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The subject of this paper is fast numerical algorithms for factoring univariate
polynomials with complex coefficients and for computing partial fraction decom-
positions (PFDs) of rational functions in C(z). Numerically stable and computa-
tionally feasible versions of PFD are specified first for the special case of rational
functions with all singularities in the unit disk (the ``bounded case'') and then for
rational functions with arbitrarily distributed singularities. Two major algorithms
for computing PFDs are presented: The first one is an extension of the ``splitting
circle method'' by A. Scho� nhage (``The Fundamental Theorem of Algebra in Terms
of Computational Complexity,'' Technical Report, Univ. Tu� bingen, 1982) for fac-
toring polynomials in C[z] to an algorithm for PFD. The second algorithm is a
Newton iteration for simultaneously improving the accuracy of all factors in an
approximate factorization of a polynomial resp. all partial fractions of an
approximate PFD of a rational function. Algorithmically useful starting value con-
ditions for the Newton algorithm are provided. Three subalgorithms are of inde-
pendent interest. They compute the product of a sequence of polynomials, the sum
of a sequence of rational functions, and the modular representation of a poly-
nomial. All algorithms are described in great detail, and numerous technical
auxiliaries are provided which are also useful for the design and analysis of other
algorithms in computational complex analysis. Combining the splitting circle
method with simultaneous Newton iteration yields favourable time bounds
(measured in bit operations) for PFD, polynomial factoring, and root calculation.
In particular, the time bounds for computing high accuracy PFDs, high accuracy
factorizations, and high accuracy approximations for zeros of squarefree polyno-
mials are linear in the output size (and hence optimal) up to logarithmic factors.
� 1998 Academic Press, Inc.

1. INTRODUCTION

1.1. The Problem and Some History

Computing factors or roots of polynomials with complex coefficients and
partial fraction decompositions (PFDs) of rational functions are fundamental
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issues of computational complex analysis. Both problems are closely
related: The factorization problem is a subproblem of the PFD problem.
Conversely, some factorization methods use subroutines which are in fact
PFD algorithms.

Algorithms for the root finding problem are legion. The most important
locally convergent algorithm is Newton's method. Smale (1981, 1986),
Shub and Smale (1985, 1986), Renegar (1985), and Friedman (1989) have
investigated its efficiency and probability of success with random starting
points.

Prominent classical examples for globally convergent root finding algo-
rithms are given by Weyl (1924) and Lehmer (1961). Henrici (1974, Chap. 6)
describes a variety of classical techniques, including methods for finding
regions containing zeros.

In the last years, there has been great progress in the development of
asymptotically fast (in the sense of worst case sequential or parallel arith-
metic or bit complexity) deterministic, globally convergent root finding
algorithms.

These algorithms can be divided into two classes: Algorithms like those
given by Renegar (1987), Pan (1994), and Scho� nhage (1996) compute a
moderate precision approximation for one root with a variant of some
classical root finding algorithm and use Newton iteration for high precision
root approximations. Further roots are then computed after deflation.

The other approach is to split a polynomial p into two factors f and g
corresponding to disjoint sets of zeros of p and then proceed recursively.
Algorithms of this type are Scho� nhage's ``splitting circle method'' (1982b;
1986, Sect. 3), Neff 's parallel algorithm (1994) showing for the first time
that the root finding problem is in NC, and the recent algorithms by Neff
and Reif (1996) and Pan (1996).

In practical implementations, the ubiquitous Newton's method and the
Jenkins�Traub algorithm (1970) are widely used. Variants of Scho� nhage's
``splitting circle method'' have been implemented by Gourdon (1993, 1996)
and by Scho� nhage (1997).

Compared with the vast literature on polynomial root finding and its
complexity, little can be found about numerical PFD. Most PFD algo-
rithms described in the literature assume that the roots of the denominator
are known. Until now, the numerical PFD problem has not been analyzed
in terms of bit complexity, and the relation of numerical stability and com-
plexity has not been investigated.

This paper presents fast numerical algorithms for computing factors or
roots of complex polynomials and PFDs of rational functions in one com-
plex variable. Rigorous proofs for the correctness of the algorithms and for
favourable asymptotic time bounds with respect to bit complexity (see Sub-
section 1.2) are given. The numerical methods and auxiliaries (e.g., error
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estimates) presented in this paper are independent of the computational
model and hence useful for various approaches to computational complex
analysis. Although the focus is on bit complexity, the algorithms will also
result in good time bounds when arithmetic operations are counted, using,
e.g., the model proposed by Blum, Shub, and Smale (1989).

An appropriate specification for approximate PFD (APFD) is obtained
by extending the concept of approximate factorization of polynomials as
specified, e.g., in Scho� nhage (1982b, 1986). Additional conditions are intro-
duced to specify a concept which is numerically stable.

The first PFD algorithm is an extension of Scho� nhage's ``splitting circle
method.'' The factorization algorithms by Neff and Reif (1996) and Pan
(1996) are based on similar techniques. It is plausible that these can be
extended for PFD alike, but this needs further investigation.

The second algorithm is a multidimensional Newton method which
improves the accuracy of all factors in an approximate factorization of a
polynomial resp. all partial fractions of an APFD simultaneously. This
algorithm uses ideas of Grau's (1971) and Scho� nhage's (1982b). Starting
values for this Newton iteration can be computed by the extended splitting
circle method. Two explicit and algorithmically testable sufficient condi-
tions are provided for an approximate factorization resp. PFD to be a
suitable starting value for this Newton algorithm.

For computing roots with high precision, i.e., up to an error which is
significantly smaller than their distance, the combination of both algo-
rithms yields a time bound for factorization which is linear in the output
size up to logarithmic factors and hence almost optimal.

Some auxiliary algorithms are of independent interest. They compute the
product of a sequence of polynomials, the sum of a sequence of rational
functions, and the residues of a polynomial modulo a given set of moduli.
These algorithms extend the well-known divide and conquer methods for
computing symmetric functions and for the multiple evaluation of polyno-
mials described, e.g., in Borodin and Munro (1975, Sect. 4.5).

The Introduction is structured as follows: Subsection 1.2 is an introduc-
tion to bit complexity. Subsections 1.3�1.6 summarize problem specifica-
tions and complexity results. Subsection 1.7 deals with history and related
research. Subsection 1.8 discusses implementations and related software.
Subsection 1.9 describes the organization of the paper.

1.2. Bit Complexity and Data Representation

The concept of bit complexity is based on the concept of recursive func-
tions over the natural numbers. It is specified with respect to some class
of machines over a finite alphabet, e.g., multitape Turing machines over
[0, 1], random access machines with various instruction sets, or pointer

380 PETER KIRRINNIS



File: DISTL2 048104 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 3373 Signs: 2857 . Length: 45 pic 0 pts, 190 mm

machines (see, e.g., Scho� nhage (1980) for specifications). The running time
of algorithms is measured with respect to an appropriate cost function for
the underlying machine model. ``Fast'' algorithms are meant to be
asymptotically fast with respect to such a model.

Data are encoded as follows: Integers are represented in some standard
binary form. The set of ``machine numbers'' for the representation of complex
numbers is the ring of binary rationals (dyadic numbers), [(a+ib) } 2&s:
a, b, s # Z]/C. Note that there is no machine number closest to a given
complex number. As input numbers, complex numbers are given by oracles
with arbitrary, but finite precision: An oracle for : # C is queried with a
parameter s # N and returns a binary rational :~ with |:&:~ |<2&s without
extra cost.

A polynomial is represented by its formal degree n (all coefficients are
allowed to be zero) and a dyadic approximation for its coefficient vector.
The same scaling factor is used for all coefficients (block scaling): A polyno-
mial p # C[z] is approximated by a polynomial 2&s } P, where P # Z[i][z]
and s # Z. The data stored are n, the coefficients of P, and the scaling
parameter s. As input, polynomials are given by oracles. This model covers
several other ways of specifying polynomials (e.g., by integer or rational
coefficients) as special cases in a straightforward manner.

Equality of two complex numbers is undecidable, because an oracle for
the complex number 0 may always return 2&(s+1) when queried with error
parameter s. An appropriate substitute for testing a=b is testing
``=-equality'': Given =>0, assert (at least) one of |b&a|<= or |b&a|>=�2.

It is undecidable, too, whether two polynomials are relatively prime.
Therefore, the concept of the ``reduced form'' of a rational function is not
appropriate here. A rational function f # C(z) is hence assumed to be given
by some pair (q, p) of polynomials such that f =q�p.

For a systematic treatise of further aspects of bit complexity in analysis
see Ko (1991).

1.3. Partial Fractions: Specifications and a Time Bound

This section specifies the problems of approximate factorization and
APFD and states a time bound for APFD in a standardized special case.
For the sake of clarity, the general case is postponed to Subsection 1.4.

The formulation of specifications and complexity results requires some
definitions: 6 denotes the algebra of univariate complex polynomials
(polynomial functions), equipped with the l1 -norm | } | defined by | p| :=
|a0|+|a1|+ } } } +|an| for p(z)=a0zn+a1zn&1+ } } } +an . For n # N, 6n is
the subspace of 6 of polynomials of degree �n. 6 1

n is the subset of 6n of
monic polynomials with all roots inside the unit disc.

The root finding problem is usually specified as follows: ``Given the coef-
ficients of p, compute the roots of p up to an error of =.'' The concept of
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approximate factorization is more appropriate for many applications. The
quality of the factors is measured in terms of the coefficients in the sense
of backward analysis:

1.1. Definition. An approximate factorization of a polynomial p # 6n

within error =>0 is a sequence ( p1 , ..., pl ) of approximate factors p j # 6nj

such that n1+ } } } +nl=n and | p& p1 } } } pl |<=. This is denoted by
``pr p1 } } } pl err =''.

The input polynomial p should be normalized, e.g., | p|=1 or p # 6 1
n ,

because an absolute error bound = is prescribed. The relative error bound
= } | p| could be used instead. As the concept shall be most flexible, the
definition specifies only how to measure the error, but it does not require
further conditions for pj . Even l=1 is allowed, meaning that p1 is an
approximation for p. The aim is to compute a complete approximate
factorization of p, i.e., all pj are linear factors.

A complete factorization pr p1 } } } pn err = with ==2&s can be computed
in time O(n3+n2 } s) (up to logarithmic factors), see Scho� nhage (1982b,
Theorem 2.1; 1986, Sect. 3.2) and Pan (1996, Sect. 1.8).

If p= p1 } } } p l with pairwise prime factors pj and q # C[z] with deg q<
deg p, then there is a unique PFD q�p=q1 �p1+ } } } +ql�pl with polyno-
mials q1 , ..., ql such that deg qj<deg p j for j=1, ..., l.

The concept of approximate PFD is based on the following idea: Let
q1 �p1+ } } } +ql �pl=q~ �p~ with the common denominator p~ = p1 } } } pl . The
difference between q�p and q~ �p~ is measured by both |q&q~ | and | p& p~ |:

1.2. Definition. Let p # 6n , q # 6n&1 and =, '>0. An approximate
PFD of the rational function defined by q�p within error (=, ') is a sequence
( p1 , q1 , ..., pl , ql ) of polynomials such that pr p1 } } } p l err =, q j # 6nj&1,
and |q&q1r1& } } } &ql rl |<', where rj=( p1 } } } p l )�p j for j=1, ..., l. This
is denoted by ``q�prq1�p1+ } } } +ql �pl err(=, ').''

The goal is to compute an APFD with pj (z)=(z&vj )
nj, where

v1 , ..., vl # C are the different zeros of p and n1 , ..., nl are their multiplicities.
But in such a PFD, the coefficients of the numerators qj may be large if the
roots of different factors pj of p are close to each other. An example is

1
zn } (z&=) } (z&1)

=
a(z)
zn +

b
z&=

+
c

z&1
, (1.1)

where b==&n�(=&1). This effect must be controlled to avoid numerical
instabilities and to obtain PFDs which are useful for applications. The
algorithms must be designed such that the zeros of different pj are suf-
ficiently far away from each other. Therefore, clustered or multiple zeros of
the denominator cannot be located with arbitrary precision. The condition
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that each pj is a power of a linear factor must be weakened: It is only
required that all zeros of a factor pj are located in a disk of prescribed
radius �:

1.3. Definition. For p # 6n , q # 6n&1 , and =, ', �>0, a radius � decom-
position of q�p within error (=, ') is an APFD q�prq1 �p1+ } } } +
ql �pl err(=, ') such that for j=1, ..., l, any two zeros v, v$ of pj fulfil |v&v$|<
2 } �.

All algorithms described in this paper are based on fast integer multi-
plication. Let �: N � R be such that N bit integers (in binary represen-
tation) can be multiplied in time O(�(N )). The best known time bounds
are �(N )=N log(N+1) log log(N+2) for multitape Turing machines
(Scho� nhage and Strassen, 1971), �(N )=N log(N+1) for successor RAMs
under logarithmic cost, and �(N )=N for pointer machines (Scho� nhage,
1980). For a vector n=(n1 , ..., n l ) of positive integers, H(n) denotes the
entropy of the probability vector (n1 �n, ..., nl �n), where n=n1+ } } } +nl :

H(n) :=H(n1 , ..., n l ) :=& :
l

j=1

nj

n
} log

nj

n
(�log n). (1.2)

The following theorem states a time bound for the computation of radius
� decompositions in the ``bounded case'' where all zeros of the denominator
p are inside the unit disc.

1.4. Theorem (Radius � Decomposition, Bounded Case). Let p # 6 1
n

and q # 6n&1 with |q|=1. Let ==2&s0, '=2&s1, and �=2&# with s0 , s1 ,
# # N. Then a radius � decomposition q�prq1 �p1+ } } } +ql �pl err(=, ') can
be computed from the coefficients of p and q in time O(�(n3 } log n+n3 } #+
n } H(n) } (s0+s1))). The zeros of different approximate factors pj have
distance at least ��(15n), and the |qj | fulfil the estimate |qj |�2#n+n log n+O(n).

There are polynomials p for which any reasonably precise radius �
decomposition of 1�p has approximate factors pi , pj with i{ j which have
zeros v and v$, respectively, such that |v&v$|���(2 } n). An example is
p(z)=>n

j=1 (z&2 } � } j�n). Therefore, the lower bound ��(15n) for the root
distance can only be improved by a constant factor. Likewise, one cannot
expect a better bound than |qj |�2#n+n log n+O(n).

1.4. Partial Fractions: The General Case

In the general case, there are no restrictions but trivial standardizations
like | p|=|q|=1. The denominator p may have zeros of arbitrary size. It is
even allowed that the coefficient of zn vanishes, i.e., infinity may be a zero
of p.
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The clue for an appropriate specification of radius � decomposition in
the general case is a suitable distance measure for (large) complex numbers.
A computationally feasible ad hoc solution is to represent numbers outside
the unit disc by their reciprocals (Scho� nhage, 1982b, Sect. 19; 1986,
Sect. 3.4). Viewing C(z) as the field of meromorphic functions on the com-
pactification C� =C _ [�] of the complex plane (with the standard topol-
ogy) suggests another approach: Use one of the canonical representations
of C� , namely Riemann's Sphere S2 or the one dimensional complex projec-
tive space P1, and a canonical metric defined on it.

The classical approach for the one dimensional situation is to use the
topological isomorphism between C� and Riemann's Sphere S 2 via stereo-
graphic projection (see, e.g., Henrici, 1974, Sect. 5.3). This model of C� is
preferred here, because it gives a good impression of the geometry near
infinity. The standard metric on C� corresponding to this representation is
the chordal (stereographic) distance dS which, in terms of the Euclidean
distance, is

dS(z, w)=
2 } |z&w|

- 1+|z| 2 } - 1+|w|2
for z, w # C

and (1.3)

dS(z, �)=
2

- 1+|z| 2
for z # C.

1.5. Definition. For p # 6n , q # 6n&1 , and =, ', �>0, a generalized
radius � decomposition (short: a �-S-decomposition) of q�p within error
(=, ') is an APFD q�prq1 �p1+ } } } +ql �pl err(=, ') where dS(v, v$)<2 } �
for any two zeros v, v$ of pj and all j=1, ..., l.

