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a b s t r a c t

Pitch processing at cortical and subcortical stages of processing is
shaped by language experience. We recently demonstrated that
specific components of the cortical pitch response (CPR) index the
more rapidly-changing portions of the high rising Tone 2 of
Mandarin Chinese, in addition to marking pitch onset and sound
offset. In this study, we examine how language experience (Man-
darin vs. English) shapes the processing of different temporal at-
tributes of pitch reflected in the CPR components using stimuli
representative of within-category variants of Tone 2. Results
showed that the magnitude of CPR components (NaePb and Pb
eNb) and the correlation between these two components and
pitch acceleration were stronger for the Chinese listeners
compared to English listeners for stimuli that fell within the range
of Tone 2 citation forms. Discriminant function analysis revealed
that the NaePb component was more than twice as important as
PbeNb in grouping listeners by language affiliation. In addition, a
stronger stimulus-dependent, rightward asymmetry was observed
for the Chinese group at the temporal, but not frontal, electrode
sites. This finding may reflect selective recruitment of experience-
dependent, pitch-specific mechanisms in right auditory cortex to
extract more complex, time-varying pitch patterns. Taken together,
rtment of Speech Language Hearing Sciences, 1353 Heavilon Hall, 500 Oval
1 765 494 3821; fax: þ1 765 494 0771.
an), gandour@purdue.edu (J.T. Gandour), sananthakrishnan@towson.edu (S.
aghavan).
ith Towson University in the Department of Audiology, Speech-Language

ier Ltd. This is an open access article under the CC BY-NC-ND license (http://

mailto:rkrish@purdue.edu
mailto:gandour@purdue.edu
mailto:sananthakrishnan@towson.edu
mailto:vvijayar@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneuroling.2014.08.002&domain=pdf
www.sciencedirect.com/science/journal/09116044
http://www.elsevier.com/locate/jneuroling
http://www.elsevier.com/locate/jneuroling
http://dx.doi.org/10.1016/j.jneuroling.2014.08.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.jneuroling.2014.08.002
http://dx.doi.org/10.1016/j.jneuroling.2014.08.002


A. Krishnan et al. / Journal of Neurolinguistics 33 (2015) 128e148 129
these findings suggest that long-term language experience shapes
early sensory level processing of pitch in the auditory cortex, and
that the sensitivity of the CPR may vary depending on the relative
linguistic importance of specific temporal attributes of dynamic
pitch.

© 2014 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Pitch is a salient perceptual attribute that plays an important role in language andmusic (Oxenham,
2012; Plack, Oxenham, & Fay, 2005). Despite similarities in pitch processing between domains,
empirical evidence supports the view that neural representations of pitch may be shaped by its
functional properties in a given domain of expertise. Tone languages are especially useful for studying
the effects of functional properties of pitch that are phonemic at the syllable level (Maddieson, 1978;
Yip, 2002). It is well established that dynamic variations in voice fundamental frequency (F0) provide
the dominant acoustic cue for tonal recognition (Abramson, 1962; Gandour, 1994; Klatt, 1973; Xu,
2001). In the case of lexical tone, several cross-language (or cross-domain) studies have revealed
experience-dependent neural plasticity at both cortical and subcortical levels of the brain (see
Gandour, 2006; Gandour & Krishnan, 2014; Krishnan, Gandour, & Bidelman, 2012; Zatorre & Baum,
2012; Zatorre & Gandour, 2008, for reviews). Thus, tone languages not only give us a physiologic
window to evaluate how neural representations of linguistically-relevant pitch attributes emerge
along the early stages of sensory processing in the hierarchy, but theymay also shed light on the nature
of interaction between early sensory levels and later higher levels of cognitive processing in the human
brain.

Pitch is a multidimensional perceptual attribute that relies on several acoustic dimensions. In
particular, F0 height and contour (i.e., nonlinear change in pitch between onset and offset) have been
revealed to be important, experience-dependent dimensions of pitch underlying the perception of
lexical tone (Francis, Ciocca, Ma, & Fenn, 2008; Gandour, 1983; Gandour & Harshman, 1978; Huang &
Johnson, 2011; Khouw & Ciocca, 2007). These same pitch dimensions have been targeted in recent
studies of tonal processing in the human brain. Using the mismatch negativity (MMN), Chinese lis-
teners, relative to English, were more sensitive to pitch contour than pitch height in response to
Mandarin tones, indicating that MMN may serve as a neural index of the relative saliency of un-
derlying dimensions of pitch that are differentially weighted by language experience
(Chandrasekaran, Gandour, & Krishnan, 2007). In Cantonese, the magnitude and latency of MMN
were sensitive to the size of pitch height change, while the latency of P3a (an automatic attention
shift induced by the detection of deviant features in the passive oddball paradigm) captured the
presence of a change in pitch contour (Tsang, Jia, Huang, & Chen, 2011). In Mandarin, pitch height and
contour dimensions associated with lexical tone were reported to be lateralized respectively to the
right and left hemispheres (Wang, Wang, & Chen, 2013). Their findings, however, may not be
attributable to pitch exclusively because standard/deviant tonal contrasts were not phonologically
equivalent across experimental conditions. A within-category contrast was used for the height con-
dition; an across-category contrast for the contour condition. The categorical status of tonal contrasts
provides a more plausible explanation of the observed pattern of hemispheric laterality (Xi, Zhang,
Shu, Zhang, & Li, 2010; Zhang et al., 2011). Though contour and height are important dimensions
that are implicated in early, cortical pitch processing, the MMN itself is not a pitch-specific response.
It is comprised of both auditory and cognitive mechanisms of frequency change detection in auditory
cortex (Maess, Jacobsen, Schroger, & Friederici, 2007). This parallel processing is consistent with the
near-simultaneity of neurophysiological indicators (EEG/MEG) of psycholinguistic information in the
first 200e250 ms (Pulvermuller, Shtyrov, & Hauk, 2009).
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The quest to discover an early, preattentive cortical brain response exclusively to pitch began in
earnest around the turn of this century. Magnetoencephalography (MEG) was used to study sensi-
tivity to periodicity, an essential requisite of pitch, by investigating the N100m component. However,
a large proportion of the N100m is simply a response to the onset of sound energy, and not exclu-
sively to pitch (Alku, Sivonen, Palomaki, & Tiitinen, 2001; Gutschalk, Patterson, Scherg, Uppenkamp,
& Rupp, 2004; Hertrich, Mathiak, Lutzenberger, & Ackermann, 2000; Lutkenhoner, Seither-Preisler,
& Seither, 2006; Soeta & Nakagawa, 2008; Soeta, Nakagawa, &Matsuoka, 2005; Yrttiaho, Alku, May,
& Tiitinen, 2009; Yrttiaho, Tiitinen, Alku, Miettinen, & May, 2010; Yrttiaho, Tiitinen, May, Leino, &
Alku, 2008). In order to disentangle the pitch-specific response from the onset response, a novel
stimulus paradigmwas constructed with two segments e an initial segment of noise with no pitch to
evoke the onset components only, followed by a pitch-eliciting segment of iterated rippled noise
(IRN) matched in intensity and overall spectral profile (Krumbholz, Patterson, Seither-Preisler,
Lammertmann, & Lutkenhoner, 2003). Interestingly, a transient pitch onset response (POR) was
evoked from this noise-to-pitch transition only. The reverse stimulus transition from pitch to noise
failed to produce a POR. It has been proposed that the human POR, as measured by MEG, reflects
synchronized cortical neural activity specific to pitch (Chait, Poeppel, & Simon, 2006; Krumbholz
et al., 2003; Ritter, Gunter Dosch, Specht, & Rupp, 2005; Seither-Preisler, Patterson, Krumbholz,
Seither, & Lutkenhoner, 2006). POR latency and magnitude, for example, has been shown to depend
on pitch salience. A more robust POR with shorter latency is observed for stimuli with stronger pitch
salience as compared to those with weaker pitch salience. Source analyses (Gutschalk, Patterson,
Rupp, Uppenkamp, & Scherg, 2002; Gutschalk et al., 2004; Krumbholz et al., 2003), corroborated
by human depth electrode recordings (Griffiths et al., 2010; Schonwiesner & Zatorre, 2008), indicate
that the POR is localized to the anterolateral portion of Heschl's gyrus, the putative site of pitch
processing (Bendor & Wang, 2005; Griffiths, Buchel, Frackowiak, & Patterson, 1998; Johnsrude,
Penhune, & Zatorre, 2000; Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002; Penagos, Melcher,
& Oxenham, 2004; Zatorre, 1988).

