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Inversion of Stochastic Partial Differential Operators- 
The Linear Case 

G. ADOMIAN 
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AND 

K. MALAKIAN 

McDonnell Douglas Technical Services, Astronautics Division, Houston, Texas 77058 

The operator-theoretic (or inverse) method for stochastic differential equations is 
generalized to stochastic partial differential operators. This paper treats the linear 
case. 

INTRODUCTION 

The iterative method of Adomian [l-3] for linear or nonlinear stochastic 
differential equations, recently extended by Adomian and Malakian [4] and 
Adomian and Sibul [5] is further generalized in this paper to the case of 
linear, deterministic, or stochastic, partial differential equations. We begin 
with the deterministic case. 

LINEAR DETERMINISTIC PARTIAL DIFFERENTIAL EQUATIONS 

Let L, and L, be linear partial differential operators (e.g., 8*/8x*, a/at, 
etc.) and consider an equation of the form 

L,u+L,u=g(t,x); (1) 

g, the forcing term (or system input), is allowed to be stochastic but the 
operators are deterministic. u = u(t, x). We require that the inverses L;’ and 
L;’ exist. Let us rewrite (1) in the form 

4,xu = g. (2) 
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If the inverse Lt;: exists, the solution of (1) or (2) is 

u = L;: g. 

Hence our objective is the determination of Lt;d = (L, + L,] 
write (1) in the two forms: 

L,u= g--p, 

Lxu= g-L,u. 

(3) 

To do this, 

(4) 

Assuming the individual inverses L; ’ and L; ’ are known or determinable, 
we have from (4) the integral equations 

u = L,‘g- L;‘L,u, 

u=L,‘g-LL,‘L,u. 
(5) 

If we take the specific operators L, = a/at and L, = 8*/&’ as a typical 
example, the first equation in (5) implies that g E C2 with respect to x. The 
second implies g E C’ with respect to t. Equations (2) and (5) yield the 
operator identities 

L;: = L;’ - L;‘L,L-’ f,X 9 

L;; XL-‘-&IL L-1 x t t,x 
(6) 

We can add the two equations in (5), and divide by 2, to obtain a single 
equation for U, or, do the same with (6) to write the operator equation 

L,: = (1/2)[(L,’ + L,‘)- (L,‘L, + L,‘L,) L;I:]. (7) 

If we define L-’ = (1/2)[L;’ + L;‘] and L-‘R = (1/2)[L;‘L,+ L;‘L,], 
we can write 

L,;g=u=L-‘g-L-‘Ru (8) 

as in the ordinary linear stochastic differential equation of the form Yy = x 
where 9 = L + R, L being a deterministic operator and R is stochastic, 
whose solution is known [l-3] to be 

u = u. + 24, + u* + ‘. ) 

where each ui = - L-‘Ru,-, for i > 1 and u, = L -‘g, an approach which 
yields statistical separability without the need for closure approximations. 
This is viewed as a decomposition of u into czO kiui or, equivalently of the 
inverse operator, Lt;: = CEO IiHi where I is later set equal to unity. Since 
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the problem has been reduced to one whose solution is known, we can write 
immediately 

U0=Lp’g=(1/2)[L;‘+L,‘]g, 

U’ = - L-‘Ru, = - (1/2)[LF’L, + Li’L,] uo, 

u2 = - L-‘Ru, = - (1/2)[L;‘L, + L;‘L,] u’, 

etc. 

(9) 

from which u is known. 
A solution can also be obtained directly from Eq. (7). Parametrizing with 

A, we write 

L;: = (1/2)[(L;’ + L;‘) - A(L;‘L, + Li’L,) L,J. 