This is a generalization of Definition 1.1, because dS is equivalent to the
Euclidean distance when restricted to a bounded subset of C, see Lemma 2.1.
The problem of computing such decompositions can be reduced to the
bounded case. The resulting time bound is the same:

1.6. Theorem (Radius � Decomposition, General Case). Let p # 6n

and q # 6n&1 with | p|=|q|=1. Furthermore let ==2&s0, '=2&s1, and
�=2&#. Then a �-S-decomposition q�prq1 �p1+ } } } +q l �pl err(=, ') can be
computed in time O(�(n3 } log n+n3 } #+n } H(n) } (s0+s1))). The zeros of
different approximate factors pj have chordal distance at least ��(120n), and
the |qj | fulfil the estimate |qj |�2#n+n log n+O(n).
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1.5. Newton Iteration for Factors of Polynomials

The time bound for PFD stated in Theorem 1.4 is achieved with a com-
bination of two algorithms. The first step is to compute a moderate preci-
sion radius � decomposition by the extended splitting circle method. This
algorithm can be used to compute a PFD to full accuracy, but this results
in a time bound in which the term n } H(n) } (s0+s1) is replaced with
n2 } (s0+s1). The better time bound is achieved by increasing the accuracy by
multidimensional Newton iteration, applied to the equation p& p1 } } } pl=0.
This method is of independent interest.

The algorithm is locally convergent. For a complexity analysis and even
more for efficient implementations, quantitative criteria for starting values
are needed. It is useful to have criteria which can be verified without much
additional work from data which are already available or must be com-
puted anyhow. For p # 6 1

n , the algorithm starts with an initial decompo-
sition 1�prh1 �p1+ } } } +hl �pl err(=0 , '0). This is an initial decomposition
if =0 , '0 are sufficiently small compared with 1�M, where M :=maxj |hj |.
A simplified starting value condition which guarantees quadratic con-
vergence of the Newton iteration is given by the inequalities =0�2&11n�M 4

and '0�2&5n�M. For applications, it is useful to study the relation between
M and the distribution of the roots of the approximate factors pj . It
follows that if the zeros of different approximate factors pj of p have dis-
tance at least $, then the Newton algorithm converges quadratically if
=0�2&22n } $4n and '0�2&6n } $n. For a precise definition of initial decom-
position and further discussion see Subsection 3.5.

The analysis of the Newton algorithm proves the following time bound:

1.7. Theorem (Improvement of Partial Fractions). Given an initial
decomposition 1�prh1 �p1+ } } } +hl �pl err(=0 , '0) for p # 6 1

n with pj monic
and s0 , s1 # N, an APFD 1�prh� 1 �p~ 1+ } } } +h� l �p~ l err(2&s0, 2&s1) can be
computed in time O(�(n } H(n) } (s0+s1))), where n=(n1 , ..., n l ). The p~ j are
monic, and the estimates | pj& p~ j |<M } 23n } =0 and |h� j |�2M hold.

If 1�p=h1 �p1+ } } } +hl �pl and q�p=q1 �p1+ } } } +ql �pl , then qj=
(q } hj ) mod pj=((q mod p j ) } hj ) mod pj . Using this reduction, once a PFD
of 1�p is computed, a PFD of q�p for arbitrary q can be computed within
the same asymptotic time bound:

1.8. Corollary (Improvement, Arbitrary Numerators). Given an ini-
tial decomposition of 1�p as above, q # 6n&1 with |q|=1, and s0 , s1 # N, an
APFD q�prq~ 1�p~ 1+ } } } +q~ l �p~ l err(2&s0, 2&s1) can be computed in time
O(�(n } H(n) } (s0+s1))). The p~ j are monic, and | pj& p~ j |<M } 23n } =0 .

Simply ``forgetting'' the numerators h� j in Theorem 1.7 results in a time
bound for factorization which deserves an extra formulation:
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1.9. Corollary. Given an initial decomposition of 1�p as above and
s # N, an approximate factorization pr p~ 1 } } } p~ l err 2&s with p~ j monic can be
computed in time O(�(n } H(n) } s)).

1.6. Root Finding

The idea of computing all roots of a complex polynomial simultaneously
by multidimensional Newton iteration originates from the end of the 19th
century, see Subsection 1.7 for references. The crucial problem is to find
starting values (i.e., an initial decomposition) for this iteration (Kaltofen,
1992, Problem 4). One way is using the extended splitting circle method to
compute moderate precision approximations for the linear factors of p. The
precision is chosen such that the roots are isolated, but not significantly
higher. Therefore, a better time bound (compared with that of Scho� nhage
(1982b)) is achieved for computing the roots of a polynomial p up to an
error which is significantly smaller than the separation sep( p) of p, i.e., the
minimum distance of different roots. As existence of multiple roots is
undecidable, it is assumed that an a priori lower bound for sep( p) is
known. Combination of Theorem 1.4 with a perturbation theorem for poly-
nomial zeros implies the following result which, for the sake of simplicity,
is only stated for polynomials with bounded root radius:

1.10 Theorem (Root Computation). Let p # 6 1
n and # # N be given such

that sep( p)�2&#. Let u1 , ..., ul denote the different zeros of p, and let s # N.
Then approximations vj for uj with |vj&u j |<2&s (and the multiplicities
of the uj ) can be computed simultaneously for all j=1, ..., l in time
O(�(n3 } log n+n3 } #+n2 } log n } s)).

With respect to the accuracy parameter s, this time bound is optimal up
to logarithmic factors (Pan, 1996, Fact 1.1). As s�n is a realistic assump-
tion anyhow (error amplification factors of the form 2cn are inevitable in
the computations), the time bound is optimal, if n } #�log n=O(s).

For squarefree polynomials, the roots are much less sensitive to errors of
the coefficients. This saves a factor n in the ``high accuracy term'' (propor-
tional to s) of the time bound:

1.11. Theorem (Root Computation, Squarefree Polynomials). In
Theorem 1.10, let in addition p be squarefree. Then the time bound is
O(�(n3 } log n+n3 } #+n } log n } s)).

If s is large compared with # and n (n2=O(s) and # } n2�log n=O(s)),
then this time bound is linear in the output size (and hence optimal) up to
logarithmic factors. A similar result holds for polynomials with roots of
multiplicities bounded by a fixed constant.

The time bounds from Theorems 1.10 and 1.11 also hold for computing
roots of polynomials with arbitrary root radius, where large roots are
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represented by their reciprocals or the error is measured by dS . This
follows by reduction to the bounded case.

An application of Theorem 1.11 is the computation of high accuracy
approximations of the numerical values of algebraic numbers:

1.12 Theorem (Approximation of Algebraic Numbers). Let p # Z[x],
p(x)=a0xn+a1 xn&1+ } } } +an , a0{0, and |a&|�2L for &=0, ..., n. Then
the roots of p can be computed up to an absolute error of 2&s in time
O(�(n3 } log n+n4 } L+n } log n } s)).

1.7. Related Research and Open Problems

The bit complexity of the numerical PFD problem has not been
investigated before. The author is not even aware of an appropriate
problem specification. Therefore, the new concepts of APFD, radius �
decomposition, and �-S-decomposition are introduced. There are no com-
plexity results similar to Theorems 1.4 and 1.6.

The work on algorithms for computing all roots of a complex polyno-
mial simultaneously by multidimensional Newton iteration starts with
Weierstrass' proof of the fundamental theorem of algebra (1891). Variants
and generalizations of this method have been discussed, e.g., by Samelson
(1958), Kerner (1966), Schro� der (1969), Grau (1971), Aberth (1973),
Green et al. (1976), Pasquini and Trigiante (1985), Frommer (1988), and
Carstensen (1992). These publications analyze the Newton algorithm from
the usual point of view of numerical analysis, where floating point opera-
tions are counted. The algorithm has neither been described for arbitrary
precision nor analyzed in terms of bit complexity. Moreover, the present
analysis is the first which provides explicit starting value conditions.

From the plethora of complexity results for root computation, three
results should be compared with Theorems 1.10, 1.11, and 1.12. These are
Scho� nhage (1982b), Neff and Reif (1996), and Pan (1996). The other
results take different points of view (arithmetic instead of bit complexity,
probabilistic algorithms, parallel algorithms) or have time bounds worse
than those from the publications mentioned above.

Scho� nhage's time bound for root computation is O(�(n3 } log n+s } n3))
(1982b, Theorem 19.2). The major improvement over his method is the
application of Newton iteration to all roots simultaneously. This saves a
factor n�log n for large s. If p admits ``enough balanced splittings'' (i.e., the
factors f and g in the recursive splitting p= f } g both have roughly the
same degree), then Scho� nhage's algorithm runs within the time bound
stated in Theorem 1.11 as well, see (Scho� nhage, 1982b, Sect. 18). For
merely separating the roots (s=O(#)), Scho� nhage's method is used directly
(even with the overhead for computing a PFD). Therefore, the time bound
is not improved in the latter case.
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The algorithms by Neff and Reif (1996) and Pan (1996) attack the root
finding problem from a different direction. They use enhanced techniques
for choosing splitting circles and enforce ``balanced splittings'' in this way.
They both achieve time bounds O(n3+n2 } s) up to logarithmic factors. For
moderate precision, the Neff�Reif and Pan algorithms are superior to the
one proposed here, because the extra effort to compute a PFD only pays
for large s. For high precision, their time bounds are the same as in
Theorem 1.11 (again up to logarithmic factors).

The numerators of the PFD are computed by a subroutine of
Scho� nhage's splitting circle method which is also used in the Neff�Reif and
Pan algorithms. It is plausible that these algorithms can be extended to
compute PFDs alike. An answer to whether this would result in a better
time bound requires a careful analysis of quantitative details. This is subject
to further research.

For integer polynomials, the time bound for merely separating the roots
exceeds Scho� nhage's time bound (1982b, Sect. 20) by a factor of n (the
n4 } L term) due to the overhead for computing a PFD. For high precision
(large s), the time bound from Theorem 1.12 is superior by a factor n�log n
and optimal up to logarithmic factors.

The explicit or implicit restriction to polynomials with bounded roots is
common: In Pan (1996) and Renegar (1987), such bounds are prescribed
directly. Other authors prefer p to be monic and the other coefficients of p
to be bounded (e.g., Smale, 1981; Renegar, 1985; Neff and Reif, 1996), or
the coefficients of p are assumed to be L bit integers for some given L (e.g.,
Pan, 1987, Sect. 1.2). All these restrictions imply an upper bound for the
roots of p (see Subsection 2.2). The general case (roots of arbitrary size)
can be treated using a Moebius transform, hence bounding the roots is
only a mild restriction.

It is more restrictive to assume that p has bounded integer coefficients,
because this implies a lower bound for sep( p), see Mignotte (1992, Sect. 4.6).
Finally, it is common to assume integer polynomials to be squarefree, which
can be achieved by replacing p with p0= p�gcd( p, p$). For the model used
here, this would be a severe restriction because computing polynomial
GCDs is a nontrivial task, see Scho� nhage (1985).

1.8. Complexity Bounds and Implementations

The aim of this paper is to prove asymptotic results in the sense of a
worst case analysis. Therefore, few efforts have been spent on optimizing
constant factors. Unless stated otherwise, numerical constants are stated
explicitly for the sake of clarity only and may be improved by simple
variants of the algorithm. Worst case bounds for rounding errors have been
used throughout, though in implementations the accuracy should of course
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be controlled dynamically. Implementing the algorithms requires a more
thorough discussion of details.

There are first steps towards implementations of fast high precision
numerical algorithms of this type. An example is Gourdon's (1993) imple-
mentation of the splitting circle method in Maple and in the number theory
package PARI which is integrated into the Magma system, see Gourdon
(1996, III.7) for experimental results.

Scho� nhage has developed a software system for manipulating multipreci-
sion data which is intended to serve as a basis for an efficient implementa-
tion of fast numerical algorithms like the splitting circle method. This
system and the algorithms for integer and complex number arithmetic and
for basic operations with polynomials implemented for it are described
in Scho� nhage, Grotefeld, and Vetter (1994). An implementation of the
splitting circle method on this system is currently being tested.

1.9. Organization of the Paper

Section 2 starts with a collection of definitions and then explains and
justifies the restrictions made for the problem specifications. Section 3 gives
high level descriptions of the algorithms for factorization, PFD, and root
computation and states asymptotic time bounds for these algorithms.
Section 4 is a collection of auxiliary estimates. The remainder of the paper
(Sections 5�9) describes and analyzes the algorithms in detail.

Several proofs use similar ideas and are highly technical, but can be
spelled out in a straightforward manner once the idea is clear. As too many
technical details would obscure the ideas and not provide any new insight,
these proofs have been put into an appendix.

2. SPECIFICATIONS

2.1. Definitions

N, Z, and C denote the sets of natural numbers, integers, and complex
numbers, respectively. Let N+ :=N"[0] and [l]=[1, ..., l ] for l # N+ .
A partition n of n # N into l parts (briefly, l-partition; notation, n |&l n) is
an integer vector n=(n1 , ..., nl ) # N l which satisfies n1+ } } } +nl=n. If
1�n1� } } } �n l , then n is called an ordered partition and denoted as
n <l n. For n |&l n, H(n) denotes the entropy of the probability vector
(n1 �n, ..., nl �n), see (1.2). The cardinality of a finite set M is denoted by
*M. The symbols log and ln denote the base-2 logarithm and the natural
logarithm, respectively.

The open disk with radius r>0 and center z0 # C is denoted by Dr(z0).
In particular, D :=D1(0). The closure, boundary, complement, and diameter
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of a set G/C are denoted by G� , �G, CG, and diam(G)=sup[ |z&z$|:
z, z$ # G ], respectively. The distance of two sets G, G$/C is denoted by
dist(G, G$)=inf[ |z&z$|: z # G, z$ # G$].

The leading coefficient and the exact degree of a polynomial p # 6 are
denoted by lc( p) and deg p, respectively. Besides congruences, the symbol
``mod'' also denotes the corresponding operator: For f, p # 6, r= f mod p
is the polynomial determined uniquely by r# f mod p and deg r<deg p.

For a linear operator T : 6 � 6, ;n(T ) denotes the norm of the restric-
tion of T on 6n with respect to | } |. For v # C resp. r>0, Tv resp. Sr denote
the operators of translation (Taylor shift) by v resp. scaling by r,
(Tv p)(z)= p(z+v) and (Sr p)(z) := p(rz) for p # 6. The norms of these
operators are ;n(Tv)=(1+|v| )n and ;n(Sr)=max[1, rn]. For p(z)=
a0 zn+a1zn&1+ } } } +an , Rn p denotes the reverse polynomial, (Rn p)(z) :=
zn } p(1�z)=an zn+an&1zn&1+ } } } +a0 . When n is understood, the nota-
tion p* :=Rn p is used.

The following concepts are useful for locating the roots of a polynomial
p: V( p) :=[v # C : p(v)=0] denotes the set of roots of p. The root radius of
p is *( p) :=max[ |v|: v # V( p)]. The inner root radius of p is **( p) :=
min[ |v|: v # V( p)]. If p(z)=a0 zn+a1zn&1+ } } } with a0{0, then the
center of gravity of the zeros of p is z� ( p) :=a1 �(na0). The diameter of V( p)
is approximated by the centered root radius of p defined by *� ( p) :=
*(Tz� ( p) p)=max[ |z� ( p)&v|: v # V( p)]. It is easy to show that *� ( p)�
diam(V( p))�2 } *� ( p). A ``small'' disk containing all roots of p is DV( p) :=
D*� ( p)(z� ( p)).

6 0
n denotes the set of monic polynomials of degree n. Then 6 1

n :=
[ p # 6 0

n : *( p)�1]. The perturbation of polynomial zeros is measured by
2( p, p~ ) :=min? # Sn

maxn
j=1 |uj&u~ ?( j) |, where p # 6 0

n has zeros u1 , ..., un ,
p~ # 6 0

n has zeros u~ 1 , ..., u~ n , and Sn denotes the symmetric group of [n].

2.2. On the Specification of the ``Bounded Case''

The algorithms for factorization and PFD and most of the auxiliary
algorithms are designed for the standard special case (the ``bounded case'')
p # 6 1

n and (for PFD) q # 6n&1 with |q|=1, see Subsection 1.3. The
general case (specified in Subsection 1.4 and discussed further in Subsec-
tion 2.3) is solved by reduction to the bounded case, see Subsection 3.7 for
details. There are several reasons for starting with the bounded case.

Bounds for the size of the numbers involved in the computations are
needed to control error propagation and amplification. For this purpose,
a restriction like | p|=|q|=1 would be sufficient.

