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s’ie normed-convergence theorem for the ordinary supercri- 
son process with finite mean. Part of it is adapted to obtain 

sult for inhomogeneous supercritical processes (i.e. branching processes 
onment). This is used in part to give a detailed discussion on the normed- 
haviour of the ordinary process in the ‘explosive’ case (i.e with infinite 

d rather pathological limit behaviour is found to obtain. 

supercritical brmching process varying environment iteration 
norming constants concavity 
degenerate limit laws immigration 

note by {Zn}. n > 0 (ZO = 1) the ordinary simple branch- 
nayme’--Galton--Watson processjl. Tk offspring pro- 
function (p.g.f.) will be denoted by F’(s) = Z~=&j; 
pose that 4 + 1 for any j, and that n? = F’( 1-) satis- 
e probability of extinction of {Z,} is denoted by y 
). The theorem on which our interest centres is the 

Then there exists a sequence of positive 
+ 0 as rz -+ *, such that the random varia- 

t surely to a proper non-degexzate random 
ny fixed number in (0, -logy), 
is the inverse filnc- 
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(cxp[-sW]) ES? K(s) 

taken over finite values of I (of 
K(s) (r( - for all s > 0 if I_’ > 0 and 

a44s>Oifp=O*But 

Pwrf 2. Consider now for s > 0 the asymptotic behaviour as 13 -+ = of 
k, + 1 (h,QQo: 

k(k,(h,(Q0) -+ k(K(s)). 

On the other hand, 

= k,(Ik(h, (so )s)l(h, Cq, 1s)) h, (so X0. 

NOW h,(@ 4 0 as /z + -, k,(s) is monotone increasing with s, and 
k(s)/s t m as s 4 0 since k(s) is strictly concave on s 2 0, so it follows 

n0 s r+=#, s) for arbitrary small e > 0, 
k,((nt =_p e) h,(@s) k,, +I(h,,(so) s) G k,(m h,(sO) s). Letting ~2 -+ 00, 

K((m - e) s) 

Using the continuity of K on (0, 03) and letting e + 0+, 

K(ms) = k(K(s)), s > 0. (W 

Letting s + 0% s + =, respectively, using the monotonicity of K(S) on 



where 

0 --dog !I is K(Q+) < K(m) 

the stricl inequality 0 
only fix-point 

( 1 ix3E 

possibility of 
of non~degenerac 

nience we sh 
and denote by F&j the 
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me further elementary deductions. First, since 
and 

=O]= F&&O) r q s exp[--v] (Cl), 

) since K( 1) ==1 so > 0, it follows 
) = 0 for all 9). We may expect also 
will depend on the choice of so. 
ction, that there exist supercriti- 

= exp[ --So], P[W =+= 1 -exp[-Sol, (3.2) 

uch processes may have r = OQ (Le. q = 0) or 
comwtratiort oj’paobabitity ctt the origh jh 

uence of the above eneral deliberations: if 11 = 1, 
it follows that W must have positive probability on 

. 

ordinary (horn ensous) process, h: the situa- 
halt show that tE limit random varkblc W, as 

visus section, has the distributio:: specified 
ularity constraints on :.hc offsprin 

he contrary, that k[ < W I( OQ) > 6. Then K(s) is 
monotone increasing function (with 

k,& (so) s) K(s), s i 0. 
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where H(s) in the specified ‘on (with 0 < 
fun&ion of K(s), s > 0. On other hand, 

0 < s < --log p, -log P[ 

we have 

h,(s)/h,(so) =+ 0 01: -+ -9 

respectively. Thus 

-log y < ‘CO < -kg P[ 

(8bviously H(so) = 1, so M(s) > 1 for s > S6” 
Now it was deduced in [8, 94.51 from a the 
vided 

!?‘(5.) = (I + f?) ,@ f 0 (:“fl+6), s =+ o+ (4.3) 

for strictly positive pI a, 6, then 

x(s) = lim (1 + p)-” log( 1 /k,(s)) (4.4) 
n-,m 

exists and is continuous and str 
other hand, from (4.1) we have 

for 0 < s < 1. 