Substituting L,: = CEO A’H,, 

C?H,=(1/2) (L,‘+L;‘)-A(L,‘Lx+L,‘L,)~~‘Hi 
[ 1 

Equating comparable powers of 1, 

H, = (1/2)(LY’ + L;‘), 

H, = - (1/2)(L;‘Lx + L;‘L,)Ho 

= - (1/2)*(L;‘L, + Ll’L,)(L,’ + L;‘), 

H,, = (-1)“(1/2)“+‘(L,‘L, + L;‘L,)“(L;’ + L,‘), 

(10) 

(11) 

)\. is simply a device for grouping terms and (9) and (11) are equivalent. We 
set A= 1 and have the desired inverse L,;: = H, + H, + or 

L,: = 2 (-1)“(1/2)“+‘(L;‘L, + L;‘L,)“(L,-’ + L,‘) (‘2) 
n=o 

and 

24 = 2 (-1)“(1/2)“+‘(L,-‘L,+ L;‘L,)“(L,-’ + L;‘)g (13) 
n=0 

is the solution. 
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CONVERGENCE 

We do not of course calculate an infinite sum but an approximation 4, = 
2::; uk, i.e., for n > 1 

n-1 

&I= k;. (-I)k(I/2)k+‘[L;‘L,+L;1Lt]k’ [L;‘+L;‘] g(t,x). (14) 

Now consider 

n-1 

LO” = (L, + Lx) k;o (-l)k(l/2)k+‘[L;1L, + L;‘LJk . [L,-’ + L,‘] g. 

(15) 

The first term is 

LQl = (L, + www + L; ‘I g 

= g + (1/2)[L,LT’ + L,L;‘] g. 

The second term is 

= g + (1/2)[L,Li 1 + L,L[ ‘1 g 

- (L, + L,)(1/2)[&‘L, + L;‘L,](1/2)[L7’ + I,;‘] g 

= g + (1/2)[L,L,’ + L,L,‘] g - (1/2)[L,Li’ + L.,L;‘] g 

- (1/2)g- (1/2)*[L,L;‘L,L;’ + L,L;‘L,L;‘] g. 

We note the second and third terms vanish. The next calculation removes the 
fourth and fifth terms and adds +(1/2)*g + (1/2)3[L,L;1L,L;1L,L;1 + 
L,L;‘L,L;‘L,L;‘] g, etc. 

L,,,#, = g + (-1)“-‘(l/2)“-‘g + (-1)“-‘(1/2)“[(L,L,‘)” - (L,L;‘)“] g. 

(16) 

In the limit as n + co, the left side is Lt,Xu if lim,,, 4, = U. We assume 
]] g(/ < oo a.s. and the operators L,, L,, and L;’ are bounded in norm. Then 
we can state: 

THEOREM 1. 0, converges to u, fand only ly IlLt’L, + L;‘L,I) < 1. 

THEOREM 2. lim,,, L,,,#, = L,,, lim,,, 4, = g and lim,,, 4, satisfies 
the equation S?u = g as n -+ 00. The approximate solution satisfies the 
partial d@rential equation if and only if II(L,L;‘)” - (L,L;‘)“[( < 2”. 
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Alternatively, the requirement with the ordinary differential equation [ 1 ] is 
II LP’R I/ < 1. With our earlier definitions 

II(L,‘Lx + L, ‘L,)II < 1 (17) 

where the choice of the norm depends on the specific statistical measure of 
interest. 

LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 

qJu = g; (18) 

g may be stochastic. Y’,, = PC + Y, where J$ = L, + R, and YX = L, + R,, 
i.e., Y< and i”, decompose into deterministic parts L, and L, and (zero-mean) 
random parts given by R, and R,. Assume Y,;:, L; ‘, and L; ’ exist. We 
have 

L,u=g-RR,u-L,u-R,u, 

L,u= g-RR,u-L,u-RR,u, 
(19) 

where the initial conditions, whether deterministic or random, are accounted 
for in taking the inverses L; ’ and L; ’ as shown in an example at the end of 
this paper. Equivalently, 

u=L;‘g-L;‘R+-L;‘L,u-L;‘Rxu, 

u=L,‘g-LL,‘R.u-L;‘L,u-LL;‘R,u. 

Since u = i”,;j g, 

(20) 

9,; g = L;‘g - L;‘R,P;T; g - L;‘L,Ip,j g - L;‘R$P;j g, 

PC;; g = L;‘g - L;‘R,Y,;; g - L;‘L,Yy; g - L,‘R,P$ g, 
(21) 

yielding the operator equations 

pi;; =L;’ - L;‘R,Pl-; - L;‘L,P;; - L;‘RxY-- t,x 7 
y-i = L-1 - L;‘R,Yt-: - L;‘L,Pl-; - L;‘R,P-’ 

(22) 
x I,X . 