Some subalgorithms (e.g., polynomial division) require that the denomi-
nator p of a rational function f =q�p given by polynomials q # 6 and
p # 6n actually has the specified degree n. In particular, this is crucial for
modular representations (Theorem 3.9) and for multidimensional Newton
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iteration (Theorem 1.7). For this purpose, p is usually required to be
monic, but this is not sufficient if the other coefficients of p are much larger
than 1. An upper bound for the other coefficients would be an appropriate
supplement.

The standardization lc( p)=1 and *( p)�1 chosen here is equivalent in the
following sense: Vieta's theorem implies that if p(z)=zn+a1zn&1+ } } } +an ,
then |am |�( n

m) } *( p)m for 1�m�n, hence | p|�(1+*( p))n. Hence bound-
ing the root radius of monic polynomials of degree n by a constant implies
a 2O(n) upper bound for the coefficients, in particular | p|�2n for p # 6 1

n .
Such a bound is acceptable for all algorithms discussed here. Conversely,
bounds for the ``lower'' coefficients of p imply bounds for the roots of p.
A collection of such estimates can be found in Henrici (1974, Sect. 6.4).
A typical one is the following: For p as above, let _=max1�m�n

m
- |am |.

Then _�n�*( p)<2_. The lower bound follows from the above estimate for
|am |, and the upper bound is Henrici (1974, Corollary 6.4.k).

In the bounded case, the PFD problem can be restricted to the case
deg q<deg p w.l.o.g.: Otherwise compute q0 and r with q=q0 } p+r and
deg r<deg p by polynomial division and compute a PFD of r�p. For
details, see Subsection 3.6.

2.3. On the Specification of the General Case

A first step towards a general concept of radius � decomposition is the
discussion of appropriate representations for large roots of polynomials.
For polynomials with bounded roots, there is no problem in specifying
linear factors in the standard monic form Lj=z&vj , i.e., with the corre-
sponding root given explicitly. But if the roots of p are allowed to be large,
then this representation is no longer useful. Besides the fact that large
numbers may cause intolerable error amplification, large roots are more
sensitive to perturbations of the coefficient vector than small ones.

As an example consider p(z)=(z&9)3=z3&27z2+243z&729 and
p=(z)= p(z)&(1&=) } z3==z3&27z2+243z&729 for 0<=<1. Then p=

approximates p up to a relative error of less than 0.1 percent, i.e.,
| p& p= |�| p|<0.001, but the roots of p= converge to 1

2 (9\i } 3 - 3) and
infinity for = � 0 and seem not to have much in common with the original
ones. This shows that in general it does not make sense to use the
Euclidean distance as a measure for the error of large roots.

A computationally feasible ad hoc solution for this problem has been
proposed by Scho� nhage (1982b, Sect. 19; 1986, Sect. 3.4): Large numbers in
the output are avoided by allowing the linear factors to be of the form
Lj=:jz+;j with |Lj |=1 or, more practical, 1�|Lj |�2. Being slightly
more restrictive and requiring in addition ``:j=1 or ;j=1'' suggests
representing large roots by their reciprocals and measuring the quality of
root approximations by the Euclidean distance of their reciprocals.

391PARTIAL FRACTIONS AND FACTORIZATION



File: DISTL2 048115 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 2747 Signs: 1928 . Length: 45 pic 0 pts, 190 mm

Here, the specification for the general case is derived from the special
case by replacing the Euclidean distance with the chordal distance dS

defined by (1.3). Both distance measures are equivalent on bounded subsets
of C:

2.1. Lemma. 2�(1+A2) } |z&w|�dS(z, w)�2 } |z&w| for |z|, |w|�A.

Proof. The estimate follows from the definition of dS and 2�(1+A2)�
2�- (1+|z|2)(1+|w|2)�2 for |z|, |w|�A. K

A second natural way of introducing a metric on C� is to embed C� into
the one-dimensional projective space P1. This approach is better suited for
multidimensional generalizations. It is based on the following idea.

The homogeneous polynomial corresponding to p(z)=a0zn+a1 zn&1+
} } } +an is P(z0 , z1)=a0 zn

1+a1 zn&1
1 z0+ } } } +anzn

0 # C[z0 , z1]. A vector
(v0 , v1) # C2 is a root of P iff * } (v0 , v1) is a root of P for all * # C. Hence,
the roots of P are viewed as elements [v0 : v1] :=C } (v0 , v1) # P1.

The roots v # C� of p(z)=P(1, z) (� is a root of p iff a0=0) correspond
to the roots of P via the canonical embedding C % v [ [1 : v] # P1 and
� [ [0 : 1]. Then representing a large root v with its reciprocal means
choosing the representative (1�v, 1) # C2 for the corresponding root
[1 : v]=[1�v : 1] # P1 of P.

The standard metric on the projective n-space Pn is the (up to scaling)
unique unitarily invariant Hermitian metric dR , which geometrically is the
generalized angle between complex lines C } u and C } v given by

dR(C } u, C } v)=arc cos \ |(u, v) |
&u& } &v&+ for u, v # Cn+1 "[0].

For reference see Shub and Smale (1993, Sect. I-3). Shub and Smale (1993)
have defined another metric, namely the ``projective distance''

dP(C } u, C } v)=min
* # C

&u&*v&
&u&

for u, v # Cn+1 "[0].

It has been shown there (Shub and Smale, 1993, Proposition 4) that
dP(C } u, C } v)=sin dR(C } u, C } v). Composition of dP with the canonical
embedding of C into P1 yields��after a short calculation��dP([z : 1],
[w : 1])= 1

2 } dS(z, w). Hence, all three methods of defining a metric on C�
yield equivalent distance measures:

1
2

} dS=dP�dR�
2
?

} dP .
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Thus, there is no essential difference in choosing any of these metrics as a
distance measure for large roots of polynomials.

The degree condition q # 6n&1 in Theorem 1.6 is sufficiently general,
because p # 6n may have degree less than n. The condition q # 6n&1 has
been chosen for technical convenience. Assuming q # 6n instead would be
more consistent with the concept of the degree of a rational function,
deg(q�p)=max[deg q, deg p] for relatively prime q and p (see van der
Waerden, 1971, Sect. 73), which is invariant with respect to Moebius trans-
forms.

If deg q=m is large compared with n, it is nevertheless preferable to
replace q with a numerator of smaller degree instead of calling the PFD
algorithm with an artificially increased degree parameter m>>n. This
reduction can be done with polynomial division, but now polynomial divi-
sion cannot be applied directly, because p may have roots near infinity.
One can proceed as follows: Choose w # C with |w|=1 such that w is
sufficiently far away from the roots of p (cf. Scho� nhage, 1985, Lemma 2.5).
Let P=(Tw p)* and Q=(Twq)* and let Q0 # 6m&n and R # 6n&1 with
Q=Q0 } P+R. Transforming back produces q0 and r with q=q0 } p+r.
Then compute a PFD of r�p.

3. TIME BOUNDS AND OUTLINE OF ALGORITHMS

This section briefly describes algorithms and states time bounds for the
computational problems stated in the introduction and for several sub-
problems which are of independent interest. The results are presented in the
order in which the algorithms depend on each other.

3.1. Basic Operations with Integers, Complex Numbers, and Polynomials

All algorithms presented here are based on integer multiplication. Thus
the time bounds are expressed in terms of a time bound � for this task. It
is assumed that � fulfils the regularity condition that �(N )�N is monotonic.
This technical condition is explained in Subsection 4.1. For x # (0, �), �(x)
means �(WxX).

3.1. Lemma (Complex Number Arithmetic). The multiplication and
division of complex numbers a and b up to a relative error of 2&s, i.e., com-
puting some c # C such that |c&ab|<2&s } |ab| resp. |c&a�b|<2&s } |a�b|, is
possible in time O(�(s)).

Proof. This is obvious for multiplication, because complex numbers are
represented by binary integers. Quotients of complex numbers are com-
puted by Newton iteration, see Scho� nhage (1986, (2.2)) or, for details,
Knuth (1981, Sect. 4.3.3). K
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3.2. Lemma (Polynomial Multiplication). Given F, G # 6n and s # N
with s�log(n+1), a polynomial P # 62n with |P&FG|<2&s } |F | } |G| can
be computed in time O(�(n } s)).

3.3. Lemma (Discrete Fourier Transform). Given F # 6n with |F |�1,
N�n+1, and s # N, the simultaneous evaluation of F in all N th roots of
unity up to an error of 2&s, i.e., computing (:0 , ..., :N&1) # CN such that
�N&1

j=0 |:j&F(| j)|<2&s, where | :=exp(2?i�N ), is possible in time
O(�(N } (s+log N ))).

3.4. Lemma (Polynomial Division). Given F # 6m , P # 6n , with |F |�
1�|P|�2, s # N with s�m�n�1, and r>0 with *(P)�r, an approximate
quotient Q # 6m&n and an approximate remainder R # 6n&1 with
|F&(Q } P+R)|<2&s can be computed in time O(�(m2 } log(1+r)+
m } s)). If r=O(1), then the time bound is O(�(m } s)).

3.5. Lemma (Remainder Computation). In Lemma 3.4, the approximate
remainder R is computed such that in addition |F mod P&R|<2&s.

3.6. Lemma (Taylor Shift). Given F # 6n with |F |�1 and v # C with
|v|�2, a polynomial F1 # 6n with |F1&TvF |<2&s can be computed in time
O(�(n } (s+n))).

For details and explanations see Scho� nhage (1982a; 1986, Sect. 4.3; 1990,
Sect. 3). Lemmas 3.3 and 3.4 are proved in Scho� nhage (1982a, Sect. 3
resp. 4). Lemma 3.5 follows from the analysis of the division algorithm in
Scho� nhage (1982a), see Appendix A.1 for details. Lemma 3.6 is Lemma 2.3
from Scho� nhage (1985). An implementation of algorithms matching these
time bounds is described in Chapters 6, 8, and 9 of Scho� nhage, Grotefeld,
and Vetter (1994).

3.2. Symmetric Functions, Addition in C(z), and Modular Representations

The algorithms by Moenck, Borodin, and Fiduccia (see, e.g., Borodin
and Munro (1975, Sect. 4.5) for the computation of symmetric functions
and the multiple evaluation of polynomials can be generalized to compute
the product of several polynomials p1 , ..., p l resp. the residues of a polyno-
mial modulo p1 , ..., pl . The same idea can be applied for the addition of
rational functions. A special refinement is obtained for factors of different
degrees by using Huffman trees, following an idea of Strassen's (1983). The
algorithms, which are described and analyzed in Section 5, yield the follow-
ing time bounds, where n # N and n |&l n (remember H(n)�log n):

3.7. Theorem (Multiplication of Polynomials). Let pj # 6nj
with

| pj |�2nj and s # N. Then p~ # 6n with | p1 } } } p l& p~ |<2&s can be computed
in time O(�(n } H(n) } (s+n))).
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3.8. Theorem (Addition of Rational Functions). Let pj # 6nj
with

| pj |�2nj, s # N, M�1, and qj # 6nj&1 with |qj |�M for j # [l]. Further-
more, let r j := p1 } } } pj&1 } p j+1 } } } pl for j # [l], and let q :=q1r1+ } } } +
ql rl . Then an approximation q~ # 6n&1 for q with |q&q~ |<2&s can be com-
puted in time O(�(n } H(n) } (s+n+log M ))).

For a reasonable concept of modular representation, it is necessary that
the moduli pj actually have the specified degree. Here it is required that
they are monic and do not have large zeros. Then pj # 6 1

nj
can be assumed

w.l.o.g.

3.9. Theorem (Modular Representation in C[z]). Let pj # 6 1
nj

for
j # [l], f # 6m with m�n and | f |�1, and s # N. Then f� j # 6nj&1 with
| f mod pj& f� j |<2&s can be computed simultaneously for all j # [l] in time
O(�((n } H(n)+m) } (s+m))).

3.3. Computation of Root Moduli

Algorithms for root radius computation and related problems are impor-
tant tools for locating polynomial zeros. Scho� nhage (1982b, Sects. 14, 15)
has proposed fast algorithms for these problems. They use Graeffe's root
squaring method.

3.10. Lemma. Let C>0. Given p # 6n with 2&Cn�*( p)�2Cn and _>0,
a radius R>0 with Re&_�*( p)�Re_ can be computed in time O(�(n2 }
(log log n+log(1�_)) } log(1�_))). If 2&Cn�**( p)�2Cn, then the same time
bound applies for computing the inner root radius, **( p)=1�*( p*).

This has been shown by Scho� nhage (1982b, Theorem 15.1). The addi-
tional restriction 2&Cn�*( p)�2Cn is not mentioned there. However, such
a restriction is necessary and is used implicitly in the proof. See Appendix
A.2 for further discussion.

Approximations for the centered root radius *� ( p)=*(Tz� ( p) p) can be
computed by combining the root radius algorithm with a Taylor shift. The
root perturbation caused by this Taylor shift should be small compared
with *� ( p). For the applications in this paper, it is sufficient to assert
whether *� ( p) exceeds a given bound � and to compute a fixed precision
approximation for *� ( p) only in this case. See Appendix A.2 for further
explanations and a proof of the complexity result.

3.11. Definition. Let p # 6n and �>0. A standard �-approximation for
*� ( p) is a real number *�� such that at least one of (*=� 7 *� ( p)<�) or
(*>�7 0.98*<*� ( p)<*) holds.

3.12. Lemma. Let p # 6 1
n and �>0. Then a standard �-approximation

for *� ( p) can be computed in time O(�(n2 } (log log n+log(1��)))).
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3.4. A Splitting Circle Method for PFD

From now on, a modified definition of radius � decomposition is used
for technical reasons: The radius of V( pj ) is replaced by *� ( pj ), because
approximations for *� ( pj ) can be computed without knowing the roots
of pj .

3.13. Definition. For p # 6n , q # 6n&1 , and =, ', �>0, a radius �
decomposition of q�p within error (=, ') is an approximate partial fraction
decomposition q�prq1 �p1 } } } ql �pl err(=, ') which fulfils *� ( p j )<� for all
j # [l].

This definition differs only slightly from Definition 1.3, because *� ( p)�
diam(V( p))�2 } *� ( p). The distance of the roots of different factors is
measured as follows:

3.14. Definition. Let $>0. A sequence ( p1 , ..., p l ) of polynomials is
called $-separated, if dist(V( pi), V( pj ))�$ for all i, j # [l] with i{ j, and if
*( pj )�1&$�2 for all j # [l]. An APFD q�prq1�p1 } } } ql �pl err(=, ') is
called $-separated if ( p1 , ..., pl ) is $-separated.

For technical reasons, the condition *( pj )�1 is strengthened slightly. It
is crucial for the algorithms that the numerators of $-separated PFDs are
reasonably bounded, namely by |qj |�23n } $&n (see Lemma 4.12).

The main idea of the splitting circle method is to process the following
steps recursively: Given a polynomial p, variants of Graeffe's root squaring
method are used to compute a ``splitting circle'' for p, i.e., a circle which
encloses some, but not all zeros of p, and which is sufficiently far away
from all zeros of p. With a Taylor shift and a scaling operation, the split-
ting circle is transformed into the unit circle. Now let p= f } g, where the
zeros of f are inside the unit circle, while those of g are outside. An initial
approximation f0 for f is computed by the power sum method of Delves
and Lyness (1967). Division of p by f0 yields an initial approximation g0

for g. The error in this initial factorization is then decreased by multidimen-
sional Newton iteration using a special version of the general method
described in Subsection 3.5. For this Newton iteration an auxiliary polyno-
mial h is used which fulfils the congruence h } g#1 mod f approximately,
hence 1�p=h�f +k�g (again approximately) for some polynomial k. An
initial approximation for h is also computed by power sums, and the
accuracy of h is increased by a special version of the quadratic iteration
described in Subsection 3.5.

The computation of PFDs is hence implicit in Scho� nhage's algorithm.
However, the algorithmic handling of the numerators and the problems
which arise when zeros of different factors are close to one another require
additional reasoning. Section 6 provides a detailed description of the
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method, comprising a summary of relevant technical results from Scho� nhage
(1982b), and a careful analysis of quantitative aspects. The analysis results
in a preliminary version of Theorem 1.4:

3.15. Theorem (Radius � Decomposition, Preliminary). Given p # 6 1
n ,

q # 6n&1 with |q|=1, ==2&s0, '=2&s1, and �=2&# such that
*( p)�1&��(14n), a radius � decomposition q�prq1 �p1+ } } } +
ql �pl err(=, ') which is ��(14n)-separated can be computed in time
O(�(n3 } log n+n3 } #+n2 } (s0+s1))). The |qj | fulfil the estimate |q j |�
2#n+n log n+O(n).

