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A proof is given of the basic normed-convergence theorem for the ordinary supercri-
tical Bienaymé—Galton—Watson process with finite mean. Part of it is adapted to obtain
an analogous result for inhomogeneous supercritical processes (i.e. branching processes
ia varying environment). This is used in part to give a detailed discussion on the normed-
convergence behaviour of the ordinary process in the ‘explosive’ case (i.e with infinite
mean); and rather pathological limit behaviour is found to obtain.
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1. Introduction

We shall denote by {Z,)}. n > 0(Z, = 1) the ordinary simple branch-
ing process (i.e. Bienaymé—Galton—Watson process®. Tt.e offspring pro-
bability generating function (p.g.f.) will be denoted by F(s) = Z7_ f;s7;
we shall always suppose that f; # 1 for any j, and that m = F'(1-) satis-
fies 1 < m < . The probability of extinction of {Z,} is denoted by ¢
(¢ > 0iff F(0) > 0). The theorem on which our interest centres is the
following.

Theorem A. Suppose m < =, Then there exists a sequence of positive
constants {c,;n > 1}, with ¢, » 0 as n - o, such that the random varia-
bles c,Z,, converge almost surely to a proper non-degei:crate random
variable W for which P{W = 0] = q. If s is any fixed number in (0, —logq),
then c, can be taken as h,(sy), where h,(s) is the inverse func-
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idon of k() = —log E{expl—sZ,1}. The transform K(s) = --log E{e~*"}
satisfies the Potncare’fzmctiondl equation (with k = k)

KE(ms) = k(K(s)). s2 0.

This result (actually a somewhat more complete theorem), with con-
vergence in distribution, was proved by the author [7]; and the exten-
sion to almost sure co. v.rgence was made subsequently by Heyde [4].

The present author's proof of it, with weak convergence, rested heav-
ily on a result on functional iteration of Kuczma; while Heyde noticed
that {exp[—h,(s¢) Z,1} is a martingale, obviously with bounded mean,
so that this approaches a random variable / with proper distribution al-
most surely; for which, however, it is possible that P{/ = 0] > 0. Thus
h,(so) Z, - W almost surely, where, however, p = P[W < o] = 1-P[/=0]
may be less than unity; that this may not occur follows by the weak
convergence result.

It has been remarked since its publication, to the present author
several times that, for didactic purposes, in probabilistic exposition the
dependence of the above argument on the iteration—theoretic result is
inconvenient, and that a complet{e deducticn of the strong convergence
result (which, it should be noted, depends also on a deep (probabilistic)
theorem) may be made by beginning with Heyde's insight, and develop-
ing a subsequent synthesis. One such proof finally occurs in print ir a
very recent text-book treatment [1]. In the sequel we give a proof, in
two parts, which may be a little shorter overall, and is akin to that of
[10] for the process with immigration.

However, this is only an adjunct to our main purpose. The method
of the initial steps of the proof (labelled Part I) enables us to obtain
some information on normed supercritical processes (to be defined)
where the offspring distribution changes with time in deterministic
manner (*‘varying environments’’). The result generalizes [ 5, Theorem 4]
in part. There is substantial information on the asymptotic behaviour
of the unnormed distribution of the number of descendants in genera-
tion n, in the work of Church [2, 3] and Lindvall [6]. See also [9] for
earlier references.

Furthier, this theory can be applied to obtain some information for
the homogeneous case with m = o, not covered by Theorem A. It is al-
ready known [8, Theorem 4.4] that in this case there exists no sequence
{c,} of positive constants such that {c, Z,} converges in law to a proper
non-degenerate random variable. However, we are able to show, under
certain regularity conditions, that with the norming of the process as in
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Theorem | the limit distribution is concentrated at zero and at infinity,
the mass at the origin for a given process depending continuously on 50
and teking values in (¢, 1) as s, is varied in (0, ~log ¢).

2. Proof of Theorem A

Part 1. We begin by using Heyde's martingale argument. As i = oo,
~log E{exp[—sh,(s)) Z,1} = k,(h,(s5) 5)

- —log E{exp[—sW]} = K(s)

for s > 0, where the last expectation is taken over finite values of / (of
total probability measure p), and 0 € K(s) < e« foralls> 0if p > 0 and
K(s)=oo foralls > 0if p =0, But

so =k, (h,(s4)) > K(1),
so that p > 0.

Part 2. Consider now for s > 0 the asymptotic behaviour as n - o of
Ky 1, (59)8):

k(k,(h,(s)s)) > k(K(s)).
On the other hand,
Ky ey (,(s5) ) =k, (k(h,(sy) 5))

=k, ({k(h,(sy)s)/(h,{sy) )} R, (54)5).