Adding as before 

L/y; = (1/2)[(L,’ + L;‘) - L;‘(R, + L, + R,)P;,L 

- L,‘(R, + L, + R,) Y’,;:]. (23) 
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Parametrizing and representing 5Yl;: by C 1”H, we have 

xk”H,=(1/2) (L;l+L;‘)-&?(R,+L,+R,)~~“Hn 
L 

-AL;‘(R,+L,+R,)~A”H, . 1 (24) 

Then 

Ho = (1/2)(L,’ + L;‘), 

H, = - (1/2)‘[L;‘(R, + L, + R,) + L;‘(R, + L, + R,)](L;’ + L;‘), 

H, : (-1)“(1/2)“+‘[L;‘(R, + L, + R,) + L;‘(R, + L, + R,)]“(L;’ + L,‘). 

The inverse operator is therefore given by 

9,; = 2 (-1)“(1/2)“+‘[L,‘(R, + L, + R,) 
PI=0 

+ L;‘(R, + L, + R,)]“(L;’ + L;‘). (25) 

SPECIAL CASES 

Case 1: R,, R, = 0. 

9;: = 2 (-1)“(1/2)“+‘[L,‘L, + L;‘L,]“(L;’ + L,‘) (26) 
It=0 

which is the same as (12). 

Case 2: L,, R, = 0. 
The equation is gu = g, which has been previously solved [ 11. 

CONDITIONS 

The operators L,, L,, L;‘, and L;’ must all be bounded in norm; R, and 
R, must be bounded a.s. in norm. The necessary and suffkient condition is 
given by 

ll(L; ‘(R, + L, + R,) + L;‘(R, + L, + R,)ll < 1 a.s. (27) 
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ALTERNATE APPROACH:L&U= g 

i.e., instead of decomposition of the stochastic partial differential operator 
into ordinary differential operators, we decompose it into a deterministic 
partial differential operator and a zero-mean random partial differential 
operator. If Pt;j and Lt;: exist, 

hence 

Lt,,u = g - Rt,xu, 
u=L,;g-L,;R,,,u; 

LP-; = L,; -L,; R,,,Yty; 

is the operator equation. Applying the previous procedure, 

9,; = L,; -AL,;; R&P,;;. 

Decompose Y”,: into partial differential operators by c l”H,; 

H, = - L,: R,,,L,::, 

H, = L,~:R,.,L;I: R,.,L,: 5 

9,: = 2 (--1)“(L,:R,.,)” L,::, 
n=O 

u = F (-l)“(L,; R,,,)” L,;; g. 
n=O 

STATISTICAL MEASURES FOR STOCHASTIC PARTIAL 
DIFFERENTIAL EQUATIONS 

(29) 

(30) 

(31) 

(32) 

(33) 

Let 4, be the approximate solution for u. Statistical measures such as the 
mean, correlation, etc., can be obtained in the same manner as in earlier 
work [l--6]. 
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EXAMPLE 

Let us illustrate the procedure with a single problem: 

2 

$ + $ = g(t, x) = xefx + t2efx. 

Thus &/Lb = L,u and a2u/ax2 = L,u. Then 

ug = (1/2)[4-’ + L;‘] g, (34) 

where L;‘g and L,‘x are evaluated using the initial conditions u(x, 0) = 
~(0, t) = 1 (we can approximate the exponential with the leading terms of the 
expansions) and substitute into (34) to yield the first term of the series for 
u = u,, + u 1 + . The second term is given by 

u1 = - (1/2)[Lt?L, + L;‘L,] u,, 

where L, and L, are known and uO, L; I, and L;’ have been found above. 
Then 

u2 = - (1/2)[L;‘Lx + L;‘L,] u, 

is determined and similarly for higher terms, i.e., 

ui = - (1/2)[L,-‘L, + L,‘L,] uip,, ia 2. 

The solution is the series for efX. 
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