Subsection 3.6 explains how to achieve the better time bound stated in
Theorem 1.4 and how to deal with numerators of degree �n. Subsec-
tion 3.7 treats the general case (arbitrary root radius).

3.5. Newton Iteration

Due to the special structure of the problem, it is convenient to describe
the Newton algorithm in terms of polynomial arithmetic rather than with
general matrix calculus. Let n |&l n. For m # N, consider 6 0

m=zm+6m&1

as an m-dimensional affine subspace of 6. The polynomials p # 6 0
n and

p̂j # 6 0
nj

( j # [l]) fulfil the equation p= p̂1 } } } p̂l iff ( p̂1 , ..., p̂ l ) is a zero of
the mapping

:: 6 0
n1

_ } } } _6 0
nl

% ( p1 , ..., p l ) [ p& p1 } } } pl # 6n&1 , (3.1)

which can also be regarded as a mapping Cn1 � } } } �Cnl � Cn of the vec-
tors of the coefficients which are not prescribed to be 1. It is necessary for
computing a zero ( p̂1 , ..., p̂ l ) of : by Newton iteration that the Jacobian J:

of : is nonsingular at ( p̂1 , ..., p̂ l ). This is the case iff the factors p̂j are
pairwise prime. (Recall that for l=n, det J: is the discriminant of p, which
is nonzero iff p has no multiple roots.) Then the approximate factors pj are
pairwise prime if they are sufficiently close to p̂j . Newton's method yields
the iteration rule pj � p~ j= pj+.j , where the Newton corrections
.j # 6nj&1 are defined by the equation

p& p1 } } } pl

p1 } } } pl
=

.1

p1

+ } } } +
.l

pl
.

If | p& p1 } } } pl |<= with sufficiently small =, then | p& p~ 1 } } } p~ l |<C1(n) } =2

with a moderate factor C1(n)>0. For l=n, i.e., if p̂j are linear factors of p,
this iteration is the ``W-method'' described in Section 1 of Pasquini and
Trigiante (1985).
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The Newton corrections .j are computed by first computing a PFD

1
p1 } } } pl

=
h1

p1

+ } } } +
hl

p l
(3.2)

with hj # 6nj&1 up to a sufficiently small error, and then computing . j from
the congruences .j#(hj } p) mod pj . In this sense, the polynomials hj

encode the inverse (J:( p1 , ..., pl ))&1 of the Jacobian of :. Instead of com-
puting new hj for each Newton step, they are computed once at the begin-
ning of the iteration and then adapted for new approximate factors of p
with the following iteration: The defect of an approximate solution of (3.2)
is d :=1&h1r1& } } } &hl rl , where rj := p1 } } } pj&1 } pj+1 } } } pl . Replace hj

with h� j :=(hj } (1+d )) mod pj . Then the new defect d� :=1&h� 1r1& } } } &
h� l rl fulfils the congruence d� #d 2 mod p1 } } } pl which implies the estimate
|d� |�C2(n) } |d | 2 with a moderate factor C2(n)>0.

Sections 7 and 8 describe the algorithms for refining factors and partial
fractions in detail. In particular, Section 8 provides a proof for Theorem 1.7.
Corollary 1.8 is proved in Subsection 9.1.

Example (1.1) illustrates what happens when the Jacobian J:( p1 , ..., pl )
is ``nearly singular,'' i.e., approximate factors pi , pj have roots close to each
other. The concept of initial decomposition specifies whether an APFD of
1�p is sufficiently close to a solution such that quadratic convergence is
guaranteed:

3.16. Definition. An initial decomposition for p # 6 1
n is an APFD

1�prh1 �p1+ } } } +hl �pl err(=0 , '0) which fulfils the following estimates
with M :=maxj |hj |:

=0�min[2&9n�(l 2M2), 2&4n�(4l 2M4)]

and

'0�min[2&4.5n, 2&2n�M ].

A condition in terms of the roots of the pj is the following, see Subsec-
tion 4.4 for a proof.

3.17. Corollary. Let p # 6 1
n and $>0. Let n |&l n and pj # 6 0

nj
for j # [l] such that ( p1 , ..., pl ) is $-separated. Then an APFD 1�pr

h1 �p1+ } } } +hl �pl err(=0 , '0) is an initial decomposition if

=0�min[2&13n } $2n�(l 2n4), 2&12n } $4n�(l 2n8)]

and

'0�min[2&4.5n, 2&4n } $n�n2].
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3.6. High Accuracy Radius � Decompositions in the Bounded Case

The methods of Subsections 3.4 and 3.5 can be combined to provide an
even faster algorithm for computing radius � decompositions: Given a
rational function q�p, one first computes a moderate precision radius �
decomposition 1�prh1�p1+ } } } +hl �pl err(=0 , '0) which is ��(14n)-sepa-
rated (Theorem 3.15). As the APFD is ��(14n)-separated, the hj are
bounded by log |hj |=O(n log(1��)) (Lemma 4.12). Hence choosing the
initial error bounds =0 and '0 such that log(1�=0), log(1�'0)=O(n log(n��))
guarantees that this APFD is an initial decomposition. The desired APFD
of q�p is now computed by Newton iteration according to Corollary 1.8.
The algorithm is described and analyzed in Subsection 9.2. The analysis
yields Theorem 1.4.

If deg q=m>n, then one first computes a quotient q0 # 6m&n and a
remainder r # 6n&1 with |q&q0 } p&r|<'�2 and then an APFD r�pr

q1 �p1+ } } } +ql �pl err(=, '�2) as above. Together with the details spelled
out in Subsection 9.2, this shows

3.18 Corollary (High Degree Numerators). If in the above situation
q # 6m for some m�n, then a radius � decomposition q�prq0+q1�p1+
} } } +ql �pl err(=, ') which is ��(15n)-separated can be computed in time
O(�(n3 } log n+n3 } #+n } H(n) } (s0+s1)+m } s1)). Again |qj |�2#n+n log n+O(n).

3.7. Computation of Radius � Decompositions in the General Case

The general case is reduced to the bounded case as in Scho� nhage (1982b,
Sect. 7): If *( p)�2, then the bounded case is applied directly after scaling.
If **( p)�1�2, then replace z with 1�z. This reduces the problem to com-
puting an APFD of q*�p*, where q*=zn&1 } q(1�z) and p*=zn } p(1�z)
with *( p*)�2. (Note that f (1�z)=z } q*(z)�p*(z). The ``overhead'' factor z
disappears with the backward transform.) If neither condition holds, then
compute a radius r # (1�2, 2) which is sufficiently far away from all the
roots of p and an APFD q�pru�f +v�g with *( f )<r and **(g)>r. Then
compute APFDs of u�f and v�g according to the first and second case,
respectively. Quantitative details of this reduction are discussed in Subsec-
tion 9.3. The analysis yields Theorem 1.6.

4. BOUNDS, ESTIMATES, AND OTHER AUXILIARIES

4.1. Regularity Conditions for Time Bounds

The analysis of algorithms involves sums of time bounds for subalgorithms
like �(m)+�(n) or �(n)+�(n�2)+�(n�4)+�(n�8)+ } } } . The latter is a
typical time bound for the repeated application of a subroutine with
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increasing accuracy. Newton iteration is a prominent example. A regularity
condition like the monotonicity of �(n)�n implies convenient estimates for
such quantities. The following lemma is used tacitly throughout this paper:

4.1. Lemma. Let m, n # N, C, #>1 and t=Wlog# nX. Then �(m)+
�(n)��(m+n), �(C } n)=O(�(n)), and �t

j=0 �(n�# j )=O(�(n)).

Proof. Let �(n)=n } /(n). Then �(m)+�(n)=m } /(m)+n } /(n)�
(m+n) } /(m+n)=�(m+n). The second estimate is Brent (1976, Lemma 1.4).
The third estimate follows with �(n�2)��(n)�2 from condition (1.1) and
Lemma 2.1 of Brent (1976). For more information about regularity condi-
tions, see also Brent and Kung (1978, Sect. 1).

4.2. Factors, Quotients, and Remainders of Polynomials

4.2. Lemma. Let p # 6n with p= p1 } } } pl . Then | p1| } } } | p l |�2n&1 } | p|.

Proof. This bound is stated in Scho� nhage (1986, (3.3)). Generalizations
and similar results can be found in Mignotte (1974), in Section 4.4 of
Mignotte (1992), and in Scho� nhage (1982b, Sect. 4). K

The error analysis of factorization and PFD algorithms requires bounds
for the size of quotients and remainders and error propagation estimates
for polynomial division. For the proof of such estimates, the following
lemma is used:

4.3. Lemma. Let r>0 and u1 , ..., un # C with |u& |�r for & # [n]. Then
the coefficients ck of the Laurent series

1
(1&u1 �z) } } } (1&un�z)

= :
�

k=0

ck

zk ( |z|>r)

fulfil the estimate |ck |�( n+k&1
k ) } rk.

Proof. Expanding 1�(1&u& �z) into a geometric series yields

:
�

k=0

ck

zk= `
n

&=1
\1+

u&

z
+

u2
&

z2 + } } } + .

As |u& |�r for all &, ck is bounded by the coefficient of tk in the series

(1+rt+(rt)2+ } } } )n=
1

(1&rt)n= :
�

k=0
\n+k&1

k + } rk } tk. K

400 PETER KIRRINNIS



File: DISTL2 048124 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 2309 Signs: 1174 . Length: 45 pic 0 pts, 190 mm

4.4. Lemma. Let m�n�1, f # 6m , p # 6 1
n , and f =q } p+r with q #

6m&n and r # 6n&1 (which are uniquely determined ). Then

|q|�\m
n + } | f |�2m&1 } | f |,

|r|�\1+\m
n+ } | p|+ } | f |�(1+2m+n&1) } | f |�

3
4

} 2m+n } | f |.

Proof. Let f (z)=�m
j=0 .jz j and p(z)=>n

&=1 (z&u&), where |u& |�1.
Due to Lemma 4.3, the coefficients ck in the Laurent series of 1�p for
|z|>1,

1
(1&u1 �z) } } } (1&un�z)

= :
�

k=0

ck

zk ,

are bounded by |ck |�( n+k&1
k ). Now in the Laurent series of f�p for |z|>1,

f (z)
p(z)

=
.mzm+ } } } +.0

zn } >n
&=1 (1&u& �z)

=(.mzm&n+ } } } +.n+O(1�z)) } :
�

k=0

ck

zk

=qm&nzm&n+ } } } +q0+O(1�z),

obviously q(z)=qm&nzm&n+ } } } +q0 holds. Hence

|q|= :
m&n

j=0

|qj |�| f | } :
m&n

k=0

|ck |�| f | } :
m&n

k=0
\n+k&1

k +=| f | } \m
n + .

Finally, ( m
n )�2m&1, |r|�| f |+|q| } | p|, and p�2n. K

The case m=2n&2 is typical for many applications. In this case, the
bound for |r| simplifies as follows:

4.5. Corollary. In Lemma 4.4, let m=2n&2. Then |r|< 1
8 } 23n } | f |.

Proof. Lemma 4.4 shows that |r|�(1+( 2n&2
n ) } 2n). The sequence an :=

(1+( 2n&2
n ) } 2n)�23n is monotonically decreasing, because ( 2n

n+1)�22n+2<
( 2n&2

n )�22n. The assertion follows with a1= 1
8 . Approximating the binomial

coefficient with Stirling's formula yields a slightly better bound, namely
|r|<0.142 } 23n } | f |�- n . K
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Lemma 4.4 and Corollary 4.5 can be used to estimate how a perturbation of
the dividend in a polynomial division propagates into the quotient and
remainder. The following lemma studies the effect of errors in the divisor:

4.6. Lemma. Let m�n�1, p, p~ # 6 1
n , and f # 6m . Let f =qp+r=q~ p~ +r~

with q, q~ # 6m&n and r, r~ # 6n&1 (which are uniquely determined ). Then

|q&q~ |�\m+n&1
2n + } | f | } | p& p~ | ,

|r&r~ |�\\m
n ++2n } \m+n&1

2n ++ } | f | } | p& p~ |.

Proof. The proof is similar to that of Lemma 4.4: Let p(z)=
>n

&=1 (z&u&) and p~ (z)=>n
&=1 (z&v&) with |u& |, |v& |�1, p~ (z)& p(z)=

�n&1
j=0 =jz j and f (z)=�m

j=0 .jz j. For z # C with |z|>1 let

1
>n

&=1 ((1&u& �z)(1&v& �z))
= :

�

k=0

ck

zk .

Then |ck |�( 2n+k&1
k ) due to Lemma 4.3. The Laurent series of f �p& f� �p~

for |z|>1 is

f (z)
p(z)

&
f (z)
p~ (z)

=
f (z)

p(z) } p~ (z)
} ( p~ (z)& p(z))

=
(.mzm+ } } } +.0) } (=n&1zn&1+ } } } +=0)

z2n } >n
&=1 ((1&u&�z)(1&v& �z))

=(.mzm&n&1+ } } } +.n+1+O(1�z))

} \=n&1+
=n&2

z
+ } } } +

=0

zn&1+ } :
�

k=0

ck

zk

='m&n&1zm&n&1+ } } } +'0+O(1�z),

where q(z)&q~ (z)='m&n&1 zm&n&1+ } } } +'0 . Hence

|q&q~ |= :
m&n&1

j=0

|'j |�| f | } | p& p~ | } :
m&n&1

k=0

|ck |

�| f | } | p& p~ | } :
m&n&1

k=0
\2n+k&1

k +
=| f | } | p& p~ | } \m+n&1

2n + .
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The error |r&r~ | is now estimated using Lemma 4.4:

|r&r~ |= |qp&q~ p~ |�|q| } | p& p~ |+| p~ | } |q&q~ |

�\m
n + } | f | } | p& p~ |+2n } \m+n&1

2n + } | f | } | p& p~ |. K

Combining Lemmas 4.4 and 4.6 yields:

4.7. Lemma. Let m, n, p, p~ and f as in Lemma 4.6. In addition, let
f� # 6m . Let f =qp+r and f� =q~ p~ +r~ with q, q~ # 6m&n and r, r~ # 6n&1 (which
are uniquely determined ). Then

|r&r~ |� 3
4 } 2m+n } | f & f� |+ 3

8 } 2m+2n } | f | } | p& p~ |.

Proof. Let f =q } p~ + r̂ with r̂ # 6n&1 . Then |r&r~ |�|r& r̂|+|r̂&r~ |.
Lemma 4.4 implies |r̂&r~ |� 3

4 } 2m+n } | f& f� |, and Lemma 4.6 yields

|r&r̂|�\\m
n ++2n } \m+n&1

2n ++ } | f | } | p& p~ |

� 3
8 } 2m+2n } | f | } | p& p~ |. K

4.8. Lemma. Let pj # 6 1
nj

, h j # 6nj&1 , and rj := p1 } } } pj&1 } pj+1 } } } p l for
j # [l]. Then |1&� l

j=1 h jrj |<1 implies that the pj are pairwise prime.

Proof. Otherwise it may be assumed w.l.o.g. that p1 and p2 have a common
zero z with |z|�1. Then � l

j=1 hj (z) rj (z)=0, but |1&� l
j=1 hj (z) rj (z)|�

|1&� l
j=1 hjrj |<1, a contradiction.

4.3. Perturbation of Zeros

The zeros of a polynomial p can be computed from an approximate fac-
torization pr p~ err =, where p~ = p1 } } } pn with linear factors pj . The crucial
question is which error bound = for the factorization is sufficient to guaran-
tee a prescribed accuracy for the zeros. The simple example p(z)=zn&=,
pj (z)=z (i.e., p~ (z)=zn) shows that an error = with respect to the l1 -norm
may perturb the zeros by n

- = . A well known perturbation bound due to
Ostrowski (1966, Appendix A) is 2( p, p~ )�2n } n

- = for p, p~ # 6 1
n . This

estimate has been improved by Scho� nhage to 2( p, p~ )<4 } n
- = (Scho� nhage,

1982b, Theorem 19.1). For a similar result with a different standardization
see Scho� nhage (1985, Theorem 2.7). Scha� tzle (1990, Korollar 3.3) has
proved the ``true'' factor in this perturbation estimate to be 2+o(1):
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4.9. Lemma. Let n # N+ and 0<_< 1
2 . Then for all p, p~ # 6 1

n with
== | p& p~ |�_, the estimate 2( p, p~ )<an, _ } n

- |=| holds, where

:n := n�\ n&1
w(n&1)�2x+ and an, _ :=

:n

n
- 1&_ & n

- _
.