Now h,(sy) ¥ 0 as n - o, k,(s) is monctone increasing with s, and
k(s)/s + m as s { 0 since k(s) is strictly concave on s > 0, so it follows
that for n > ny = ny(e, s) for arbitrary small € > 0,

k,((m — €) h,(s0) $) < k.1 (h,,(59) $) < k,,(m hy(sg) s). Letting n - oo,

K((m — €) s) < k(K(s)) < K(ms).
Using the continuity of X on (0, =°) and letting € -~ 0+,
K(ms) = k(K(s)), s> 0. .1)

Letting s » 0+, s > oo, respectively, using the monotonicity of K(s) on
(0, =),

K(0+) = k(K(Q+)), K () = k(K()),
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where
0< —10g » = K(0+) < K(0) € o0,

the strict inequality occurring since K(s} is strictly increasing. But the
only fix-points of k are 0 and —log ¢ € ~,s0p = |, and

K(e0) = ~log P[W = 0] = —log q.

The possibility of degeneracy, K(s) = ¢s, is ruled out by the assumption
of non-degeneracy of Z, and (2.1).

3. Varying environment

For convenience we shall still denote our process by {Z,,} (Z, = 1);
and denote by F,(s) the p.g.f. of Z,,.

Let £(1,(8), £(2)(8); «es fry(8) ... be the sequence of successive p.g.f.’s of
offspring number. Let

k{r)(s) = ““logf(r)(e-,), s 0 ’
denote the corresponding c.g.f.'s, and put, similarly,
~log F,(e™*) = k()

= K3y K gk ) (D)) (= —log E{e*%n}),

Put A, (s) for the inverse function of k,(s) in a right neighbourhoo¢ of
the origin, and /i,y (s) for the inverse function of k,,(s); then
hn(s) = h(n)(h(n l)("'(h(l)(s))"'))

in a right neighbourhood of the origin, ir fact [0, r,), where r,, = k(=)
= —log F,(0). Clearly v, » », 0 € r € oo, We shall call the process super-
critical if r > 0, and deal only with this case.

Let s, € (0, 7). Then

expi—h,(sy) Z,) is a martingale with bounded mean, so
h,(sq) £, » W as., where, however, p = P{IW < o]  (3.1)
may oe less than unity.

Now Section 2, Part | above applies as it stands, so p > 0; and we must
expect p = p(sg).
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We may make some further elementary deductions. First, sirce
{Z, =0} = {W=0}and

PIZ,=0]=F,(0) 1 q = exp[—r] (K1),

it follcws that P{W = 0] > ¢. Further, since K(1) =5, > 0, it follows
that P[W = 0] < 1 (for otherwise K(s) = 0 for all 5). We may expect also
that in gencral the value of P[W = 0] will depend on the choice of s;,.

We shall in fact show in the next section, that there exist supercriti-
cal processes such that

P[W=0]=exp[—-sol, P[W=o]=1 —exp[—s,l,  (3.2)

where, recall, 0 < sy < r. Such processes may have r = e (i.e. ¢ = 0) or
r <o (i.e. ¢ > 0). Thus the concentration of probability at the origin for
such a process may take on any value in the interval (¢, 1), depending or
the value of sy used in the norming.

A final simple consequence of the above general deliberations: if p =1,
since P W = 0] < 1, it follows that W must have positive probability on
(0, ). ;

4. The explosive homogeneous process

We return now to the ordinary (homogeneous) process, ir: the situa-
tion where m = o, and shall show that the limit random variable W, as
defined by (3.1) of the previous section, has the distributio: specified
by (3.2), under certain additional regularity constraints on :he offspring
distribution.

Suppose we can prove that P[0 < W < ] = 0; then we are done for

K(s) = const, = —-log P[W = 0] = —log p,

while we know that K(1) = .

Assume then, to the contrary, that P[0 < W < ] > 0. Then K(s) is
on (0, ) a continuous strictly monotone increasing function (with
K(0+) = —log p), and as n - oo,

k,(h, {so) s)-» K(s), s>0.
On taking inverses,
h,($)/h,(sy) > H(s) > 0, ~log p < s < —log P[W = (],
4.1)
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where H(s) in the specified reg}on (with 0 < A(s) < «) is the inverse
function of K(s), s > 0. On the othsr hand, also for

0<s< —-logp, —logP[W=0]<s,
we have

h,(s)/h, () = O Of > oo, (4.2)
respectively. Thus

—log p < ¢, < —lcg P[W =0].