We recently adopted Krumbholz et al.'s (2003) pitch onset response paradigm to demonstrate
that a cortical pitch response (CPR) with multiple transient components can be extracted from
scalp-recorded electroencephalography (EEG) (Krishnan, Bidelman, Smalt, Ananthakrishnan, &
Gandour, 2012). Indeed, neural responses evoked by IRN steady-state pitch stimuli steadily
increased in magnitude with increasing IRN stimulus periodicity. Behavioral pitch discrimination
also improved with increasing stimulus periodicity. This change in response amplitude with
increasing stimulus regularity was strongly correlated with behavioral measures of change in pitch
salience. Furthermore, a robust CPR was evoked from both weak and strong IRN pitch-eliciting
stimuli, but not to “no-pitch” IRN. We therefore conclude that the CPR is specific to pitch rather
than simply a neural response to IRN elicited by slow, spectrotemporal modulations unrelated to
pitch (Barker, Plack, & Hall, 2012).

However, any proposed neurobiological mechanism for online processing of pitch contour in the
language domain must be able to track dynamic, continuous, nonlinear pitch contours. Besides
indexing pitch onset and sound offset, we recently showed that specific components of the CPR mark
dynamic pitch attributes of the high rising Tone 2 of Mandarin Chinese (under review). Of the CPR's
multiple transient components (Na, Pb, Nb, Pc, Nc), NaePb and PbeNb showed a systematic increase in
interpeak latency and decrease in amplitude with increasing pitch acceleration that followed the time
course of pitch change across three within-category variants of Tone 2. Their sensitivity to pitch ac-
celeration was corroborated by strong negative correlations of peak-to-peak amplitude with three
measures of pitch acceleration. NaePb and PbeNb thus appear to be neural markers indexing pitch-
relevant neural activity sensitive to the more rapidly-changing portions of the pitch contour. We
proposed a series of neural markers embedded in the early stages of cortical sensory processing that
flag different temporal attributes of a dynamic pitch contour (Pa: sound onset; Na: pitch onset; NaePb/
PbeNb: pitch change; PceNc: sound offset). We also observed a stimulus-dependent, rightward
lateralization at the temporal electrode sites. This hemispheric asymmetry may reflect selective
recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex.

As a logical sequel to our most recent report (under review), the primary objectives of this
cross-language study (Chinese, English) are 1) to examine how language experience shapes the
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processing of the different temporal attributes of pitch reflected in the CPR components and 2) to
determine if the rightward lateralization observed for the Chinese group reflects an experience-
dependent functional lateralization of early, sensory-level pitch processing. Our hypothesis is
that both the pitch-relevant neural activity indexing the temporal attributes of pitch, and its
rightward lateralization at the early sensory level of pitch processing is shaped by language
experience. As such, this study is one of a series of CPR experiments that are designed to advance
our understanding of early sensory processing of specific temporal attributes of pitch that are
present in linguistically-relevant, dynamic pitch contours exemplary of those that occur in natural
speech.

2. Materials and methods

2.1. Participants

Ten native speakers of Mandarin Chinese (5 male, 5 female) and English (3 male, 7 female) were
recruited from the Purdue University student body to participate in the experiment. All exhibited
normal hearing sensitivity at audiometric frequencies between 500 and 4000 Hz and reported no
previous history of neurological or psychiatric illnesses. They were closely matched in age (Chinese:
26.0 ± 3.8 years; English: 24.5 ± 3.8), years of formal education (Chinese: 17.4 ± 2.7 years; English:
16.9 ± 1.4), and were strongly right handed (Chinese: 91.2 ± 15.2%; English: 91.0 ± 12.1) as measured by
the laterality index of the Edinburgh Handedness Inventory (Oldfield, 1971). All Chinese participants
were born and raised in mainland China. None had received formal instruction in English before the
age of nine (12.2 ± 1.5 years). As determined by a music history questionnaire (Wong & Perrachione,
2007), all Chinese (except for one) and English participants had less than two years of musical
training (Chinese, 1.1 ± 1.2 years; English, 1.1 ± 1.0) on any combination of instruments. No participant
had any training within the past five years. Each participant was paid and gave informed consent in
compliance with a protocol approved by the Institutional Review Board of Purdue University.