Moreover, always :n�2, and, e.g., an, _�2.134 for _�2&4n, and
an, _�2.008 for _�2&8n.

4.10. Lemma. Let pj , p~ j # 6 1
nj

for j # [l]. Let ( p1 , ..., pl ) be $-separated
and let 0<$0�$1<$&$0 be such that 2( p1 } } } pl , p~ 1 } } } p~ l )�$0 and
2( pj , p~ j )�$1 for all j # [l]. Then 2( pj , p~ j )�$0 for all j # [l], and
( p~ 1 , ..., p~ l ) is ($&2$0)-separated.

Proof. Let the roots u1 , ..., un of p1 } } } pl and v1 , ..., vn of p~ 1 } } } p~ l be
numbered such that |u}&v} |�$0 for } # [n]. Now let u} be a root of pj

and v} be a root of p~ k . As 2( pk , p~ k)�$1 , there is a root u of pk

with |u&v} |�$1 . Hence |u&u} |�$0+$1<$ and thus j=k, because
( p1 , ..., pl ) is $-separated. As pj and p~ j have the same number of zeros,
it follows that Mj :=[} # [n] : pj (u})=0]=[} # [n] : p~ j (v})=0] for
j # [n], hence 2( pj , p~ j )�max} # Mj

|u}&v} |�$0 . K

4.4. Initial Decompositions and Root Clusters

Upper bounds for the numerators hj in a PFD 1�p=h1 �p1+ } } } +hl �pl

can be derived from lower bounds for the distance of the roots of different pj .
The following lemma states such an estimate for l=2:

4.11. Lemma. Let G/C be open and bounded by finitely many
( positively oriented ) piecewise regular Jordan curves. Let k, n # N, n>k,
f # 6k with deg f =k and V( f )/G, g # 6n&k with V(g)/CG� , u # 6k&1 ,
v # 6, p := fg, and q :=vf +ug. Then

u(z)=
1

2?i
} |

�G

q(t)
p(t)

}
f (t)& f (z)

t&z
dt. (4.1)

If |t|�R for t # �G and C(R) :=max[1, Rk&1], then

|u|�
1

2?
} C(R) } | f $| } |

�G } q(t)
p(t) } |dt | . (4.2)
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Finally, let |q(t)�p(t)|�A for t # �G. Then

|u|�
len(�G)

2?
} A } C(R) } | f $|. (4.3)

Proof. First let

u1(z) :=
1

2?i
} |

�G

u(t)
f (t)

}
f (t)& f (z)

t&z
dt ;

then u1 # 6k&1 , and u(z)=u1(z) holds for z # V( f ) because of Cauchy's
integral formula. Thus u=u1 , if f has k distinct zeros. Otherwise u=u1 can
be shown using a confluence argument (i.e., by approximating f by polyno-
mials f� # 6k which are squarefree). V(g)/CG� and Cauchy's theorem imply
that

|
�G

v(t)
g(t)

}
f (t)& f (z)

t&z
dt=0,

and (4.1) follows with u=u1 :

u(z)=
1

2?i
} |

�G \
u(t)
f (t)

+
v(t)
g(t)+ }

f (t)& f (z)
t&z

dt

=
1

2?i
} |

�G

q(t)
p(t)

}
f (t)& f (z)

t&z
dt.

Now let f (z)=.0 zk+.1zk&1+ } } } +.k . Then f (z)& f (t)=�k
j=0 .k& j }

(z j&t j) and

f (z)& f (t)
z&t

= :
k

j=0

.k& j } (z j&1+tz j&2+ } } } +t j&1)

= :
k&1

m=0

zm :
k

j=m+1

t j&m&1.k& j .

With (4.1), this yields a representation for the coefficients of u(z)=
�k&1

m=0 cmzm:

cm=
1

2?i |
�G

q(t)
p(t)

} :
k&1

j=m+1

t j&m.k& j dt.
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Now let |t|�R for t # �G. Then

|cm |�
1

2?
} |

�G \}
q(t)
p(t) } } :

k

j=m+1

|t j&m&1| } |.k& j |+ |dt |

�
1

2?
} :

k

j=m+1

|R j&m&1| } |.k& j | } |
�G }

q(t)
p(t) } |dt |

and hence

|u|�
1

2?
} :

k&1

m=0

:
k

j=m+1

|.k& j | } R j&m&1 } |
�G }

q(t)
p(t) } |dt |

�
1

2?
} max[1, Rk&1] } :

k&1

m=0

:
k

j=m+1

|.k& j | } |
1 }

q(t)
p(t) } |dt | ,

and the sum } } } is

:
k&1

m=0

:
k

j=m+1

|.k& j |=k } |.0|+(k&1) } |.1|+ } } } +|.k&1|=| f $|�k } | f |.

Now (4.2) follows immediately. Inequality (4.3) follows with |q(t)�p(t)|�A
for t # 1. K

Numerators of $-separated PFDs can now be estimated as follows:

4.12. Lemma. Let p # 6 1
n and q # 6n&1 with |q|=1, =, ', $>0, and

l # [n]. Furthermore, let q�prq1 �p1+ } } } +ql �pl err(=, '), and let ( p1 , ..., p l )
be $-separated. Then

|qj |�n2
j } (1+') } 2n } $&n } | p j |. (4.4)

Proof. Let p~ := p1 } } } p l and q~ =(q1 �p1+ } } } +ql �pl ) } p~ . For j # [l] let

Gj :=[z # D : dist(z, V( pi))>dist(z, V( pj )) for all i{ j ].

Obviously the Gj are open and pairwise disjoint, and � l
j=1 G j =D� .

Moreover, for j # [l] always V( pj )/Gj , and for every z # �Gj and every
zero u of p~ the estimate |z&u|�$�2 holds. Hence | p~ (z)|�($�2)n and
|q~ (z)�p~ (z)|�2n |q|�$n for these z.

The length of �Gj is estimated as follows: For y # V( p~ ) let

Vy :=[z # C : |z&v|>|z& y| for all v # V( p~ )"[ y]],
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the (open) Voronoi polygon of y (cf. Preparata and Shamos, 1985, 5.5). It
is easy to see that Gj =�y # V( pj )

Vy & D. Hence the length of the boundary
of Gj is at most len(�Gj )��y # V( pj )

len(�(Vy & D)). As Vy is a convex
polygon, Vy & D is a convex subset of D. Hence len(�(Vy & D))�2? and
thus len(�Gj )�2? } *V( pj )�2?nj . Finally, | p$j |�nj } | pj |<nj } 2nj. These
estimates and Lemma 4.11 establish the assertion. K

Proof of Corollary 3.17. Insert the estimate (4.4) from Lemma 4.12 into
Definition 3.16. K

4.5. Huffman's Algorithm

It is convenient for the specification and analysis of the algorithms for
modular arithmetic to use the standardized form of Huffman's algorithm
introduced in Knuth (1973, p. 404).

Let n, l�2 and n <l n. The Huffman index of n is

jH (n) :=max[ j # [l&1] : nj+1�n1+n2].

If k= jH(n), then the partition

sH (n) :=(n3 , ..., nk+1 , n1+n2 , nk+2 , ..., nl ) <l&1 n

is called the Huffman successor of n. Here, n1+n2 is placed in the k th place
in sH(n).

The following measures for partitions are used: The depth dj (n) and the
path weight hj (n) of the j th leaf in the Huffman tree are the length of resp.
the sum of the weights along the path associated with nj . The leaf itself is
not counted. Technically, these numbers are defined recursively: For l=1
let dj (n)=hj (n)=0. For l�2 let k= jH(n) and n$=sH(n). Then d j (n)=
1+dk(n$) and hj (n)=n1+n2+hk(n$) for j=1, 2, dj (n)=dj&2(n$) and
hj (n)=h j&2(n$) for 3� j�k+1, and d j (n)=dj&1(n$) and h j (n)=h j&1(n$)
for k+2� j�l. The average weighted path length is H1(n)=� l

j=1 nj d j . It
can be defined recursively by H1(n)=0 for l=1 and H1(n)=n1+n2+
H1(n$). Finally, the maximal path weight is H�(n)=max l

j=1 hj (n). These
measures satisfy the relations

d(n) :=d1(n)=d2(n)=1+dk(n$)�l&1. (4.5)

H1(n) < n } (H(n)+1). (4.6)

H�(n) < 2.6181 } n. (4.7)

Relation (4.5) is an immediate consequence of the construction. The estimate
(4.6) of H1(n) is well known (see, e.g., Aigner, 1988, Theorem 1.6). It is
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sharp in the sense that H1(n)�n } H(n). Estimate (4.7) is Lemma 2 from
Kirrinnis (1994).

5. MODULAR POLYNOMIAL ARITHMETIC

This section describes the algorithms for computing the product of a
sequence of polynomials, the sum of a sequence of rational functions, and
the residues of a polynomial with respect to several moduli. The analysis of
the algorithms yields proofs for Theorems 3.7, 3.8, and 3.9. For the first
algorithm, the correctness proof and time analysis are explained in detail.
Similar arguments can be spelled out for the other algorithms in a
straightforward manner. This is done in Appendix A.3.

For convenience, it is assumed w.l.o.g. that polynomials p j are given such
that deg p1�deg p2� } } } �deg pn . For the technical description of the
algorithms the following notation is used: Let n < l n. If l�2, let k= jH(n),
n$=sH(n), and n1, 2 :=n1+n2 . With the notation introduced in Subsec-
tion 4.5, let d1, 2(n) :=d1(n)&1=d2(n)&1. Then d1, 2(n)=dk(n$) because of
(4.5). As the algorithms work recursively, approximations p~ j , q~ j , and f� for
the ``real'' data are assumed to be given as inputs.

The product of l polynomials pj ( j # [l]) is computed by first multiplying
two polynomials of least degrees, i.e., p1 and p2 . The product p1p2 is
merged into the sequence p3 , ..., pl after all polynomials with the same
degree, and then the product of these l&1 polynomials is computed recur-
sively. This corresponds to the standard Huffman tree described in Subsec-
tion 4.5.

5.1. Algorithm (Multiplication of Many Polynomials).

Input: An ordered partition n <l n; an accuracy parameter s # N;
polynomials p~ j # 6nj

with | pj& p~ j |<2&(s+(n&nj)+2dj (n)) ( j # [l]).

Returns: A polynomial p~ # 6n with | p1 } } } pl& p~ |<2&s.

Time bound: O(�(H1(n) } (s+n))).

1. If l=1: [Let p~ := p1 ; return.]

2. Compute p~ 1, 2 # 6n1, 2
with | p~ 1p~ 2& p~ 1, 2 |<2&(s+(n&n1, 2)+2d1(n)).

3. Compute p~ by calling Algorithm 5.1 recursively
with input (n$; s; p~ 3 , ..., p~ k+1 , p~ 1, 2 , p~ k+2 , ..., p~ l ).

Correctness Proof and Time Analysis. Calling the algorithm recursively
in Step 3 is legal, because
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| p1 p2& p~ 1, 2|

<2&(s+(n&n1, 2)+2d1(n))+| p1| } | p2& p~ 2|+| p~ 2| } | p1& p~ 2|

<2&(s+(n&n1, 2)+2d1(n))+2n1 } 2&(s+(n&n2)+2d2(n))

+(2n2+2&s) } 2&(s+(n&n1)+2d1(n))

<2&(s+(n&n1, 2)+2d1, 2(n)).

According to Theorem 3.2, there is a constant c>0 such that for any two
polynomials F, G # 6& with |F |, |G|<2&+1, a polynomial P # 62& with
|P&FG|<2&N can be computed in time less than c } �(& } (N+&)). Now
it is proved by induction that for l�2 the running time of Algorithm 5.1
is bounded by c } �(H1(n) } (s+n+2d(n))): This is obvious for l=2.
Because of | p~ j |<| pj |+2&s<2nj+1 and the definition of c, the computing
time for Step 2 is bounded by c } �(n1, 2 } (s+(n&n1, 2)+2d1(n))+n1, 2)=
c } �(n1, 2 } (s+n+2d(n))). By induction, the computing time for Step 3 is
bounded by c } �(H1(n$) } (s+n+2d(n$))). Hence the time bound for the
algorithm follows from H1(n)=n1, 2+H1(n$) and d(n$)�d(n). Now the
time bound stated in Theorem 3.7 follows from (4.5) and (4.6). K

The sum q�p=� l
j=1 qj �pj with deg qj<deg pj is computed by first

computing q1, 2 �p1, 2 :=q1 �p1+q2 �p2 and then adding l&1 rational func-
tions recursively. For convenience, |qj |�nj } 2nj } M is assumed instead of
|qj |�M.

5.2. Algorithm (Addition of Rational Functions).

Input: An ordered partition n <l n; an accuracy parameter s # N;
a real bound M�1;
polynomials p~ j # 6nj

and q~ j # 6nj&1 ( j # [l]) with

| pj& p~ j |<2&(s+(n&nj )+3dj (n))�(lM ),

|qj&q~ j |<2&(s+(n&nj )+3dj (n)).

Returns: Polynomials p~ # 6n with | p1 } } } pl& p~ |<2&s

and q~ # 6n&1 with |q&q~ |<2&s.

Time bound: O(�(H1(n) } (s+n+log M ))).

1. If l=1: [ p~ := p1 ; q~ :=q1 ; return.].

2. Compute p~ 1, 2 # 6n1, 2
and q~ 1, 2 # 6n1, 2&1 with

| p~ 1p~ 2& p~ 1, 2 |<2&(s+(n&n1, 2)+3d1(n))�(nM ),

|q~ 1 p~ 2+q~ 2 p~ 1&q~ 1, 2|<' :=2&(s+(n&n1, 2)+3d1(n)).

409PARTIAL FRACTIONS AND FACTORIZATION



File: DISTL2 048133 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 3181 Signs: 1755 . Length: 45 pic 0 pts, 190 mm

3. Compute a polynomial q~ with |q&q~ |<2&s

by calling Algorithm 5.2 recursively with input
(n$; s; M; p~ 3 , ..., p~ k , p~ 1, 2 , p~ k+1 , ..., p~ l ; q~ 3 , ..., q~ k , q~ 1, 2 , q~ k+1 , ..., q~ l ).

The residues fj := f mod pj for j # [l] are computed by first computing
the residues f1, 2 := f mod ( p1 p2), f3 , ..., f l recursively and then computing
f1 and f2 from f1, 2 by polynomial division. Let h1, 2(n) :=h1(n)&(n1+n2).
It is assumed for simplicity that *( p~ j )�1 for all approximations p~ j # 6nj

for pj . This can be assumed w.l.o.g., because scaling with a factor of 2
amplifies the error by at most 2n. The specification of the following algo-
rithm implies the time bound asserted in Theorem 3.9, if _�s+n+
2H�(n) is chosen:

5.3. Algorithm (Modular Representation).

Input: An ordered partition n <l n; an accuracy parameter _�m;
polynomials f # 6m with | f |�1
and p~ j # 6 1

nj
with | p j& p~ j |<

4
9 } 2nj&2n&2dj (n) } 2&(_+m).

Returns: Polynomials f� j # 6nj&1 with | f j& f� j | < 22hj (n)+nj } 2&_.

Time bound: O(�((m+H1(n)) } _))

1. If l=1:
[Compute f� 1 # 6n&1 with | f mod p~ 1& f� 1|<2&_+n; return.]

2. Compute p~ 1, 2 such that
| p~ 1 p~ 2& p~ 1, 2|< 2

9 } 2n1, 2&2n&d1, 2(n) } 2&(_+m).

3. Call Algorithm 5.3 recursively to compute polynomials
f� 1, 2 , f� 3 , ..., f� l with | f j& f� j |<22hj (n)+nj } 2&_ for j=3, ..., l
and | f1, 2& f� 1, 2|<22h1, 2(n)+n1, 2 } 2&_.

4. For j=1, 2 use polynomial division to compute residues
f� j # 6nj&1 with | f� 1, 2 mod p~ j& f� j |< 1

8 } 2&(_+m) } | f� 1, 2|.

