Expenditure proportion on drugs from GDP was 1.37% from health care from GDP reached in the year 2003 value of 8.32%, average drug expenditure per 1 inhabitant of the given year were age 65 years or more reached the value of 51%.

Among all the variables number of active physicians and proportion of inhabitants of the age 65 years or more. The relation between drug expenditure per 1 inhabitant and actual medium strong to strong relation was observed, determination index between drug expenditure per 1 inhabitant and health care expenses per 1 inhabitant, number of active physicians in praxis per 1000 inhabitants, proportion of physicians 10.85%, injuries—distorsions and fractures 9.05%, tumors joints & muscles system 11.36%, mental and behaviour disorders 10.85%, and others. The relation for the period. Category VIII (diseases of the respiratory system) was ranked first in 1980 (17.6%), showing one of the highest growth rates for the period. Category VII (diseases of the digestive system) was ranked first in 1980 (17.6%) but had fallen to second place by 2000 (13.2%). As regards the third category (IX: diseases of the digestive system) its relative position hardly varied: 9.7% in 1980 and 9.3% in 2000. The results also show that although the internal composition of each category (percentage of each type of health care) may vary widely, few important variations were observed between 1980 and 2000. CONCLUSIONS: The information provided may be of use to health managers and planners and it also establishes reference baselines for cost-of-illness studies of specific pathologies.

The method used was the top-down approach, starting with overall spending figures and, by means of various procedures, breaking them down to the desired level. The method comprised two stages. First, health spending was distributed according to the different types of health care: hospital care, primary care, drugs, and others. Second, the spending for each type of care was distributed among the ICD-9-CM categories. The base unit varied according to each level: admissions for hospital care, appointments for primary care, and consumption per therapeutic subgroup for drug treatment. RESULTS: In the period 1980–2000 health spending was concentrated into three ICD-9 categories: VII, VIII and IX (37.4% of spending in 1980 and 40.1% of spending in 2000). In terms of their relative rankings, category VII was second in 1980 (10.1%) but had moved into first place by the year 2000 (17.6%), showing one of the highest growth rates for the period. Category VIII (diseases of the respiratory system) was ranked first in 1980 (17.6%) but had fallen to second place by 2000 (13.2%). As regards the third category (IX: diseases of the digestive system) its relative position hardly varied: 9.7% in 1980 and 9.3% in 2000. The results also show that although the internal composition of each category (percentage of each type of health care) may vary widely, few important variations were observed between 1980 and 2000. CONCLUSIONS: The information provided may be of use to health managers and planners and it also establishes reference baselines for cost-of-illness studies of specific pathologies.

The method used was the top-down approach, starting with overall spending figures and, by means of various procedures, breaking them down to the desired level. The method comprised two stages. First, health spending was distributed according to the different types of health care: hospital care, primary care, drugs, and others. Second, the spending for each type of care was distributed among the ICD-9-CM categories. The base unit varied according to each level: admissions for hospital care, appointments for primary care, and consumption per therapeutic subgroup for drug treatment. RESULTS: In the period 1980–2000 health spending was concentrated into three ICD-9 categories: VII, VIII and IX (37.4% of spending in 1980 and 40.1% of spending in 2000). In terms of their relative rankings, category VII was second in 1980 (10.1%) but had moved into first place by the year 2000 (17.6%), showing one of the highest growth rates for the period. Category VIII (diseases of the respiratory system) was ranked first in 1980 (17.6%) but had fallen to second place by 2000 (13.2%). As regards the third category (IX: diseases of the digestive system) its relative position hardly varied: 9.7% in 1980 and 9.3% in 2000. The results also show that although the internal composition of each category (percentage of each type of health care) may vary widely, few important variations were observed between 1980 and 2000. CONCLUSIONS: The information provided may be of use to health managers and planners and it also establishes reference baselines for cost-of-illness studies of specific pathologies.
6.13%, pregnancy 5.57% and nervous system diseases 3.45%. These groups of diseases are, by importance, the main cause of absence from work in all the regions. The rate of sick leaves over 30 days for the entire territory of the Republic of Serbia is 7.06%. The point of interest here is that this rate is very uneven in various regions and amounts from 1.72% to 18.27%. The total liabilities of RHII in the period from January to September 2005, for reimbursement of sick leaves were €56,732,175. CONCLUSIONS: Data obtained by this analysis illustrate that the sick leave rate is very high and uneven, which is the result of absence of medical doctrine standards for evaluation of temporary work disability. In addition, the most frequent reasons for sick leaves are the effects of bad habits, poverty and risk factors: smoking, lack of physical activity, overweight and generally poor life quality and insufficient protection at work by employers.

