pre-

vails a huge lack of high-quality, ground-based data on

land management, especially for those regions where land

use changes rapidly. New means for ground-based data

collection are emerging though, for example crowd-sour-

cing could become an important source of geocoded land

use data [56] and can help to validate global land use maps

[50�]. Finally, new technologies for field or plot-based

monitoring are also becoming available and affordable

(e.g. wireless communication and solar-powered sensors)

[5].

The way forward

A few general recommendations for assessing land use

intensity patterns at the global scale emerge from our

review. First, considerable progress can be made with

already existing data, for example by combining multiple

datasets from different sources and across scales. Data

access is a key challenge in this context, and efforts to

develop platforms and protocols to compile, share, and

distribute land use datasets, such as the GEOSHARE

initiative (www.geoshareproject.org), are urgently

needed. Second, further standardization and harmoniza-

tion of existing land use datasets as well as data collection

protocols are needed, similar to efforts focusing on land

cover (e.g. [57]). As ground-based data are essential for most

land use intensity metrics, implementing new sampling

schemes and standardizing existing national schemes are

crucial. Third, there is an urgent need to validate existing

global datasets and to document uncertainty, biases, and

potential error propagation (i.e. uncertainty of input data-

sets). It is crucial, for each dataset, to transparently docu-

ment the covariates used and assumptions made, so that

subsequent users can avoid endogeneity problems. Fourth,

better integration of observational data (from satellites or

the ground) into process-based models is needed to advance

the mapping of system metrics. Finally, time series for most

land use variables do currently not exist, but would be

important to assess past changes in land use intensity and its

environmental outcomes.

Future research should focus on improving existing land

use intensity metrics and on filling data gaps (Table 2),

prioritizing those sectors and indicators where data

deficiencies are largest. Regarding cropland use intensity,

the already relatively rich set of metrics needs further

improvements (e.g. global cropland extent, cropping

cycles, fertilizer use), and could be extended (e.g. pesticide

use). Uncertainty is generally larger regarding grazing

systems, and better information on grazing extent, especi-

ally on the distribution of grazing among the different

vegetation types, and feed production and consumption

is urgently needed. Data gaps appear biggest regarding

global forestry intensity, for which major advances could be

made from maps of broad types of forestry systems (e.g.

plantations, agroforestry, managed and unmanaged natural
www.sciencedirect.com

http://www.geoshareproject.org/


Mapping land use intensity globally Kuemmerle et al. 491
forests, as well as forest harvesting). In addition to quan-

titative metrics, a fruitful field for future research would be

to advance the global mapping of land use systems

[58,59��].

A better characterization of the spatial patterns of global

land use intensity is crucial to monitor the various

environmental and societal impacts of land use, and to

understand the drivers of changing land use intensity.

Given the multidimensional nature of land use intensity,

a focus on multiple metrics within a systems perspective

is needed. The metrics we discussed here provide either

a quantitative measure of one aspect of land use intensity

(i.e. input and output metrics), or of the aggregated

effects of land use intensity (i.e. system metrics). Both

types of metrics complement each other, as single

metrics are relatively easy to compute and interpret,

but do not provide a coherent picture of intensification,

whereas system metrics, by aggregating multiple pro-

cesses, hamper the understanding of the relations be-

tween different system components [60]. Ample

opportunities exist to advance both types of metrics in

parallel to arrive at a second generation of land use

intensity metrics. Such metrics would be a major step

toward confronting the sustainability challenge in global

land use, but developing, harmonizing, maintaining, and

sharing these datasets related will require substantially

investments from scientists and funding organizations

alike.
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