6. THE EXTENDED SPLITTING CIRCLE METHOD

6.1. Unit Circle Splitting

This section summarizes some elements of Scho� nhage's splitting circle
method (1982b, for brevity referred to as [S] in the following) and
provides extensions for PFD. The first result deals with the computation of
incomplete PFDs in the special case that the roots of the denominator are
sufficiently far away from the unit circle.
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6.1. Definition. A polynomial P # 6n is called (k, $, +)-E-factorable
(``factorable with respect to the unit circle E=�D'') if |P|=1, 1�k�n�2,
and 0<$< 1

2 ln 3 are such that P has k zeros of modulus �e&$ and n&k
zeros of modulus �e$, and if finally +=min[ |P(t)|: |t|=1].

For the rest of Subsection 6.1, it is assumed that P is (k, $, +)-E-factor-
able and that Q # 6n&1 with |Q|=1. Note that |P(t)|�|P| for |t|=1 and
hence +�1.

6.2. Definition. Let =>0. An =-E-splitting of P is given by polynomials
F # 6 1

k with *(F )<1, G # 6n&k with **(G)>1, and lc(G)=lc(P) such that
|P&FG|<=.

Let in addition '>0. An (=, ')-E-splitting of Q�P is given by an =-E-
splitting (F, G) of P and by polynomials U # 6k&1 and V # 6n&k&1 with
|Q&VF&UG|<'.

6.3. Lemma. Let (F, G) be an =-splitting of P with =�+�8, and let
K, p, q # 6 with K= pG+qF. Then

|FG|<1+=, |F |<2k, and |G|< 9
8 } 2n&k. (6.1)

If deg p<deg F, then | p|� 8
7 } (k�+) } |F | } |K |. (6.2)

If deg q*<deg G*, then |q|� 8
7 } ((n&k)�+) } |G| } |K |. (6.3)

Proof. Condition (6.1) summarizes (10.1), (10.2), and (10.3) from [S].
Condition (6.2) follows from Lemma 4.11, applied to ( f, g, u, v) :=
(F, G, p, q) and the unit disk, when |F(t) G(t)|�+&=� 7

8 } + and |K(t)|�
|K | for |t|=1 are taken into account. For the proof of (6.3), use the
equation K*= p*G*+q*F* and apply Lemma 4.11 analogously to
( f, g, u, v) :=(G*, F*, q*, p*). The estimate follows with |K*(t)|=
|K(1�t)|�|K | and |F*(t)G*(t)|=|F(1�t) G(1�t)|�+&= for |t|=1. K

6.4. Theorem (Unit Circle Splitting). An (=, ')-E-splitting of Q�P can
be computed in time

O \� \\k+
1
$+ } \n+log \ 1

+++
2

+n } \log \1
=++log \1

'++++ .

Moreover, |U |� 9
7 } k } 2k�+ and |V |� 81

56 } (n&k) } 2n&k�+.

Proof. Theorem 12.1 of [S] asserts that an =-E-splitting (F, G) of P can
be computed within the asserted time bound. The corresponding algorithm
computes an auxiliary polynomial H such that HG#1 mod F up to a small
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error. H can be used to compute U and V, using the relations QH#
VHF+UHG#U mod F and V=(Q&UG)�F, which are fulfilled up to
small errors. See Appendix A.4 for details.

6.2. How to Find Splitting Circles

Splitting circles are computed in two steps. First, the center w is chosen
such that the distances of the roots of p from this point are widespread, i.e.,
*(Tw p)�**(Tw p) is sufficiently large. The following lemma summarizes the
results of [S, Sect. 17]. The time bound follows from that for root radius
calculation in Lemma 3.10.

6.5. Lemma. Let p # 6n with z� ( p)=0 and 0.98<*( p)<1. Let w # [2,
2i, &2, &2i ] be chosen such that 2 :=ln(*(Tw p)�**(Tw p)) is maximal.
Then 2�0.3. It can be determined which point w to take in time
O(�(n2 } log log n)).

If a sufficiently large spread of the root moduli of p is guaranteed,
a suitable radius r for the splitting circle, which is centered at the origin,
can be computed by variants of Graeffe's method. In the following lemma,
the results of [S, Sect. 16] are summarized. Some details which cannot be
seen immediately from [S] are explained in Appendix A.5.

6.6. Lemma. Let p # 6n and r$, r">0 be given such that **( p)�r$<
r"�*( p), and let 2 :=ln(r"�r$). Then for ;<2�4, an index k�n�2 and a
radius r with r$<r<r" can be computed such that at least one of the polyno-
mials P :=Sr p�|Sr p| or P* is (k, $, +)-E-factorable with parameters $ and +
which fulfil

+>2&Cn,
1
$

�
2k } wlog nx

0.98 } ;
, and

1
$

�
n

0.98 } ;

with a constant factor C=C(;) independent of n and p. The computation of
r and k is possible in time O(�(kn2 log n)).

6.3. Single Splittings

For the rest of Section 6, let p # 6 1
n and q # 6n&1 with |q|=1. Further-

more, let ==2&s0, '=2&s1�2&2n, and �=2&#�1. Assume that *( p)�
1&��(14n) holds. Finally, let

�n, l :=
�

7n
} \1&

l
2n+ , =n, l :== }

l
n

, and 'n, l :=' }
l
n

.
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The splitting circle method computes a radius � decomposition q�pr

q1 �p1+ } } } +ql �pl err(=, ') by repeated computation of ``single splittings''
which are specified as follows:

6.7. Definition. Assume that a �n, l -separated PFD

q�prq1 �p1+ } } } +ql �pl err(=n, l , 'n, l) (6.4)

with & :=n1=deg p1�2 and a standard �-approximation *>� for *� ( p1)
are given. A single splitting for q1 �p1 is given by an index k�&�2, polyno-
mials f # 6 1

k , g # 6 1
&&k , u # 6k&1 , and v # 6&&k&1 such that

q�pru�f +v�g+q2 �p2+ } } } +ql �pl err(=n, l+1 , 'n, l+1) (6.5)

is a �n, l+1 -separated PFD, and standard �-approximations *$ and *" for
*� ( f ) and *� (g).

Subsections 6.4�6.7 describe an algorithm for computing single splittings.
Its analysis results in the following time bound:

6.8. Lemma. There are constants c, c1 , c2>0 such that whenever l, qj , pj ,
*, and & are given as in Definition 6.7, a single splitting (k, f, g, u, v, *$, *")
of q1 �p1 can be computed in time c1 } �(k } &2 } log &)+c2 } �(& } s), where
s=max[s0 , s1]+n#+W2n log nX+cn.

6.4. Computation of a Splitting Circle

The splitting strategy and transforms from [S, Sect. 7] are used with
adaptations for transforming the numerators. For simplicity, rounding
errors in the transforms are neglected. A straightforward, but tedious
analysis shows that it is sufficient to perform the following scalings and
Taylor shifts within error bounds which are of the same order of magnitude
as those for the splitting itself. Hence these transforms can be performed
within the same time bounds.

Let y :=z� ( p1) and

P1 :=Typ1 , Q1 :=Ty q1 , P2 :=*&&S*P1 , Q2 :=S* Q1 .

Then z� (P2)=0 and 0.98<*(P2)<1. The additional factor *&& in the
definition of P2 compensates the norm of the scaling operator S1�* in the
backward transform. The coefficients of P2 are not too large, because
the root radius of P1 is bounded by * (see [S, Sect. 7] for details).
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The next step is to compute the center of the splitting circle, i.e., a point
w # [2, 2i, &2, &2i ] with 2 :=ln(*(TwP2)�**(TwP2))�0.3. According to
Lemma 6.5, w can be computed in time O(�(&2 log log &)). Now let

P3 :=TwP2 , Q3 :=TwQ2 .

Now a radius r # (1, 3) for the splitting circle and a corresponding index
k�&�2 are computed according to Lemma 6.6, where ;= 3

41 is chosen
(hence in particular ;<2�4). The radius r and the index k can be com-
puted in time O(�(k&2 log &)). Now let

P4 :=Sr P3 , Q4 :=SrQ3 , P :=P4 �|P4|, and Q :=Q4 �|Q4|

and replace (P, Q) by (P*, Q*), if k>&�2. Then Lemma 6.6 implies that P is
(k, $, +)-E-factorable with log(1�+)=O(&) and 1�$�min[14&, 7k wlog &x].

6.5. Splitting and Backward Transform

Let K denote the splitting circle in the initial coordinates, K=
Dr } *( y+*w). Then there is a unique exact PFD q1 �p1=u0�f0+v0 �g0 ,
where f0 # 6 1

k , g0 # 6 1
&&k , u0 # 6k&1 , v0 # 6&&k&1 , V( f0)/K, and V(g0)/

C"K� . According to Lemma 6.6, the construction of K guarantees

dist(V( f0), �K )�r } * } (1&e&$)

and

dist(V(g0), �K )�r } * } (e$&1).

With r>1, *��, and $�1�(14&), this implies

dist(V( f0), V( g0))�r } * } (e$+e&$)>� } 2$���(7&).

Hence the APFD

q�pru0 �f0+v0 �g0+q2 �p2+ } } } +ql �p l err(=n, l , 'n, l) (6.6)

is �n, l -separated.
Now an APFD corresponding to the exact PFD q1 �p1=u0 � f0+v0 �g0 is

computed : For suitable =$, '$>0, the choice of which is discussed below, an
(=$, '$)-E-splitting (F, G, U, V ) of Q�P is computed in time

O(�(k } &2 } log &+& } (log(1�=$)+log(1�'$)))).
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Then the backward transform is computed. The corresponding operator is
0 :=T&yS1�* T&wS1�r . The factors are chosen such that lc( f )=lc(g)=1:

F4 :=rk } F, G4 :=r&k } |P4| } G,

U4 :=
|Q4| } rk

|P4|
} U, V4 :=|Q4| } r&k } V,

f :=*k } 0F4 , g :=*&&k } 0G4 ,

u :=*k&& } 0U4 , v :=*&k } 0V4 .

6.6. Error Propagation and Accuracy Requirements

The translations and the scalings with the moderate size factors r resp.
1�r cause only harmless error amplification factors 2O(&). For the scaling
operator S1�* , an additional factor ;&&1(S1�*)=*1&& must be accounted in
the estimate of |q1&vf &ug|. As has been illustrated with example (1.1),
the norms of u and v can be thus large. So this ``blow up effect'' must be
accepted. It is controlled by bounding * from below. In the estimate for
| p1& fg|, the norm of S1�* is compensated by the additional factor *&&.

The estimates |P&FG|<=$ and |Q&VF&UG|<'$ imply

| p1& fg|�*& } ;&(0) } |P4| } =$

and

|q1&vf &ug|�;&&1(0) } |Q4| } '$.

Because of | y|<1, |w|=2, and 1<r<3, the estimate

;m(0)�(6�*)m

holds for all m # N. Moreover,

|P4|�( |w|+r+1)& } |P1|�6& } |P1|�12& } | p1|

holds because of P4(z)=*&&P1(*(rz+w)), compare [S, Sect. 7]. Instead of
the naive estimate |Q4|�|Sr | } |Tw | } |S*| } |Ty | } |q1|�18&&1 } |q1|, the better
bound

|Q4|<( |w|+r)&&1 } |Q2|<5&&1 } (1+| y| )&&1 } |q1|<10&&1 } |q1|
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is used, which can be derived like the estimate of |P4|. Altogether:

| p1& fg|�72& } =$ } | p1|=: =" } | p1|, (6.7)

|q1&vf &ug|�(60�*)&&1 } '$ } |q1|=: '" } |q1|. (6.8)

Now it is investigated how to choose =$ and '$ to guarantee (6.5) and to
ensure that this APFD is �n, l+1 -separated. The error of the denominator
of the new APFD is estimated as

| p& fgp2 } } } p l |�=n, l+=" } | p1| } | p2 } } } pl |�=n, l+2n } =". (6.9)

For the estimate of the numerator let

. :=q2 p3 } } } pl+ } } } +ql p2 } } } p l&1 .

The given APFD (6.4) is �n, l -separated. Hence

|qj |�n2
j } (1+'n, l ) } 2n } �&n

n, l } | pj |

�n2
j } (1+') } (28n)n } �&n } | pj |

for j # [l] because of Lemma 4.12. Therefore

|.|�(n2
2+ } } } +n2

l ) } (1+') } (28n)n } �&n } | p2| } } } | pl |.

This yields

|q&(vf +ug) } p2 } } } pl& fg } .|

�|q1&vf &ug| } | p2 } } } pl |+| p1& fg| } |.|+'n, l

�'" } |q1| } | p2 } } } pl |+=" } | p1| } |.| +'n, l

�(1+') } (56n)n } �&n } ('"n2
1+=" } (n2

2+ } } } +n2
l ))+'n, l . (6.10)

Because of (6.9) and (6.10), the conditions

="�= } 2&n�n (6.11)

and

=", '"�\ �

56n+
n

}
'

1+'
}

1
n3 (6.12)
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are sufficient for (6.5). Now the root perturbation is investigated: With
'�2&2n and n�2, (6.12) implies =" } | p1|�(224)&n=: _. Therefore (with
(6.7)), | p1& fg|�_, and thus 2( fg, p1)<2.01 } &

- =" because of Lemma 4.9.
Hence, if in addition

="�\ �

56.3n2+
&

, (6.13)

then 2( fg, p)<��(28n2). The computed APFD (6.5) is �n, l+1-separated,
because the corresponding exact PFD (6.6) is �n, l -separated.

6.7. Time Bound for a Single Splitting

If (6.7) and (6.8) are simplified by inserting &<n and *>�, then it
follows from (6.11), (6.12), and (6.13) that it is sufficient to choose

=$�min {\ �

4032 } n+
n

}
'

2n3 , \ �

4054 } n2+
&

, (144)&n }
=
n= ,

'$�\ �

3360 } n2+
n

}
'

2n3 .

Let s=max[s0 , s1]+n#+W2n log nX+cn, where c is chosen such that
=$ :=2&s and '$ :=2&s fulfil the above estimates. The time for computing
F, G, U, and V is at most O(�(kn2 log n+ns)). This follows from Theorem
6.4 and the estimates log(1�+)=O(n) and 1�$=O(k log n). It is sufficient to
compute the scalings and translations with accuracy parameters of the
same order of magnitude as for the splitting. Therefore, the same time
bound holds for the transforms. It has been shown above that computing
the splitting circle is possible within the same time bound. Finally, it
follows from Lemma 3.12 that standard �-approximations *$ for *� ( f )
and *" for *� (g) can be computed in time O(�(&2 log log &+&2#))=
O(�(n2 log n+ns)). This completes the proof of Lemma 6.8.

6.8. Radius � Decomposition by Repeated Splitting

The time estimate follows the lines of [S, Sect. 5]. The case &=n of the
following lemma yields the assertion of Theorem 3.15.

6.9. Lemma. Let p, q, =, ', �, =n, l , 'n, l , �n, l , l, pj , qj , and & be given as
in Definition 6.7, and let a standard �-approximation * for *� ( p1) be given.
From these data, a �n, l+m&1-separated APFD

q�pru1 � f1+ } } } +um� fm+q2 �p2+ } } } +q l �p l err(=n, l+m&1 , 'n, l+m&1)
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with *� ( fj )<� for all j # [m] can be computed in time

T1(&) := 2
3 c1 } �(&3 log &)+c2 } �(&2 } s),

where s, c1 , and c2 are as in Lemma 6.8.

Proof. The lemma is proved by induction in &. Let Z(&) denote the
assertion of the lemma. The case &=1 is void. If &�2 and *>�, then com-
puting a single splitting produces an index k with 1�k�&�2, polynomials
f # 6 1

k , g # 6 1
&&k , u # 6k&1 , and v # 6&&k&1 such that

q�pru�f +v�g+q2 �p2+ } } } +ql �pl err(=n, l+1 , 'n, l+1)

is a �n, l+1 -separated APFD, and standard �-approximations *$ and *" for
*� ( f ) and *� (g). According to Lemma 6.8, this splitting can be computed in
time T0(&, k) :=c1 } �(k } &2 } log &)+c2 } �(& } s). Now a �n, l+m$ -separated
APFD

q�pru1 � f1+ } } } +um$� fm$+v�g+q2 �p2+ } } } +q l�pl err(=n, l+m$ , 'n, l+m$)

with *� ( fj )<� for j # [m$] can be computed in time at most T1(k). This
follows from Z(k). From this APFD, the desired one can be computed in
time bounded by T1(&&k) because of Z(&&k).