2.2. Stimuli

Three isolated, citation variants of Mandarin Tone 2 were constructed: short (T2_150), intermediate
(T2_200), and long (T2_250). Their durations were, in order,150, 200, and 250ms. Though infrequent, a
short variant (T2_150) has been reported to occur in isolated productions of Tone 2 (Kratochvil, 1985).
These durations easily fall outside the range of temporal integration effects (z80 ms) on pitch and its
salience for stimuli with resolved harmonics (Plack, Carlyon, & Viemeister, 1995; Plack, Turgeon,
Lancaster, Carlyon, & Gockel, 2011; Plack & White, 2000; White & Plack, 1998, 2003). It is therefore
unlikely that temporal integration effects pose a potential confound for our evaluation of pitch
acceleration-related effects. These stimuli differed in F0 rate of acceleration as well as duration (Fig. 1).
Rates of acceleration, expressed in the acceleration domain, are displayed at 80 ms, minimum-to-
maximum, and maximum-to-offset per stimulus (Appendix A.1, table). The maximum speed of pitch
change within a speaker's ability to produce a rapid shift in rising pitch over a 4 st interval is 61.3 st/s
(Xu & Sun, 2002, p. 1407, Table VII). The average velocity rates (in st/s), calculated from the turning
point to F0 offset, for T2_250 (25.6), T2_200 (32.1), and T2_150 (42.7) fall within the physiological limits
of speed of rising pitch changes. As reflected by FFR responses in the brainstem (Krishnan, Gandour,
Smalt, & Bidelman, 2010, p. 96, Figs. 2 and 3), a scaled variant of Tone 2 with a velocity rate of
51.94 st/s, though approaching the upper bounds of the normal voice range, was statistically indis-
tinguishable from an exemplary Tone 2 stimulus (25.4 st/s). To enable us to focus primarily on the
effects of changes in rate of acceleration during the rising portion of Tone 2, F0 onset (100.88 Hz) and
offset (131.72 Hz) were held constant across stimuli. DF0 from turning point to offset was fixed across
stimuli at 30.84 Hz (4.6 st; .38 octaves). This DF0 value is comparable to that of an exemplary Tone 2
citation form (Krishnan, Gandour, Smalt, et al., 2010) and is an effective cue for the perception of
isolated Tone 2 (Moore& Jongman,1997). The turning point was located at aboutz26% of the duration
of the F0 contour (40 ms, T2_150; 53 ms, T2_200; 66 ms, T2_250). The timing of these turning points
relative to F0 onset are perceptually relevant in the identification of Tone 2 (cf. Moore& Jongman, 1997,



Fig. 1. IRN stimuli used to evoke cortical responses to linguistic patterns that are differentiated by varying degrees of rising ac-
celeration and duration. Voice fundamental frequency (F0) contours (top panel) and corresponding acceleration trajectories (bottom
panel) of all three stimuli are modeled after the citation form of Mandarin Tone 2 (T2) using a fourth-order polynomial equation.
These three stimuli exemplify short (T2_150, dot), intermediate (T2_200, dash-dot), and long (T2_250, solid) variants of Tone 2. The
vertical dashed line at 80 ms is located after the turning point, and provides a measure of instantaneous acceleration irrespective of
stimulus duration (53, 40, and 32% of total duration for T2_150, T2_200, and T2_250, respectively).
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p. 1870, Fig. 4). Based on these behavioral and neural data, we judged these stimuli to be ecologically
valid (within-category) representations of Tone 2 and likely to elicit differential sensitivity to varying
degrees of acceleration rates at the cortical level.

These three IRN stimuli with time-varying F0 contours were generated by applying a time-varying,
delay-and-add algorithm using fourth-order polynomial equations (Appendix A.2, text) (Denham,
2005; Krishnan, Swaminathan, & Gandour, 2009; Sayles & Winter, 2007; Swaminathan, Krishnan,
Gandour, & Xu, 2008). A high iteration step (n ¼ 32) was chosen because pitch salience does not
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increase by any noticeable amount beyond this number of iteration steps. The gain was set to 1. By
using IRN, we preserve dynamic variations in pitch of auditory stimuli that lack awaveform periodicity,
formant structure, temporal envelope, and recognizable timbre characteristic of speech.

Each stimulus condition consisted of two segments (crossfaded with 5 ms cos2 ramps): an initial
500 ms noise segment followed by a pitch segment, i.e., T2_150, T2_200, and T2_250 (Appendix B.1,
figure). The overall RMS level of each segment was equated such that there was no discernible dif-
ference in intensity between initial and final segments. All stimuli were presented binaurally at 80 dB
SPL through magnetically-shielded tubal insert earphones (ER-3A; Etymotic Research, Elk Grove
Village, IL, USA) with a fixed onset polarity (rarefaction) and a repetition rate of .94/s. Stimulus pre-
sentation order was randomized both within and across participants. All stimuli were generated and
played out using an auditory evoked potential system (SmartEP, Intelligent Hearing Systems;Miami, FL,
USA).

2.3. Cortical pitch response acquisition

Participants reclined comfortably in an electro-acoustically shielded booth to facilitate recording of
neurophysiologic responses. They were instructed to relax and refrain from extraneous body move-
ment (to minimize myogenic artifacts), ignore the sounds they heard, and were allowed to sleep
throughout the duration of the recording procedure (z75% fell asleep). The EEG was acquired
continuously (5000 Hz sampling rate; .3e2500 Hz analog band-pass) using ASA-Lab EEG system (ANT
Inc., The Netherlands) utilizing a 32-channel amplifier (REFA8-32, TMS International BV) and Wave-
Guard (ANT Inc., The Netherlands) electrode cap with 32-shielded sintered Ag/AgCl electrodes
configured in the standard 10e20-montage system. The high sampling rate of 5 kHz was necessary to
recover the brainstem frequency following responses in addition to the relatively slower cortical pitch
components. Because the primary objective of this study was to evaluate the effects of language
experience on the characteristics of cortical pitch components, and not their source localization, EEG
acquisition was accomplished using an electrode montage including the following 9 electrode loca-
tions: Fpz, AFz, Fz, F3, F4, Cz, T7, T8, M1, M2 (Appendix B.2, figure). The AFz electrode served as the
common ground and the common average of all connected unipolar electrode inputs served as default
reference for the REFA8-32 amplifier. An additional bipolar channel with one electrode placed lateral to
the outer canthi of the left eye and another electrode placed above the left eye was used to monitor
artifacts introduced by ocular activity. Inter-electrode impedances were maintained below 10 kU. For
each stimulus, EEGs were acquired in blocks of 1000 sweeps. The experimental protocol took about 2 h
to complete.

2.4. Extraction of the cortical pitch response (CPR)

CPR responses were extracted off-line from the EEG files. To extract the cortical pitch response
components, EEG files were first down sampled from 5000 Hz to 2048 Hz. They were then digitally
high-pass filtered (3e25 Hz) to enhance the transient components and minimize the sustained
component. Sweeps containing electrical activity exceeding ±40 mV were rejected as artifacts.
Subsequently, averaging was performed on all 8 unipolar electrode locations using the common
reference to allow comparison of CPR components at the right frontal (F4), left frontal (F3), right
temporal (T8), and left temporal (T7) electrode sites to evaluate laterality effects. The re-referenced
electrode site, Fz-linked T7/T8, was used to characterize the transient pitch response components.
For both averaging procedures, the analysis epoch was 1200 ms including the 100 ms pre-stimulus
baseline.