--log h,(s) -I- log I$&.@ -I -log H(s), 

so using (4.4) we obtain for s ;f so, /9 < s < -lo P[ W = 01, that as 
Y1 + r “, 

o&s:, - x(s’o)) (1 + P)* au 

which is nonsensi al. Hence, un 
proved, 

To show that (4.3) obtains for examples whs 
respectively, we display 

nd (I = 0, 

F(s) = 1 - b(1 ---s)~, l,Occ< 1, 

which gives (4..3) with (3 = co L-l,a = b”“c9 6 =;: 1. Wh nb= l,q=O; 
&Aerwise q > 0. 
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inted witii the author’s previous work [ 111 on limit 
I~~XIUS explosive cast: mdy well enquire whether it is 

the condition (4.3) above by a condition of ap- 
erality in a manner analogous to a similar situa- 

on in [ 111. This approach is less successful here, and we only sketch it 
briefly. F&us attention on ihe function f(x) = -1 /log k(e-llx), x 2 0, 
where f(0) r= 0 by continuity, and suppose that f(x) is convex or con- 

on [ 0, 00). This implies that lim(-log k(e-Y)/,v} exists as y --) 00, 
note it by C, satisfies 0 G c G 1 (any c.g,f. k(s) with 
1) = F?Z < 00 satisfies this limiting relation,with c = 1). Assume 

henceforth 0 < c < 1 9 then f ‘(O+) = co1 (> 1). Notice also that 
lim f(x) =-l[logk(l)asx + QY, so that f(x) approaches a finite horizon- 
tal asymptote. Taking the last two statements together with the assumed 
convexity or concavity off’(together with its differentiability any num- 
ber of times for x > 0), we see that f(x) ca~~zot be cOMve.x, and if CCUI- 

cave must be iwreasing to the asymptote, which must be yositivtJ. Hence 
our assumptions amount to: 

(a) f(x) is ecncave on [ 0, QO 
(b) C-I = linl,,O+ f(x)/x is finite and exceeds unity. 

These assumptions imply tha,t k( 1) < 1, so that y > e-1 (or equivalently 
r < +=), which testifies to their restrictiveness, since the 
already excludes, for example, the case b = 1 in (4.5). 

However, in (a) and (b) we now have conditions totally analogous to 
that of the ordinary (non-explosive) supercritical process (with 8, 
f(s) and - II /lo g r playing t e roles of ~2, k(s), P, respectively). The purely 

tical deliberations of [ 7 ] or [ 81 can then be applied, if we denote by 
inverse function off in an appropriate right neighbourhood of 

n to yield the result that for x [0, - 1 /log F) and x0 fixed in 

approaches a finite limit (x) positive for x > Q, continuous and strictly 
monotone increasin where, note, yR(xO) + 0. 

Jl,(x) = -l/lo h,(&Q, n 2 1 9 



(where a subscript n again denotes the rsfh iterMe), so we WI 
that 

x(s) = lim ~$$ lo 
n-&m 

(l/h,(s))L O<s<r, 

when x(s) has the properties 
Hence clearly we may rep1 

this section to obtain (3.2). 
Needless to say, condition (a 

that the compound Poisson p.g.f. 

F(s) = exp[ XCg(S: - 1 

ere g(s) is itself a p.g.f. with 
0 < X G 1 (it satisfies (4.3) irre 
X = 1 5 g(s) = 1-( 1 =--s)~, 0 < c < 1 5 we find that (b) is satisfie 
c; and rather tedious manipula 
The conditions (a) and (b) are thus not vacuous. 

5.2. hnigration 

If the 2rscess described in Section 3 is au 
by tin independent immigration component 
tribution is also permitted to va&y from 
denote the resulting process by {XJ, it 
ogeneous process in [ lo] with the nottifion of 

=P[V<-]ma 
sible that y = 0. 

[ 11 K.B. Athreya an P.E. Ney, Branching PSQWS 
[ 21 J.D. Church, Composition limit tf~eor 

Summary Report No. 732, Utliversity 
[ 31 J.D. Church, On infinite co:.nposition 

Wahrscheinlichkeitstheorle Verw. G&O, 19 (1971) 243-256. 
{4] CC. :Jeyde, Extension of a result of Stneta for the sup~rcr~ti 

Ann. Math. Statist. 4 I (1970) 739-742. 
[ 51 P. Sagers, Galton--Vatson processes in v~y~~~ ~~v~onrn 
[ 6 ] T. Lindvall, Almoat sure conve 

onments, Ann. ?robab., to ap 



nt theorems concerning the superktial Galton-Watson process, Ann. 
1968) 2098-2102. 

uations and the Galton-Watson process, Adv. App. Probab. 1 

wth and the multitype Galton-Watson process, Nature 225 (1970) 

itied Galton-Watsori procey with immigration, Math. Riosci. 7 

pk branching process with infinite mean, I, J. Appl. Probab. 10 (1973) 