Hence the overall effort is bounded by T0(&, k)+T1(k)+T1(&&k). Let
k

*
:=n&k�k. Then kn+k2+k2

*
�n2 and 3

2 kn2+k3+k3

*
�n3. All

together,

T0(&, k)+T1(k)+T1(&&k)

�c1�(k&2 log &)+c2�(&s)+ 2
3 c1�(k3 log k)

+c2�(k2s)+ 2
3c1 �(k3

*
log k

*
)+c2�(k2

*
s)

� 2
3 c1�(&3 log &)+c2 �(&2s)=T1(&). K

7. IMPROVEMENT OF PARTIAL FRACTIONS

This section describes the quadratic iteration for simultaneously improv-
ing all numerators in a PFD with respect to a fixed factorization of the
denominator into pairwise prime factors. Let n, l�2, n=(n1 , ..., nl ) |&l n,
and H=H(n). The algorithm is based on the following error estimate:
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7.1. Lemma. Let pj # 6 1
nj

, h j # 6nj&1 , and rj := p1 } } } pj&1 } p j+1 } } } p l

for j # [l]. Furthermore, let d :=1&� l
j=1 h jr j , and let |d |<1. Finally, let

h� j :=(hj (1+d )) mod pj . Then

|h� j |�(1+ 3
16 } 2n+2nj } |d | ) } |h j |,

} 1& :
l

j=1

h� j rj }<23n&3 } |d |2.

Proof. The estimate of |h� j | follows from hj&h� j#hj } d mod pj and
Lemma 4.4. Let d� :=1&� l

j=1 h� jrj . Then d� #1&h� jrj#1&(1+d ) hjrj#
1&(1+d )(1&d )#d 2 mod pj . Because of Lemma 4.8, the pj are pairwise
prime. The Chinese remainder theorem implies d� #d 2 mod( p1 } } } pl ). Now
the estimate of the new defect d� follows from Corollary 4.5. K

The h� j are computed as follows: Compute d with Algorithm 5.2. Then
compute dj=d mod pj with Algorithm 5.3. Finally, compute h� j from h� j=
(hj } (1+dj )) mod pj , using Algorithm 5.3 again. These ideas are the basis
of the following algorithm for a single iteration step:

7.2. Algorithm (Partial Fraction Decomposition, Single Step).

Input: Polynomials pj # 6 1
nj

and h j # 6nj&1 and real bounds M�1 and
' # (0, 1

2) such that, with rj and d as in Lemma 7.1, the estimates
|hj |�M and |d |<' hold.

Returns: Polynomials h� j # 6nj&1 with

|h� j |�M } (1+23n&4 } '), (7.1)

} 1& :
l

j=1

h� j rj }<23n&2 } '2. (7.2)

Time bound: O(�(n } H } (log(1�')+log M+n))).

1. Call Algorithm 5.2 to compute a polynomial d� # 6n&1 with
|d&d� |<22&2n } '2�(lM ).

2. Use Algorithm 5.3 to compute polynomials d� j # 6nj&1 for j # [l]
with |d� mod pj&d� j |<(2n+nj&2&1) } 22&2n } '2�(lM ).
�* Then |dj&d� j |<21+nj&n } '2�(lM ). *�

3. Compute polynomials gj # 62nj&2 for j # [l]
with |hjd� j& gj |<21+nj&n } '2�l.
�* Then |hjdj& gj |<22+nj&n } '2�l. *�

419PARTIAL FRACTIONS AND FACTORIZATION



File: DISTL2 048143 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 2613 Signs: 1176 . Length: 45 pic 0 pts, 190 mm

4. For j with nj�2, use polynomial division to compute polynomials
fj # 6nj&1 for j # [l] with | g j mod pj& fj |<24nj&n&1 } '2�l.
For j with nj=1, let f j= gj .
�* Then |(hjdj ) mod pj& fj |<24nj&n } '2�l. *�

5. Return h� j :=hj+ fj .

Correctness Proof and Time Analysis. The estimates �* between the
comment signs *� follow from Lemma 4.4 (Step 2), |hj |�M (Step 3), and
Corollary 4.5 (Step 4). With nj�n&1, the estimate

|r j | } |h� j&h� j |=|rj | } |(hjdj ) mod pj& f j |

<2n&nj } 24nj&n } '2�l

�23n&3 } '2�l

follows, and this estimate and Lemma 7.1 imply

}1& :
l

j=1

h� jrj }� } 1& :
l

j=1

h� jrj }+ :
l

j=1

|rj | } |h� j&h� j |�23n&2 } '2.

Moreover, the inequalities l�2, nj�n&1, M�1, and '� 1
2 imply

|h� j |�|h� j |+|h� j&h� j |

�(1+ 3
16 } 2n+2nj } ') } |h j |+24nj&n } '2�l

�M } (1+23n&4 } ').

The time bound follows from Lemmas 3.2 and 3.4 and from Theorems 3.8
and 3.9. K

In the following description and analysis of the iteration, let C=23n&2.
For technical convenience, h� j�M } (1+C } ') is used instead of (7.1).

7.3. Algorithm (Partial Fraction Decomposition, Iteration).

Input: Polynomials pj # 6 1
nj

and h j # 6nj&1 ; real bounds M�1 and
'0 with 0<'0�min[2&3.5n, 1�M ] such that, with r j and d as in
Lemma 7.1, the estimates |hj |�M and |d |<'0 hold; an error
bound ' # (0, '0].
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Returns: Polynomials h� j # 6nj
with

|h� j |�M }
1+C } '0

1&C } '0

} (1&C } ')<\1+
4
7

} 23n } '0+ } M, (7.3)

}1& :
l

j=1

h� jrj }<'. (7.4)

Time bound: O(�(n } H } log(1�'))).

1. If '�C'2
0 : [Let ' :='0 , M� :=M, and h� j :=hj ; goto 4.]

2. Let '̂ :=- '�C and M� :=M } ((1+C } '0)�(1&C } '0)) } (1&C } ').

3. Call Algorithm 7.3 recursively
with input ( p1 , ..., pl ; h1 , ..., hl ; M, '0 , '̂)
to compute polynomials h� j # 6nj&1 for all j # [l]
with |h� j |<M� and |1&� l

j=1 h� j rj |<'̂.

4. Call Algorithm 7.2 with input ( p1 , ..., pl ; h� 1 , ..., h� l ; M� , '̂)
to compute polynomials h� j # 6nj&1( j # [l])
with |h� j |�M� } (1+C } '̂) and |1&� l

j=1 h� j rj |�C } '̂2.

Correctness Proof and Time Analysis. The algorithm stops, because in
Step 2 always '̂�2'. Let c>0 be such that the time for a single step as
specified in Algorithm 7.2 is at most c } �(n } H } log(1�')), when the algo-
rithm is called with '�min[2&3.5n, 2�M ]. The following induction shows
that the time for Algorithm 7.3 is bounded by 7c } �(n } H } log(1�')).

If C'2
0�' (�'0), then Step 4 returns polynomials h� j ( j # [l]) with |h� j |�

M } (1+C'0)�M } ((1+C'0)�(1&C'0)) } (1&C') and |1&� l
j=1 h� jrj |�

C'2
0�' in time at most c } �(n } H } log(1�'0))<7c } �(n } H } log(1�')).

If C'2
0>', then by induction the time for Step 3 is bounded by

7c } �(n } H } log(1�'̂)). The error bounds in Step 4 and the equations
C'̂2=' and M� } (1+C } '̂)=M } ((1+C'0)�(1&C'0)) } (1&C') show that
the polynomials h� j satisfy the required error estimates. Now with C'0� 1

8 ,

M� <M }
1+C'0

1&C'0

�M } \1+
16
7

} C'0+�
9
7

} M. (7.5)

This implies '̂�'0�min[2&3.5n, 1�M ]�min[2&3.5n, 2�M� ].
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The time for Step 4 is at most c } �(n } H } log(1�'̂)). Thus the overall cost
is bounded by 8c } �(n } H } log(1�'̂)). The relations '<C'2

0<2&4n and
C=23n&2 imply that this is at most 7c } �(n } H } log(1�')). K

The specification of Algorithm 7.3 and (7.5) yield:

7.4. Theorem. Given polynomials pj # 6 1
nj

and hj # 6nj&1 , bounds M�1
and 0<'�min[2&3.5n, 1�M ] such that |hj |�M and |1&� l

j=1 hjrj |�',
and an accuracy parameter S�log(1�'), polynomials h� j # 6nj&1 with
|h� j |�M } (1+ 4

7 } 23n } ') and |1&� l
j=1 h� jr j |�2&S can be computed in time

O(�(n } H } S)).

Generalizations. The time bound is preserved up to constant factors,
if the weaker estimate '0�min[2&(3+:)n, ;�M ] with arbitrary constants
:, ;>0 is assumed. It is possible to do without the assumption '0�
const.�M. Then the time bound for the first steps is O(�(n } H } log M )). If
only '0�2&(3n&1) is required instead of '0�2&(3+:)n, one has to take
into account O(log n) additional iteration steps with linear convergence.
The time for these steps is at most O(�(n2H )). In any case, the estimate
|h� j |�M } (1+4C'0)�3M holds. K

8. IMPROVEMENT OF FACTORIZATIONS

The Newton algorithm is based on the following error estimate:

8.1. Lemma. Let p # 6 1
n , pj # 6 1

nj
, and hj # 6nj&1 for j # [l]. Furthermore,

let p~ := p1 } } } p l , r j := p~ �p j , and d :=1&� l
j=1 hjrj . Let M�1, 0<=�

2&2n+3�(l 2M ), and 0<'<1 such that |hj |�M, | p& p~ |<=, and |d |<'.
Finally, let .j :=(hj } p) mod pj , p̂j := pj+. j , p̂ := p̂1 } } } p̂l , and r̂j := p̂� p̂j

Then

| p& p̂|�23n&3 } = } '+l 2 } M2 } 25n&7 } =2, (8.1)

} 1& :
l

j=1

hj r̂j }�'+l 2 } M 2 } 23n&4 } =. (8.2)

Proof. Lemma 4.8 and '<1 imply that the pj are pairwise prime. For
j # [l], the congruence .j#hjp#hj } ( p& p~ ) mod pj , | p j |�1, and Lemma
4.4 yield the estimate
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|.j |�\1+| pj | } \n+nj&2
nj ++ } |hj | } =

�2n+nj&2 } M } | p j | } =

�: } | pj | } =,

where : :=M } 22n&3. Hence | p̂j |�(1+:=) } | pj |. Note that :=�1�l 2. Next
it is shown that for every set I/[l] with *I=k, the estimate

} `j # I

p̂j&`
j # I

pj }�k } (1+:=)k&1 } := } `
j # I

| pj | (8.3)

holds. It may be assumed w.l.o.g. that I=[k]. Indeed,

| p̂1 } } } p̂k& p1 } } } pk |� :
k

j=1

| p̂1 } } } p̂j&1 .j pj+1 } } } pk |

�k } (1+:=)k&1 } := } | p1| } } } | pk |.

Now let ê1 and ê2 denote the errors of at most first and at least second
order in .j :

p& p̂=\ p& p̂& :
l

j=1

.j rj+&\ p̂& p~ & :
l

j=1

.j rj+ .

=: ê1 =: ê2

Then ê1# p& p~ &� l
k=1 .krk# p& p~ &.j rj#( p& p~ ) } (1&hjrj )#( p& p~ ) }

d mod pj for j # [l], thus from the Chinese remainder theorem, ê1#
( p& p~ ) } d mod ( p1 } } } pl ). With Corollary 4.5 and ( p& p~ ) } d # 62n&2 , this
implies

|ê1|�23n&3 } = } '. (8.4)

Because of the equation

p̂& p~ = :
l

j=1

p̂1 } } } p̂j&1. j pj+1 } } } pl

= :
l

j=1

.jr j+ :
l

j=2

( p̂1 } } } p̂j&1& p1 } } } pj&1) .j pj+1 } } } pl ,
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(8.3), :=�1�l 2, and (l&1) } (1+1�l 2) l�l (Appendix A.6, Lemma A.1), the
second order error is bounded as

|ê2|� :
l

j=2

| p̂1 } } } p̂ j&1& p1 } } } pj&1| } |.j | } | pj+1 } } } p l |

�\ l
2+ } (1+1�l 2) l&2 } 2n } (:=)2

�2n&1 } l 2 } (:=)2

�l 2 } M2 } 25n&7 } =2. (8.5)

For k=l&1, (8.3) implies |rj& r̂ j |�2n&1 } l } : } ==23n&4 } l } M } =, hence

}1& :
l

j=1

hj r̂j }�'+ :
l

j=1

|hj | } |rj & r̂j |�'+l 2 } M2 } 23n&4 } =. K

8.2. Algorithm (Factorization, Newton Step).

Input: Polynomials p # 6 1
n , p j # 6 1

nj
, and hj # 6nj&1 ; real bounds M�1

and =, '>0 with =�21&2n�(l 2M ) and '�min[2&3.5n, 1�M ] such
that with p~ , rj and d as in Lemma 8.1, the estimates |hj |�M,
| p& p~ |<=, and |d |<' hold.

Returns: Polynomials p~ j # 6 0
nj

and h� j # 6nj&1 such that with r~ j :=
p~ 1 } } } p~ j&1 } p~ j+1 } } } p~ l the following estimates hold:
| pj& p~ j |<M } 23n&2 } =, |h� j |�M } (1+23n } '),

| p& p~ 1 } } } p~ l |<l 2 } M2 } 25n&4 } =2, (8.6)

} 1& :
l

j=1

h� j r~ j }<l 2 } M2 } 23n&1 } =. (8.7)

Time bound: O(�(n } H } (log(1�=)))).

1. Use Algorithm 7.3 to compute polynomials h� j # 6nj&1 ( j # [l])
with |h� j |�M } (1+ 4

7 } 23n } ')
and |1&� l

j=1 h� jrj |<'$ :=l 2 } M 2 } 22n&5 } =.

2. Use Algorithm 5.3 to compute polynomials uj # 6nj&1 ( j # [l])
with |uj& p mod pj |�=1 :=l } M } 22n&5 } =2.

3. Compute polynomials vj # 62nj&2 ( j # [l])
with |vj&h� j } u j |�=2 :=l } M 2 } 22n&4 } =2.
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4. For j # [l] with nj�2, compute polynomials .~ j # 6nj&1 ( j # [l])
with |.~ j&vj mod pj |�=3, j :=l } M2 } 24n&7 } =2 } | pj |
by polynomial division.
For j # [l] with nj=1, let .~ j :=vj .

5. Return p~ j := pj+.~ j ( j # [l]).

The correctness of Algorithm 8.2 is proved by combining the theoretical
error estimates from Lemma 8.1 with the rounding error bounds from the
algorithm. Details can be spelled out as in the correctness proof for Algo-
rithm 7.2. This is technically complicated without using new ideas. There-
fore, the proof is postponed to Appendix A.6.

In the following Newton algorithm, a slightly stronger condition than
*( p)�1 is used for the sake of technical accuracy. The correctness proof
and time analysis are similar to that of Algorithm 7.3. Details and further
comments are given in Appendix A.6.

8.3. Algorithm (Factorization, Newton Iteration).

Input: A polynomial p # 6 1
n such that *( p~ )�1 holds for all p~ # 6 0

n with
| p& p~ |�2&7n; polynomials pj # 6 1

nj
and hj # 6nj&1; real bounds

M�1 and =0 , '0>0 with =0�min[2&7n�(l 2M2), 1�(4l 2M4)] and
'0�min[2&3.5n, 1�M ] such that, with p~ , rj , and d as in Lemma 8.1,
the estimates |hj |�M, | p& p~ |<=0 , and |d |<'0 hold; an error
bound = # (0, =0].

Notation: Let C :=l 2 } M2 } 26n, B :=l 2 } M2 } 23n,
and M$ :=M } ((1+23n'0)�(1&- C=0 )).

Returns: Polynomials p~ j # 6 1
nj

and h� j # 6nj&1 such that the estimates
| pj& p~ j |�M } 23n } =0 , |h� j |�M$ } (1&- C=), | p& p~ 1 } } } p~ l |<=, and
|1&�l

j=1 h� j } r~ j |�(B�- C ) } - = hold,
where r~ j := p~ 1 } } } p~ j&1 } p~ j+1 } } } p~ l .

Time bound: O(�(n } H } log(1�=))).

1. If =�C=2
0 :

[Let =̂ :==0 , '̂ :='0 , M� :=M, p̂j := pj , and h� j :=hj for j # [l];
goto 4.]