2.5. Analysis of CPR

The CPR is characterized by obligatory components (P1/N1) corresponding to the onset of energy in
the precursor noise segment of the stimulus followed by an onset component (Pa) and four transient,
pitch-related response components (Na, Pb, Nb, Pc) occurring after the onset of the pitch-eliciting
segment of the stimulus. To characterize what aspects of the dynamic pitch contours are being
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indexed by the components of the CPR, the latency and magnitude of only the CPR components were
evaluated. Peak latencies of response components corresponded to the time interval between the
pitch-eliciting stimulus onset and a response peak of interest: Pa, Na, Pb, Nb, and Pc. Their interpeak
latencies corresponded to the time interval between adjacent response peaks of these components:
NaePb, PbeNb, and NbePc. These latency measures enabled us to identify the components associated
with pitch onset, pitch acceleration, and stimulus offset. PaePc interpeak latency was measured to
identify an interval that marks stimulus duration. Peak-to-peak amplitude of NaePb, PbeNb, and
NbePc was measured to determine if variations in amplitude were indexing specific aspects of the
pitch contour (pitch onset, changes in pitch, pitch offset). In addition, peak-to-peak amplitude of
NaePb and PbeNbwas measured separately at the frontal (F3/F4) and temporal (T7/T8) electrode sites
to evaluate laterality effects. To enhance visualization of the laterality effects along a spectrotemporal
dimension, joint time-frequency analysis was performed using a continuous wavelet transform on the
grand average waveforms derived from the frontal and temporal electrodes.

2.6. Statistical analysis

Separate three-way, mixed model ANOVAs (SAS®; SAS Institute, Inc., Cary, NC, USA) were con-
ducted on peak latency, interpeak latency, and peak-to-peak amplitude derived from the Fz elec-
trode site. Language group (Chinese, English) was treated as a between-subjects factor; subjects as
a random factor nested within group. Stimulus (T2_150, T2_200, T2_250) and component were
treated as within-subject factors. In the analysis of peak latency, there were four components (Na,
Pb, Nb, Pc); in the analysis of interpeak latency and peak-to-peak amplitude, three components
(NaePb, PbeNb, NbePc). By analyzing these components, we were able to assess the effects of pitch
acceleration on latency and amplitude across stimuli. Separate two-way (group � hemisphere),
mixed model ANOVAs were conducted on peak-to-peak amplitude of NaePb and PbeNb derived
from the T7/T8 (temporal) and F3/F4 (frontal) electrode sites for T2_250 only. By focusing on these
two pitch-related components, we were able to determine whether laterality effects at the frontal
and temporal sites vary as a function of language experience. T2_250 was chosen because it was the
only one to show an RH (T8 > T7) advantage in peak-to-peak amplitude for the native Chinese
group (Krishnan, Gandour, Ananthakrishnan, & Vijayaraghavan, 2014). All a priori or post hoc
multiple comparisons were corrected with a Bonferroni adjustment at a ¼ 0.05.

3. Results

3.1. Response morphology of CPR components

Grand averaged cortical evoked response waveforms to the three stimuli are shown for the
Chinese (red trace) and the English (blue trace) group in Fig. 2. The top panel shows both the
superimposed P1/N1 onset complex for the three stimuli (black) and the CPR component to T2_250.
As expected (Krishnan, Bidelman, et al., 2012) the obligatory P1/N1 complex, reflecting neural
activity synchronized to the onset of the noise precursor (black), is very similar for both groups,
and across the three stimulus conditions. The CPR components, elicited by the pitch-eliciting
stimulus segment, are characterized by a series of successive biphasic components (in ms): e.g.,
T2_250 (bottom panel), Pa, 70e85; Na, 125e150; Pb, 200e220; Nb, 270e285; Pc, 305e325; and Nc,
340e360. The second, third, and fourth (bottom) panels show only the CPR waveforms elicited by
the three stimuli. The CPR components are clearly identifiable for both groups. The amplitude of
components Na, Pb, and Nb for T2_200 and T2_250, however, are greater for the Chinese group. The
increase in amplitude for these components from T2_150 to T2_250 is more apparent for the
Chinese group. The offset components (Pc, Nc) appear to be more robust for the English group. Peak
latency for Pa and Na do not change appreciably across stimulus conditions for either group. In
contrast, response components Pb, Nb, Pc, and Nc all show a systematic increase in peak latency
across stimulus conditions for both groups. Consistent with these observations, the interpeak la-
tencies (NaePb, PbeNb, NbePc) increase across stimulus conditions. These systematic changes in
response amplitude and latency are likely produced by a decrease in the rate of pitch acceleration
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and an increase in duration across the three stimulus conditions. The more robust response
amplitude of the CPR components in the Chinese group may reflect an experience-dependent
enhancement of components related to pitch.
3.2. Latency and amplitude of CPR components

3.2.1. Latency
For both language groups, mean peak latencies of Pb, Nb, and Pc components increase systemati-

cally regardless of stimulus (T2_150, T2_200, T2_250) with appreciably smaller increases for Na
(Appendix B.3, figure). ANOVA results showed a three-way interaction among group, component, and
stimulus (F6,108 ¼ 3.59, p ¼ 0.0028). Planned group comparisons indicated that Chinese latencies were
shorter than English for Na and Pb in response toT2_200, and for Pc in response to T2_250. Other group
comparisons failed to reach significance.

Mean interpeak latency for NaePb, PbeNb, and NbePc components generally show a systematic
increase fromT2_150 toT2_250 for NaePb and PbeNb in both language groups (Fig. 3a). ANOVA results
revealed a three-way interaction among group, component, and stimulus (F6,108 ¼ 3.95, p ¼ 0.0013).
Planned group comparisons indicated that in response toT2_200, Chinese interpeak latencywas longer
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Fig. 3. Mean interpeak latency (left panel) and peak-to-peak amplitude (right panel) of NaePb, PbeNb, and NbePc components
recorded at the Fz electrode site from T2_150 (top panel) to T2_250 (bottom panel) in both Chinese and English groups. Interpeak
latencies increase across stimuli for NaePb and PbeNb in both groups. In the case of T2_200 (middle panel), Chinese interpeak
latency is longer than English for PbeNb, but shorter than English for NbePc. The Chinese group exhibits a larger amplitude than the
English group for NaePb and PbeNb in T2_200 and T2_250. Error bars ¼ ±1 SE.