PHP28

PILOT STUDY OF THE IMPACT OF NEW PRICING SCHEMA ON DRUG PRICES IN REPUBLIC SERBIA

Markovic AB, Jovanovic D

1The pharmacist institution, Nish, Serbia, Serbia and Montenegro, 2The pharmacist institution, Nish, Serbia and Montenegro

OBJECTIVE: To analyze the price changes in the leading therapeutic groups and medicines after the introduction of the new pricing schema in Serbia. **METHODS:** The legislative analysis of the new pricing schema was applied on price changes. The leading 10 medicines by therapeutic classes both in financial terms were chosen on the basis of the previous market analysis. The relative share of price changes and waged price indexes were calculated. **RESULT:** In 2005 the Ministry Council has issued the new drug prices regulation that changes the pricing approach from “cost+” to reference pricing. Italy, Croatia and Slovenia were chosen for reference countries and prices have been compared at wholesale level on the basis of different discounting percentages matching the local interest rate. The manufacturers should provide a set of documents including pharmacoeconomic analysis in free form for new price registration. The goal of the pharmacoeconomic analysis should be to evaluate the impact of the new price on the affordability. The market analysis revealed that the leading ATC groups in financial terms are cardiovascular medicines (C), anti infective (J), acting on muscles and bones and anxiolytics (N) accounting for near 30% of the whole market. After the introduction of the new pricing schema the leading medicines in those ATC groups changed their characteristics—group C quantities prescribed and total cost increased by 10,86% and 21,08% respectively; group J reduced quantity by 15,50% and increased value by 19,02%, group M reduce quantity by 15,46% and total cost by 99, 40% and anxiolytic increased quantity and total cost by 8,08% and 63,75% respectively. **CONCLUSION:** New pricing schema lead to the increasing usage of the most important medicines in various terms but has controversial effect on quantities consumed.

PHP29

PHARMACEUTICAL BUDGET ALLOCATION: A CAPITATION MODEL

Gilabert I, Perramon A, Magem Luque D

Catalan Health Service, Barcelona, Spain

OBJECTIVES: To allocate an annual budget (2006) for each primary care health team (PHCT) in relation to pharmaceutical expenditure. **METHODS:** Three factors are considered in the allocation formula: A capitation factor: allocation for insured population based on real average costs per capita of the autonomous community (7 million people) considering 20 isocost age bands. Pearson’s variation coefficient was applied to define isocost bands (criteria: PCV < 10% in each band). Gender is also considered in this indirect standardization process. This allocation value is increased by the monetary flows generated by not-assigned insured (other PHCT, other autonomous communities and foreigners) and subtracted by the pharmaceutical cost service lent to their own insured population in other PHCT. This capitation factor is increased in the coefficient of global growth expenditure established for 2006 (4%). Modulator factor considers the number of old people’s homes managed, the variation of insured population during last year and the value of the rate of use (Pearson’s correlation coefficient between standardised expenditure per inhabitant and the rate of use is 53% (p < 0.05)). Finally an adjustment factor is applied in order to establish a temporal horizon. Three PHCT groups (33–66 percentiles) are defined according to deviations in relation to real expenditure for 2005 (normal distribution: p > 0.1 in Z-Kolmogorov Smirnov). For every group a minimum and maximum increase is determined, maintaining the order and the global increase established for all the PHCTs (4%). **RESULTS:** Considering population structure for each PHCT makes possible to obtain allocations per capita between €157–350. For 99% of PHCT, modulator factor doesn’t represent an impact above +/-20% over capitation factor. For each PHCT, final allocation represents an increase between 2%-6.25% on pharmaceutical expenditure of 2005. **CONCLUSION:** The model leaves behind historical models of growth, and establishes a high degree of responsibility to PHCTs in relation to pharmaceutical expenditure.

PHP30

ASSESSING THE ECONOMIC AND SAFETY IMPACT OF GLASS VERSUS POLYMER CONTAINERS IN A RADIOLOGY DEPARTMENT

Gircar JA, Harries-Jones H
t

1Independent Health Care Consultant, New York, NY, USA, 2Poole Hospital, Poole, Dorset, UK

OBJECTIVES: Diagnostic x-ray procedures using contrast imaging agents especially in CT are on the rise. Typically contrast media are available in glass bottles and associated with a number of potential problems including increased risk of injury, costs of waste disposal, lost revenue, and disturbances in department routines. A model was developed to estimate the annual financial and safety impact of switching glass to a polymer container for a typical radiology department. **METHODS:** The model was developed using results from a multi-European market survey of radiology technologists on rates of technologists’ injuries from glass and/or metal crimps and from bottle breaks. Survey results were confirmed by a radiology department head from a UK community hospital. In addition, disposal costs for waste, acquisition cost of contrast media, utilization patterns of media, procedure rates, technologist salaries, and cost of disturbed department routine were incorporated in the final budget comparison. **RESULTS:** For a typical community hospital in the UK conducting 56 procedures per shift, there is a potential to waste approximately 200 manpower hours for clean-up of glass breaks, injury care, and setting up additional contrast imaging sets. This is associated with annual revenue loss to a department. Budgetary gains are noted in lower disposal costs for polymer bottles as they are lighter in weight. Significantly more disposal costs gains would be noted with the implementation of separating hazardous from regular waste. PLUSPAK, a polymer bottle containing iohexol, a low osmolar contrast medium, has the potential to save a radiology department considerable savings due to cost-offsets associated with lower injury rates, product wastage, disposal waste costs and faster departmental efficiencies. **CONCLUSIONS:** Improvements in radiology technologist