(Obviously H(sy) = 1, so H(s) > 1 for s > s, H(s) < 1 fors < s,.)
Now it was deduced in [8, §4.5] from a theorem of Szekeres that, pro-
vided

W(sy=(1+p)as® + O (s°*%), s-0+ (4.3)
for strictly positive 8, a, 8, then
X(s) = lim (1 +B)™" log(1/h,(s)) 4.4)
n -+

exists and is continuous and strictly decreasing for 0 < s < r. On the
other hand, from (4.1) we have

~-log h, (s) + log h,(sy) ~ —log H(s),
80 using (4.4) we obtain fors # 5, ~log p <5 < —log P[W = 0], that as
SR

(X($) = x(so) (1 + B)" ~ —iog H(s),

which is nonsensical. Hence, under condition (4.3), our proposition is
proved.

To show that (4.3) obtains for examples where ¢ > 0 and ¢ = 0,
respectively, we display

F(s)=1 - b(1-s5)°, 0<b<1,0<c<1, (4.5)

which gives (4.3) with =c 1 -1,a=b"Y¢,§ = 1. Whenb=1,4=0;
otherwise g > ().
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S. Related topics
3.1. Other conditions for the explosive case

The reader acquainted witu the author’s previous work [11] on limit
laws for the homogeneous explosive case may well enquire whether it is
not possible to replace the condition (4.3) above by a condition of ap-
parent considerable generality in a manner analogous to a similar situa-
tionin [1 l!. This approach is less successful here, and we only sketch it
briefly. Focus attention on iie function f(x) = —1/log k(e~1/%), x > 0,
where f(0) = 0 by continuity, and suppose that f(x) is convex or con-
cave on [0, =). This implies that lim{—log k(e™>)/v} exists as y = oo,
and, if we denote it by ¢, satisfies 0 < ¢ < 1 (any c.g.f. k(s) with
k'(0+) = E{Z,} = m < o satisfies this limiting relation with ¢ = 1). Assume
henceforth 0 < ¢ < 1, then f'(0+) = ¢"1 (>1). Notice also that
lim f{x) = —1/log k(1) as x - =, so that f(x) approaches a finite horizon-
tal asymptote. Taking the last two statements together with the assumed
convexity or concavity of f (together with its differentiability any num-
ber of times for »: > 0), we sze that f(x) cannot be convex, and if con-
cave must be increasing to the asymptote, which must be positive. Hence
our assumptions amount to:

(a) f(x) is concave on [0, =);

(b) ¢! =1lim, _, o, fx)/x is finite and exceeds unity.

These assumptions imply that k(1) < 1, so that ¢ > e~! (or equivalently
0 < —1/log r < =), which testifies to their restrictiveness, since the
bound on ¢ already excludes, for example, the case b = 1 in (4.5).

However, in (a) and (b) we now have conditions totally analogous to
that of the ordinary (non-explosive) supercritical process (with ¢!,

J(s) and —1/log r playing the roles of 11, k(s), , respectively). The purely
analytical deliberations of [7] or [8] can then be applied, if we denote by
f the inverse function of fin an appropriate right neighbourhood of

the origin to yield the result that for x € [0, —1/log r) and x fixed in

(C, —~1/logr), asn - o,

1G0T, 0) (5.1)

approaches a finite limit Z(x) positive for x > 0, continuous and strictly
monotone increasing on [0, —1/log r), where, 1ote, Tn(xo) - 0.
However, it is readily checked that

7, x)=~1/logh, (%), n=1,



42 E. Seneta [ Supercritical branching processes

(where a subscript 7 again denotes the nth iterate), so we can deduce
that

x(s)= lim {7,(x,) log(1/h, (s}, 0<s<r,
n=»o00

when x(s) has the properties of the previous section.

Hence clearly we may replace (4.3) by assumptions (a) and (b) of
this section to obtain (3.2).

Neediess to say, condition (a) is not easy to check. However, we note
that the compound Poisson p.g.f.

F(S) = exp[l{g(S) i l}]s s€ [09 l]s

where g(s) is itself a p.g.f. with g'(1) = o, certainly satisfies g > ¢! if

0 < A < 1 (it satisfies (4.3) irrespective of the size of A). If we put
A=1,g(5)=1-(1-5),0< ¢ < 1, we find that (b) is satisfied with this
c¢; and rather tedious manipulation reveals that f is concave, as required.
The conditions (a) and (b) are thus not vacuous.

5.2. Immigration

If the process described in Section 3 is augmented at each generation
by an independent immigration component, where the immigration dis-
tribution is also permitted to vary from generation to generation and we
denote the resulting process by {X, }, it follows precisely as for t'ie hom-
ogeneous process in [ 10] with the notation of Section 3 that i, (s¢) X, > V
a.s., where p = P[V < o] may be less than unity. It is shown in [10] that
here it is possible that p = 0. We leave this topic with these few rcinarks,
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