A. Krishnan et al. / Journal of Neurolinguistics 33 (2015) 128e148 137
than English for PbeNb, but shorter than English for NbePc. Other group comparisons failed to reach
significance.

PaePc, the component that closely corresponded to stimulus duration, exhibited longer interpeak
latencies as one progresses from T2_150 to T2_250 (Appendix A.3, table). A two-way ANOVA of group
and stimulus showed only a main effect of stimulus (F2,36¼ 1295.99, p < 0.0001), meaning that Chinese
and English listeners were homogenous with respect to this duration-related component.

3.2.2. Amplitude
Mean peak-to-peak amplitude of NaePb, PbeNb, and NbePc components show that Chinese lis-

teners exhibit a larger amplitude than English for NaePb and PbeNb in T2_200 and T2_250 (Fig. 3b).
ANOVA results revealed a three-way interaction among group, component, and stimulus (F6,108 ¼ 3.04,
p ¼ 0.0087). In response to T2_250, planned group comparisons indicated that Chinese peak-to-peak
amplitudewas larger than English for both NaePb and PbeNb. In response toT2_200, Chinese peak-to-
peak amplitude was larger than English for NaePb; for PbeNb, the Chinese advantage was marginally
larger than English (p ¼ 0.0797). Other group comparisons failed to reach significance.

To support the view that Chinese superiority on peak-to-peak amplitude reflects enhanced neural
activity associatedwith rapidly-changing pitch, Pearson correlations (r) were computed between peak-
to-peak amplitude of CPR components (NaePb, PbeNb) and three measures of pitch acceleration for
T2_250 (Appendix A.1, table). In the Chinese group, a strong negative association was observed be-
tween NaePb (r ¼ �.781/�779) and PbeNb (r ¼ �.774/�.764) with all measures of pitch acceleration
(Appendix A.4, table). In the English group, we observed a much weaker negative association (NaePb,
r ¼ �.519/�.497; PbeNb, r ¼ �.322/�.290). The negative correlation coefficient means that peak-to-
peak amplitude increases with decreasing acceleration.

A discriminant analysis was used to determine the extent to which individual participants may be
classified into their respective language groups based on their peak-to-peak magnitude values for
T2_250. Overall, 95% of participants were correctly classified into their respective language groups
(Chinese, 90%; English, 100%) (Appendix A.5, table). Because we can expect to get only 50% of the
classifications correct by chance, an overall accuracy rate of 95% represents a considerable improve-
ment (canonical correlation ¼ .796). Only .05% fewer correct classifications (Chinese, 9/10; English, 9/
10) were made in the cross-validated analysis in comparison to the original analysis. The group cen-
troids, i.e., average discriminant z scores, differed significantly between the Chinese (1.248) and English
(�1.248) groups (F2,17 ¼ 14.71, p¼ 0.0002). The pooled within-class standardized canonical coefficients
for NaePb and PbeNb, respectively, were .947 and .379, indicating that NaePb was more than twice as
important as PbeNb in discriminating listeners by language affiliation.

3.3. Comparison of CPR components at frontal (F3/F4) and temporal (T7/T8) electrode sites to examine
hemispheric laterality

The grand average waveforms (two left columns) and their corresponding spectra (two right col-
umns) of the CPR components for each of the three stimuli per language group are displayed at frontal
(F3/F4) and temporal (T7/T8) sites in Figs. 4 and 5, respectively. The waveform data in Fig. 4 reveal that
pitch-related components at frontal F3 (dashed waveforms) and F4 (solid waveforms) are more robust
for the Chinese group (red waveforms in the first column) across all three stimuli when compared to
the smaller CPR components for the English group (blue waveforms in the second column). However,
for both groups, the CPR components at the two electrode sites essentially overlap with no discernible
difference in magnitude and thus no laterality of the CPR components. The lack of laterality at these
electrode sites is evident in their essentially identical spectral plots (two right columns). Similarly, CPR
components at both T7 and T8 electrode sites (Fig. 5) are larger in amplitude for the Chinese group (red
waveforms, in the web version) relative to the English group (blue waveforms, in the web version)
particularly for T2_200 and T2_250. In contrast to the F3/F4 waveforms, these same components are
larger at the right temporal electrode (T8: solid red, in the web version) than the left temporal elec-
trode (T7: dashed red, in the web version) for the Chinese group exclusively and for T2_250 in
particular. This robust rightward lateralization for T2_250 is clearly evident in the spectrotemporal
representation of the pitch-related components (bottom two right panels).



Fig. 4. Grand average waveforms (two left columns) and their corresponding spectra (two right columns) of the CPR components for
the two groups (red: Chinese; blue: English) recorded at electrode sites F3 (dashed lines) and F4 (solid lines) for each of the three
stimuli. The zero on the x-axis denotes the time of onset of the pitch-eliciting segment of the three stimuli. The response com-
ponents are generally greater in magnitude for the Chinese group compared to the English group with no discernible asymmetry
between F3 and F4 for either group. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Mean peak-to-peak amplitude of NaePb and PbeNb components for the Chinese and English
groups are displayed in response to T2_250 at temporal (T7/T8) and frontal (F3/F4) sites in Fig. 6. At the
T7/T8 electrode sites, ANOVA results irrespective of component showed only main effects of group,
Chinese > English (NaePb: F1,18 ¼ 27.51, p < 0.0001; PbeNb, F1,18 ¼ 23.12, p < 0.0001) and hemisphere,
T8 > T7 (NaePb: F1,18 ¼ 7.72, p ¼ 0.0124; PbeNb, F1,18 ¼ 6.31, p ¼ 0.0217). The interaction effect
(group � hemisphere) failed to reach significance for either component, meaning that peak-to-peak
amplitude was larger in the Chinese group as compared to the English group across temporal elec-
trode sites; and that peak-to-peak amplitude was larger in the right than in the left temporal site
regardless of group. In contrast, at the F3/F4 electrode sites, ANOVA results showed only a main effect
of group, Chinese > English, regardless of component (NaePb: F1,18 ¼ 20.56, p ¼ 0.0003; PbeNb,
F1,18 ¼ 44.22, p < 0.0001). The hemisphere main effect failed to reach significance, meaning that peak-
to-peak amplitude of these CPR components did not vary between the left and right frontal sites. The
absence of an interaction effect means that Chinese peak-to-peak amplitude was larger than English at
either frontal site.



Fig. 5. Grand average waveforms and their corresponding spectra of the CPR components for the two groups recorded at electrode
sites T7 and T8 for each of the three stimuli. The response components are generally greater in magnitude for the Chinese group
compared to the English group with a large rightward asymmetry for the Chinese group only for stimulus T2_250. See also caption to
Fig. 4.
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4. Discussion

The major findings of this cross-language study show that the magnitude of CPR components
(NaePb and PbeNb) and the correlation between these two components and pitch acceleration are
stronger for the Chinese listeners compared to English listeners for stimuli that fall within the range of
a native pitch contour (as produced on isolated monosyllables). Taken together, these findings suggest
that long-term language experience shapes early sensory level processing of pitch in the auditory
cortex. The sensitivity of the CPR may vary depending on the relative linguistic importance of specific
temporal attributes of dynamic pitch. As revealed by discriminant function analysis, the NaePb
component was more than twice as important as PbeNb in grouping listeners by language affiliation. A
stronger rightward asymmetry at the temporal electrode sites for Chinese listeners, relative to English
listeners, is compatible with the notion of experience-dependent modulation of pitch-specific mech-
anisms at an early stage of processing in right auditory cortex.
4.1. Experience-dependent neural plasticity in early sensory processing of pitch in the auditory cortex

Our findings are consistent with earlier cross-language studies that have revealed experience-
dependent neural plasticity at both cortical and subcortical levels of the brain (Gandour &



T2_250

0.0

0.5

1.0

1.5

2.0  T7 C
 T8 C 
 T7 E
 T8 E

Response Components
Na-Pb Pb-Nb

Pe
ak

 to
 P

ea
k 

Am
pl

itu
de

 (
V)

0.0

0.5

1.0

1.5

2.0

 F3 C
 F4 C 
 F3 E
 F4 E

Fig. 6. Mean peak-to-peak amplitude of NaePb and PbeNb components for the Chinese and English groups in response to T2_250 at
temporal (T7/T8; top panel) and frontal (F3/F4; bottom panel) sites. At the T7/T8 electrode sites, peak-to-peak amplitude is larger in
the Chinese group than the English group in both hemispheres. A right-sided advantage is present in each language group. However,
this rightward asymmetry is more robust in the Chinese group compared to the relatively weak asymmetry in the English group. At
the F3/F4 electrode sites, Chinese peak-to-peak amplitude is larger than English in both hemispheres, though there is no hemi-
spheric advantage for either language group. Error bars ¼ ±1 SE.

A. Krishnan et al. / Journal of Neurolinguistics 33 (2015) 128e148140
Krishnan, 2014; Krishnan et al., 2014; Krishnan, Gandour, et al., 2012; Zatorre & Baum, 2012; Zatorre
& Gandour, 2008). We believe that long-term experience-driven adaptive pitch mechanisms at early
sensory levels of pitch processing in the auditory cortex sharpen response properties of neural
elements to enable optimal representation of temporal attributes of native pitch contours. In this
study, all three stimuli represented variant productions of Mandarin Tone 2, though T2_150 was
marginal as spoken on isolated monosyllables (Kratochvil, 1985). A language-dependent effect on
peak-to-peak amplitude was observed for T2_250 and T2_200 only. Thus, not all within-category
representations of a tonal category are equal in terms of their influence on early cortical pitch
processing.

We recently reported a systematic increase in the interpeak latency and decrease in amplitude for
components NaePb and PbeNb with increasing pitch acceleration (Krishnan et al., 2014). We inferred
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that these components may be indexing pitch-relevant neural activity associated with the more
rapidly-changing portions of the pitch contour. This inference was further strengthened by a strong
correlation with pitch acceleration for NaePb and PbeNb only. On these same components, the Chi-
nese group exhibited greater amplitude and higher correlationwith pitch acceleration than the English
group. This language-dependent effect suggests an experience-dependent increase in sensitivity to
dynamic portions of pitch contours that occur in the native listeners' experience. Because enhanced
sensitivity to time-varying dimensions (e.g., acceleration) is already present in pitch encoding at the
level of the brainstem (Krishnan & Gandour, 2009; Krishnan, Gandour, et al., 2012), it seems plausible
that cortical pitch mechanisms may be reflecting, at least in part, this enhanced pitch input from the
brainstem.

Our current experimental design does not permit us to determinewhether NaePb and PbeNb index
different dynamic segments of the pitch contour. We hypothesize that NaePb (relatively longer latency
and larger amplitude) indexes the increasing pitch acceleration between the turning point and the
point of maximum acceleration in the stimulus. Whereas PbeNb (shorter latency and smaller ampli-
tude) indexes the shorter pitch deceleration between maximum acceleration and stimulus offset.
Interestingly, discriminant analysis showed that NaePb contributed more to the accurate grouping of
listeners by language affiliation.

We further note that experience-dependent enhancement of pitch was reflected primarily in the
amplitude, instead of the latency, of CPR components. The more robust amplitude suggests greater
temporal synchronization and improved synaptic efficiency of pitch-relevant neural activity among
cortical neurons generating these CPR components. In contrast, absolute and interpeak latency may
simply serve as discrete event markers of neural activity indexing the temporal course of a pitch
contour. By design, this experiment minimized latency effects. Pitch height was fixed; timing differ-
ences from onset to turning point across stimuli were very small (in ms: T2_150, 40 T2_200, 53;
T2_250, 66); the turning point itself occurred at about 26% of total duration across stimuli. Future
research is clearly warranted to investigate how the latency of CPR components is exploited to signal
specific temporal attributes of pitch contour (cf. Tsang et al., 2011).
4.2. Influence of language experience on the hemispheric preferences for pitch processing

We observed a stronger rightward asymmetry of NaePb and NbePb responses by the Chinese
group, relative to the English group. This language-dependent effect was confined to T2_250 only. Of
the three stimuli, T2_250 most closely approximates the canonical duration pattern of Tone 2
produced in isolation (M ¼ 273 ms: Xu, 1997). The English group also displayed a rightward
asymmetry albeit much weaker than the Chinese group. One possible explanation involves the
distinction between the sensory memory trace and analyzed sensory memory (Cowan, 1984, 1987).
The latter contains fine-grained, analyzed sensory codes including time-varying (e.g., pitch slope or
acceleration) and event-timing (e.g., onset time or duration) information. Its lifetime is on the order
of seconds. Why an experience-dependent effect occurs only on the stimulus that best exemplifies
the tonal category requires explanation. Bear in mind that the experiment is free of task demands;
stimuli are reduced to the pitch parameter; and hemispheric asymmetry is based on peak-to-peak
amplitude responses extracted from two putative, pitch-specific components (NaePb, PbeNb). This
differential sensitivity to within-category representations leads us to hypothesize that pitch infor-
mation is encoded in a hierarchical order including a short-term categorical memory that interacts
with analyzed sensory memory within the same time interval (cf. Goldinger, 1998; Pasternak &
Greenlee, 2005; Xu, Gandour, & Francis, 2006). The English group obviously would have no
memory of the canonical pattern of Mandarin Tone 2. The asymmetry was confined to the temporal
electrodes (T8 > T7). No asymmetry was found at the frontal electrodes sites (F3/F4) regardless of
stimulus or language group. The fact that hemispheric asymmetry occurred in auditory areas, but
not frontal, suggests that different mechanisms and networks are involved at lower-level stages of
pitch processing. That dorsal regions of the right superior temporal gyrus play a critical role in early
stages of processing suprasegmental information is incontrovertible (Friederici & Alter, 2004; Meyer,
2008; Zatorre & Gandour, 2008). However, less is known about the nature of the interaction
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between the right auditory core and adjoining auditory-related cortical areas. One view is that
auditory processing occurs symmetrically in the core, but asymmetrically in auditory-related areas
(Poeppel, 2003; Poeppel, Idsardi, & van Wassenhove, 2008). In this study, we hypothesize that the
language-dependent temporal asymmetry in response to T2_250 is due to an interaction with pitch-
specific areas beyond the core that, in turn, are connected to higher-order memory areas related to
language. As such, it is an example of interaction between sensory and cognitive components within
the language domain in right auditory-related cortex. Indeed, a complete account of pitch processing
must allow for interactions between sensory and cognitive contributions that interact within the
same time interval, as well as at different time intervals at different cortical levels within and across
hemispheres.

Our finding of stronger rightward asymmetry of pitch-relevant neural activity for the Chinese
listeners converges with ERP data that reveal the emergence of experience-dependent asymmetries
in the music domain at early cortical levels of processing. For example, a right temporal advantage
is seen in the cortical N1 component related to pitch transition (change-N1, ~100 ms latency) in
trained musicians (Itoh, Okumiya-Kanke, Nakayama, Kwee, & Nakada, 2012). No hemispheric
asymmetry is observed for the onset component. Using musical pitch stimuli, the Itoh et al. study
similarly demonstrates experience-dependent enhancement of processing changes in pitch in the
right auditory cortex.

We must also point out that our stimuli exhibit dynamic, curvilinear F0 trajectories that are
representative of a Mandarin lexical tone. Steady-state or flat F0 patterns are of no functional
relevance in the speech of any of the world's languages, tonal or otherwise. Interestingly, MEG
recordings fail to observe any hemispheric differences with regard to either latency or amplitude of
the pitch-relevant cortical components elicited by stimuli with flat pitch (Gutschalk et al., 2004;
Hari et al., 1987; Krumbholz et al., 2003; Lutkenhoner & Steinstrater, 1998; Seither-Preisler et al.,
2006). This disparity in hemispheric asymmetry between dynamic and flat pitch patterns further
emphasizes the importance of using ecologically-relevant stimuli to study pitch processing in the
language domain.
4.3. Cross-language differences in relative importance of pitch attributes as reflected by CPR components

The discriminant function analysis of Fz peak-to-peak amplitude (elicited by T2_250) was highly
successful in separating the two language groups. The relative weighting of CPR components
showed that NaePb is twice as important as PbeNb in classifying Chinese and English listeners into
their respective group. While our current experimental design does not permit us to determine
whether components NaePb and PbeNb are indexing different portions of the dynamic segment of
the pitch contour, we hypothesize that NaePb (relatively longer latency and larger amplitude) in-
dexes the rapid increase in pitch acceleration between the turning point and the point of maximum
acceleration in the stimulus; whereas PbeNb (shorter latency and smaller amplitude) indexes the
shorter pitch deceleration segment between maximum acceleration and stimulus offset. Because
rapid changes in pitch at the syllable level is one of the critical features of a contour-tone language
(Pike, 1948), native speakers of Mandarin place more emphasis on NaePb, relative to non-tone
language speakers, in early cortical stages of pitch extraction from the auditory signal. These
language-dependent effects are manifest even though the electrophysiological responses themselves
are pitch-specific. That is, language experience may influence electrophysiological responses to
temporal attributes of pitch rather than holistic, tonal categories. This is not surprising if one adopts a
parallel model of brain processing. It is well-known that early, near-simultaneous brain indexes of a
range of psycholinguistic processes emerge within 100e250 ms after critical stimulus information is
present (Pulvermuller et al., 2009). Moreover, CPR components permit us to investigate the dynamic
portion of a lexical tone, which may lead to a fuller understanding of real-time neurobiological
mechanisms that follow the time course of a pitch contour. And finally, these CPR data extend our
previous findings on the relative weighting of dimensions or attributes of pitch at the levels of the
cerebral cortex (MMN: Chandrasekaran et al., 2007) and brainstem (FFR: Krishnan, Gandour, &
Bidelman, 2010; Krishnan et al., 2009).
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4.4. Neural mechanisms mediating experience-dependent plasticity of early sensory processing of pitch in
the auditory cortex

Experience-dependent enhancement of pitch representation for Chinese listeners most likely re-
flects an interaction between higher-level cognitive processes and early sensory-level processing to
improve representations of behaviorally-relevant features that contribute optimally to perception. It is
our view that long-term experience shapes this adaptive process wherein the top-down connections
provide selective gating of inputs to both cortical and subcortical structures to enhance neural re-
sponses to specific behaviorally-relevant attributes of the stimulus. The goal clearly is to achieve
optimal correspondence between the sensory representations and the resulting percept at all levels of
processing (Gilbert & Sigman, 2007).

Evidence for this signal selectivity mediated through top-down influence comes from response
properties of cortical neurons in animal models, that show a selective increase in responsiveness and
shifting of best frequencies toward task-relevant, target stimuli (Fritz, Shamma, Elhilali, & Klein, 2003;
Lee & Middlebrooks, 2011; see Weinberger, 2011, for review); and selective expansion of receptive
fields for stimulus features that are being learned (Polley, Steinberg, &Merzenich, 2006). In the case of
humans, the top-down influence mediated by the corticofugal system likely shapes the enhancement
of brainstem pitch representation resulting from short-term auditory training (Russo, Nicol, Zecker,
Hayes, & Kraus, 2005; Song, Skoe, Wong, & Kraus, 2008); long-term linguistic experience (Krishnan
& Gandour, 2009; Krishnan, Gandour, et al., 2012; Krishnan, Xu, Gandour, & Cariani, 2005); and
musical training (Bidelman& Krishnan, 2009; Bidelman, Krishnan,& Gandour, 2011; Musacchia, Sams,
Skoe, & Kraus, 2007; Wong, Skoe, Russo, Dees, & Kraus, 2007).

The reverse hierarchy theory (RHT) provides a representational hierarchy to describe the interaction
between sensory input and top-down processes to guide plasticity in primary sensory areas (Ahissar &
Hochstein, 2004; Nahum, Nelken, & Ahissar, 2008). This theory suggests that neural circuitry medi-
ating a certain percept can bemodified starting at the highest representational level and progressing to
lower levels in search of more refined high resolution information to optimize percept. The RHT has
been invoked as a plausible explanation for top-down influences on cortical (Krizman, Skoe, Marian, &
Kraus, 2014) and subcortical sensory processing (Banai, Abrams,& Kraus, 2007; Krishnan, Bidelman, &
Gandour, 2010). Consistent with this theory, it is possible that sensory-level representation of spec-
trotemporal features related to pitch in the brainstem is more precise than the more labile, spatio-
temporally broader, pitch-relevant information in the auditory cortex (Chechik et al., 2006; Warren &
Griffiths, 2003; Winer, Miller, Lee, & Schreiner, 2005; Zatorre & Belin, 2001). Indeed, fine-grained,
spectrotemporal details that are present in the sustained brainstem response are absent in transient,
cortical pitch response components. We nevertheless observe a close correspondence between cortical
and brainstem responses when manipulating the degree of pitch salience (Krishnan, Bidelman, et al.,
2012).

Another proposed circuitry mediating learning-induced plasticity is the cortico-colliculo-thalamo-
cortico-collicular loop (Xiong, Zhang,& Yan, 2009). This circuitry is comprised of bottom-up (colliculo-
thalamic and thalamo-cortical) and top-down (corticofugal) projections that form a tonotopic loop. It is
presumed to be the only neural substrate that carries accurate auditory information (cf. Krishnan &
Gandour, 2009). Additionally, it incorporates several neuromodulatory inputs that form a core neu-
ral circuit mediating sound-specific plasticity associatedwith perceptual learning. Auditory stimuli and
neuromodulatory inputs are believed to induce large-scale, frequency-specific plasticity in the loop.

It is also possible that bottom-up as well as local top-down cortical inputs may jointly influence
pitch processing as reflected in the CPR components. In the case of the former, enhanced repre-
sentations from brainstem pitch mechanisms are functionally reorganized by top-down influence
during the critical period of language acquisition. As a result, brainstem responses constitute an
indirect reflection of inputs from the corticofugal system. Once this reorganization is complete,
local mechanisms in the brainstem and auditory cortex would be sufficiently robust to extract
linguistically-relevant pitch information optimally without an engaged, online corticofugal influ-
ence (Bajo, Nodal, Moore, & King, 2010). Indeed, the strong correlation between neural represen-
tations relevant to pitch salience at the brainstem and early cortical levels of processing suggests
that sensory processing at the brainstem level may be driving early preattentive sensory processing
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relevant to pitch at the cortical level (Krishnan, Bidelman, et al., 2012). In the case of humans, top-
down processes likely shape the reorganization of the sensory processing of pitch-relevant infor-
mation in the brainstem and auditory cortex to enhance pitch extraction in earlier stages of lan-
guage development when adaptive plasticity presumably would be most vigorous (Keuroghlian &
Knudsen, 2007; Kral & Eggermont, 2007). The slower time constants of corticofugal processing
render it much too sluggish to effectively influence a dynamic pitch pattern over its entire duration
(Dean, Robinson, Harper, & McAlpine, 2008). Nonetheless, its adaptive properties would still be
able to facilitate extraction of behaviorally-relevant information under degraded listening condi-
tions and during training protocols.

4.5. Neural mechanism(s) for early sensory level pitch processing in the auditory cortex

It is generally agreed that lateral Heschl's gyrus is the putative source for the pitch onset component
(Na). Generator sources for the remaining pitch-relevant components (Pb, Nb) are unknown and
cannot be determined from this study. We speculate that these later components (NaePb, PbeNb)
reflect neural activity from spatially distinct generators that represent later stages of sensory pro-
cessing, relative to Na, along a pitch processing hierarchy. Whether pitch-relevant information
extracted by these neural generators is based on a spectral and/or temporal code is unclear. At
subcortical levels up to the midbrain, physiologic and computational modeling data support the
possibility of either a purely temporal mechanism or a hybrid mechanism using both spectral and
temporal information (Cariani & Delgutte, 1996a, 1996b; Cedolin & Delgutte, 2005; Plack et al., 2005).
There is evidence that neurons in primary auditory cortex exhibit temporal and spectral response
properties that could enable these pitch-encoding schemes (Lu, Liang, & Wang, 2001; Steinschneider,
Reser, Fishman, Schroeder,& Arezzo, 1998), but it not knownwhether they form a network with pitch-
selective neurons to carry out this process.

Unlike the subcortical auditory structures where periodicity and pitch are often represented by
regular temporal patterns of action potentials that are phase-locked to the sound waveform, the most
commonly observed code for periodicity and pitch within cortical neurons is a modulation of spike
rates as a function of F0. It is possible that the wider temporal integration window at the cortical level
may render the auditory cortical neurons too sluggish to provide phase-locked representations of
periodicity within the pitch range (Walker, Bizley, King, & Schnupp, 2011). Thus, it is not yet clear how
cortical neurons transform the autocorrelation-like temporal analysis in the brainstem to a spike rate
code to extract pitch-relevant information.

It has been proposed that processing of specific pitch values, pitch salience and pitch change occurs
in the lateral Heschl's gyrus well after the time-interval processing begins in subcortical regions to
encode pitch relevant information (Griffiths, Uppenkamp, Johnsrude, Josephs, & Patterson, 2001;
Langner & Schreiner, 1988; Patterson et al., 2002; Winter, Wiegrebe, & Patterson, 2001). Gutschalk
et al. (2004) have further suggested that the cortical pitch response more likely represents the inte-
gration of pitch information across frequency channels and/or the calculation of specific pitch value
and pitch strength in Heschl's gyrus. This is because the latency of the cortical pitch response is too long
to represent the temporal processing required to generate the auditory image response in the
subcortical structures.

4.6. Conclusions

Our discovery of cortical pitch components that index several behaviorally-relevant temporal at-
tributes of dynamic, curvilinear pitch contours that are ecologically representative of natural speech
provides a new avenue to evaluate pitch processing at different levels of the brain. Both stimulus-
dependent enhancement and stronger rightward asymmetry of CPR components in the Chinese
group is consistent with the notion that early sensory-level pitch processing in the auditory cortex is
shaped by language experience. This long-term experience shapes adaptive, hierarchical pitch pro-
cessing. Top-down connections provide selective gating of inputs to both cortical and subcortical
structures to enhance neural representation of behaviorally-relevant attributes of the stimulus. With
this novel technique, we nowhave a physiologic window to evaluate the interplay between bottom-up,
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top-down, and local intrinsic components in the hierarchical processing of pitch-relevant information
(cf. Foxe & Schroeder, 2005).
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