2. Let =̂ :=- =�C , '̂ :=(B�- C ) } - =̂, and M� :=M$ } (1&- C=̂).

3. Call Algorithm 8.3 recursively
with input ( p; p1 , ..., pl ; h1 , ..., hl ; M, =0 , '0 ; =̂)
to compute polynomials p̂j # 6 1

nj
and h� j # 6nj&1

such that the estimates |h� j |�M� , | p& p̂1 } } } p̂l |< =̂,
and |1&�l

j=1 h� j r̂j |<'̂ hold, where r̂j := p̂1 } } } p̂j&1 } p̂j+1 } } } p̂l .
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4. Call Algorithm 8.2 with input ( p; p̂j ; h� j ; M� , =̂, '̂)
to compute polynomials p~ j # 6 0

nj&1 and h� j # 6nj&1 for j # [l]
with |h� j |� M� } (1+23n } '̂), | p& p~ 1 } } } p~ l |<C=̂2,
and |1&� l

j=1 h� jr~ j |<B=̂.

Proof of Theorem 1.7. A simple way to achieve the additional restric-
tion for p in Algorithm 8.3 is to rescale the problem with a factor of 2: Let
p, pj , hj , M, =0 , and '0 be such that |hj |�M and that 1�prh1 �p1+ } } } +
hl �pl err(=0 , '0) is an initial decomposition. Let P(z) :=2&n } p(2z),
Pj (z) :=2&nj } p j (2z), and H j (z) :=2n&nj } h j (2z). Then P # 6 1

n , *(P)�1�2,
and hence *(P� )�1 for all P� # 6 0

n with |P&P� |�2&n (see the proof of
Lemma 3.12 in Appendix A.2). Moreover, Hj # 6nj&1 with |Hj |�2n&1 }
|hj |<2n } M, |P&P1 } } } Pl |<=0 , and |1&� l

j=1 HjRj |�2n&1 } '0 , where
Rj=P1 } } } Pj&1 } Pj+1 } } } Pl . Therefore, the relations between =0 , '0 , and M
imply that P, Pj , and Hj can be used as starting values in Algorithm 8.3.
Hence an APFD 1�PrH� 1�P� 1+ } } } +H� l �P� l err(2&(s0+n), 2&s1) can be
computed in time O(�(n } H(n) } (s0+s1))) (note that s0 , s1�n). Trans-
forming back with p~ j (z) :=2nj } P� j (z�2) and h� j (z) :=2nj&n } H� j (z�2) yields
the desired APFD 1�prh� 1 �p~ 1+ } } } +h� l �p~ l err(2&s0, 2&s1).

This transformation has been chosen because of its simplicity. Proceeding
this way has the disadvantage that the bounds M and '0 are increased by
a factor of 2n&1 with the forward transform. Therefore, the bounds for =0

and '0 required in Definition 3.16 are smaller than in the specification of
Algorithm 8.3. This means that using this reduction requires more accurate
starting values. Two ways to reduce this overhead are to be more careful
with the root estimates (due to the accuracy requirements in Algorithm 8.2,
the roots of p~ j will not be much larger than 1) or to use variants of
Lemmas 4.4 and 4.7 for polynomials p with *( p)>1. Such improvements will
not improve the asymptotic time bound by more than a constant factor. K

9. IMPROVEMENTS, GENERALIZATIONS, AND APPLICATIONS

9.1. Arbitrary Numerators

This section studies how to compute an APFD of q�p for p # 6 1
n and

arbitrary q # 6n&1 from an APFD of 1�p. Throughout Subsection 9.1, let
n, l # N+ and n |&l n. The idea has been sketched in Subsection 3.5.

9.1. Lemma. Let pj # 6 1
nj

, hj # 6nj&1 , and rj := p1 } } } pj&1 } pj+1 } } } pl .
Let M�1 and 0<'<min[2&n, 1�M ] be such that |h j |<M and
|1&� l

j=1 hjrj |<2&3n } '. Finally, let q # 6n&1 with |q|=1. Then poly-
nomials qj # 6nj&1 with |q&� l

j=1 qjr j |<' can be computed from h j and q
in time O(�(n } H(n) } log(1�'))).
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Proof. First, it is estimated how the error in the PFD of 1�p propagates
into the PFD of q�p: Let p= p1 } } } p l # 6 1

n , q̂j=(q } hj ) mod pj # 6nj&1 , and
q̂ :=� l

j=1 q̂jrj . Then � l
i=1 q̂iri#q̂j } rj#q } hj } rj#q } � l

i=1 hiri mod pj for
j # [l]. Lemma 4.8 shows that the pj are pairwise prime. With the Chinese
remainder theorem, it follows that q&q̂#q } (1&� l

j=1 hjrj ) mod p. Now
Corollary 4.5 implies

|q&q̂|�23n&3 } |q| } } 1& :
l

i=1

hi ri }<'�8. (9.1)

The second step is to compute approximations qj for q̂j . Let '1 , '2 , '3>0.

(1) Compute #j # 6nj&1 with |#j&q mod p j |<'1 for j # [l].

(2) Compute gj # 62nj&2 with | gj&#jhj |<'2 for j # [l].

(3) Compute qj # 6nj&1 with |q j& g j mod pj |<'3 for j # [l].

For the error estimate, the exact intermediate results are denoted by #̂j :=
q mod pj and ĝj :=#jhj . Then

| gj&ĝj |�'2+|#̂ jh j&#j hj |<'2+M } |#̂j&#j |<'2+M } '1

and, due to Corollary 4.5,

|qj&q̂j |<'3+|(g j& ĝ j ) mod pj |<'3+23nj&3 } | gj& ĝj |

<'3+23nj&3 } ('2+M'1).

Finally,

} q̂& :
l

j=1

qjrj }� :
l

j=1

|q̂j&qj | } |rj |

< :
l

j=1

('3+ } 23nj&3 } ('2+M'1)) } 2n&nj (9.2)

�l } 2n&1 } '3+l } 23n&5 } ('2+M'1). (9.3)

Estimates (9.1) and (9.3) show that choosing '1<2&3n } '�(lM ), '2<
2&3n } '�l, and '3<2&n } '�l is sufficient for |q&� l

j=1 qjrj |<'.
For the time estimate, bounds for the size of the polynomials involved

are needed. Due to Lemma 4.4, |#̂j |�
3
8 } 2n+nj } |q|<22n. (For technical

convenience, slightly cruder, but simpler estimates are sufficient and
preferred.) Moreover, | ĝj |�|hj | } |#̂j |<M } 22n and, due to Corollary 4.5,
|q̂j |�23nj&3 } |#̂j |<M } 25n. Now let s=Wlog(1�')X (>max[n, log(1�M )]).
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The above estimates show that O(s) bit accuracy is sufficient for all com-
putation steps. Thus Step (1) can be performed in time O(�(n } H(n) } s)
due to Theorem 3.9, and Steps (2) and (3) can be performed in time
�l

j=1 O(�(nj } s))=O(�(n } s)) due to Lemmas 3.2 and 3.4. K

Proof of Corollary 1.8. This proof suffers from the same technical com-
plication as the proof of Theorem 1.7 in Section 8.

For the sake of simplicity, it is required that *( p)�1�2 holds in addition
to the assumptions of Corollary 1.8. The case of general p # 6 1

n is reduced
to this case by scaling with a factor of 2. Details of this reduction can be
spelled out straightforwardly as in the proof of Theorem 1.7.

Now assume that *( p)�1�2. Compute an APFD 1�prh� 1 �p~ 1+ } } } +
h� l �p~ l err(2&s0, 2&s1&3n) within the asserted time bound according to
Theorem 1.7. Then *(p~ j )�1 and |h� j |<2M ; w.l.o.g. 2&s1<1�(2M ), and
suitable q~ j can be computed from q and h� j within the asserted time bound,
as has been shown in Lemma 9.1. K

9.2. Faster Computation of Radius � Decompositions

Here it is shown how to use the splitting circle method to compute an
initial decomposition:

Proof of Theorem 1.4. Let p # 6 1
n , ==2&s0, '=2&s1, and �=2&# be

such that *( p)�1&��(14n). Now let �$ :=�&2&20�4�n4,

=0 :=
1

n10 } \ �$
56n+

4n

, and '0 :=
1
n2 } \ �$

56n+
n

.

Compute a �$�(14n)-separated radius �$ decomposition

1�prh� 1 �p~ 1+ } } } +h� l �p~ l err(=0 , '0). (9.4)

According to Theorem 3.15, this can be done in time O(�(n3 log n+n3#)).
Lemma 4.12 yields the estimate

|h� j |�n2
j } (1+'0) } \28n

�$ +
n

} p j�n2 } \56n
�$ +

n

=: M,

where obviously M2�27n. Hence (9.4) is an initial decomposition, from
which an improved APFD

q�prq1 �p1+ } } } +ql�pl err(=, 2&3n') (9.5)
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can be computed in time O(�(n } H } (s0+s1+log M ))) because of
Corollary 1.8. With log M=O(n log n+n#), this is the time bound asserted
in Theorem 1.4.

It remains to show that (9.5) is a radius � decomposition. The zeros of
the pj can deviate a little from those of the p~ j . Therefore, � has been
replaced by the smaller value �$. This effect is extraordinarily small because
of the choice of =0 : Lemma 4.9 and the estimate | p1 } } } pl& p~ 1 } } } p~ l |�2=0

imply 2( p1 } } } pl , p~ 1 } } } p~ l )<3 n
- 2=0<2&21(�$)4�n4==: $0 . This estimate,

| p~ j& pj |�M } 23n } =0 , Lemmas 4.9 and 4.10 imply 2( p j , p~ j )<$0 for all
j # [l]. This implies that the PFD (9.5) is a radius �$+$0 decomposition,
and is (�$�(14n)&2$0)-separated. Finally, (9.5) is a ��(15n)-separated radius
� decomposition, because �$+$0�� and �$�(14n)&2$0>��(15n). K

9.3. Radius � Decompositions: The General Case

The specification of the general case is derived from the bounded case by
replacing the centered root radius *� ( p) with the radius of the set of roots
of p with respect to the chordal distance dS defined by (1.3),

*� S( p) := 1
2 } max[dS(u, v): p(u)= p(v)=0]. (9.6)

An APFD q�prq1 �p1+ } } } +ql �pl err(=, ') is a generalized radius �
decomposition if *� S( pj )<� for all j # [l], see Definition 1.5.

9.2. Definition. Let $>0. An APFD q�prq1 �p1+ } } } +ql �pl err(=, ')
is called stereographically $-separated or $-S-separated (S for ``stereographi-
cal'' or ``sphere'') if dS(u, v)�$ for all roots u of p i and all roots v of pj ,
where i, j # [l] with i{ j.

9.3. Definition. A (�, $)-E-decomposition (E for ``Euclidean'') is a
radius � decomposition which is $-separated. A (�, $)-S-decomposition is
a generalized radius � decomposition which is $-S-separated.

The lemma below follows directly from the definition of dS :

9.4. Lemma. For all r>0 and all z, w # C� ,

min[r, 1�r] } dS(z, w)�dS(rz, rw)�max[r, 1�r] } dS(z, w).

Proof of Theorem 1.6. Let p, q as above, and let ==2&s0, '=2&s1, and
�=2&#. Additional bounds =$=2&s$0, ="=2&s"0, '$=2&s$1, '"=2&s"1,
�$=2&#$, ... are chosen below as needed. Fixed precision approximations
for *( p) and **( p) are computed to distinguish three cases: ``Small roots
only'' (*( p)�2), ``large roots only'' (**( p)�1�2), and ``small and large
roots'' (*( p)�1.999 and **( p)�0.501).
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First Case (Small Roots Only). Assume that *( p)�2. Let P0(z) := p(2z),
Q0(z) :=q(2z), : :=lc(P0), and A :=|Q0|. Then P :=P0 �: # 6 1

n and Q :=
Q0 �A # 6n&1 with |Q|=1. The factors are bounded as follows: |:|�|P0|�
2n } | p|=2n and A=|Q0|�2n&1 } |q|=2n&1.

Now let �$=��4, =$�=�|:|, and '$�'�A. It is sufficient to choose
=$�2&n } = and '$�21&n } '. Compute a (�$, �$�(15n))-E-decomposition
Q�PrQ1 �P1+ } } } +Ql �Pl err(=$, '$) with |Qj |�2n#+n log n+O(n). This can
be done in time O(�(n3 } log n+n3 } #+n } H(n) } (s0+s1))) due to Theorem 1.4.

For the backward transform, let ; :=:1�n, pj (z) :=;nj } Pj (z�2), and
qj (z) :=A } ;nj&n } Qj (z�2) for j # [l]. Then p(z)& p1(z) } } } pl (z)=: }
(P(z�2)&P1(z�2) } } } Pl (z�2)) and q(z)&q1(z) r1(z)& } } } &ql (z) r l (z)=A }
(Q(z�2)&Q1(z�2) R1(z�2)& } } } &Ql (z�2) Rl (z�2), where, as usual, rj :=
p1 } } } pj&1 } p j+1 } } } pl and Rj :=P1 } } } Pj&1 } Pj+1 } } } Pl for j # [l]. Hence
q�prq1 �p1+ } } } +ql �pl err( |:| } =$, A } '$), and the choice of =$ and '$
guarantees the required error bounds (=, ').

Due to the scaling, this APFD of q�p is a (2�$, 2�$�(15n))-E-decomposi-
tion. Lemma 2.1 implies the estimates *� S( p j )�diam(V( pj ))�2*� ( pj )�4�$
and dS(z, w)� 2

5 |z&w|�4�$�(75n) for all roots z of Pi and w of Pj and all
i, j # [l] with i{ j. Hence the APFD is a (4�$, 4�$�(75n))-S-decomposition,
i.e., a (�, ��(75n))-S-decomposition. Finally, the estimates for |Qj | and
A�2O(n) yield |qj |�2n#+n log n+O(n).

Second case (Large Roots only). Assume that **( p)�1�2. Let P := p*
and Q :=q*. Then |P|=|Q|=1 and *(P)�2. Compute a (�, ��(75n))-S-
decomposition Q�PrQ1 �P1+ } } } +Ql �Pl err(=, ') where the numerators
are bounded by |Qj |�2n#+n log n+O(n). The first case shows that this can be
done in time O(�(n3 } log n+n3 } #+n } H(n) } (s0+s1))). Let pj :=P j* and
qj (z) :=Q j*. Then q�prq1 �p1+ } } } +ql �pl err(=, ') and |q j |=|Qj |. This
APFD of q�p is still a (�, ��(75n))-S-decomposition, because dS(z, w)=
dS(1�z, 1�w) for z, w # C� .

Third Case (Small and Large Roots). Now **( p)�0.501 and *( p)�1.999.
Then there are k�n�2 and a radius r # (0.501, 1.999) such that (w.l.o.g.)
P :=Sr p�|Sr p| is (k, $, +)-E-factorable with log(1�+)=O(n), 1�$�3n, and
1�$=O(k } log n). This follows from Lemma 6.6, applied with r$=0.501,
r"=1.999, 2=ln( 1999

501 ), and ; :=0.345<2�4. The lemma asserts that k and
r can be computed in time O(�(kn2 log n)).

Let z and w be roots of P with |z|<1 and |w|>1. Then |z|�e&$,
|w|�e$, and hence |z&w|�2$. This implies dS(z, w)>1�(2n) as follows:
If |w|�3�2, then dS(z, w)=2|z&w|�(- 1+|z|2 } - 1+|w|2)�4$�(- 2 }
- 13�4)>1�(2n). If |w|>3�2, then dS(z, w)>dS(1, 3�2)=2�- 26>1�3>
1�(2n).
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Let Q=Srq�|Srq| and r* :=max[r, 1�r]. Choose =$=2&n } = and
'$=21&n } '. Then =$<=�rn

*
and '$<'�r

*
n&1, because r

*
<2. For notational

convenience, let s :=max[s0 , s1].
Compute an (=$�3, '$�5)-E-splitting Q�PrU�F+V�G according to Theo-

rem 6.4. This is done in time O(�((kn2 log n)+n } s)). Now *(F )<1 and
**(G)>1, i.e., U�F and V*�G* fulfil the assumptions of the bounded case
(Theorem 1.4) up to trivial standardization. Before the computation of
APFDs of U�F and V*�G* is discussed, some bounds for the quantities
involved in the computations are derived.

Let k
*

:=n&k. Then the estimates |F |<2k, |G|� 9
8 } 2k

*, |U |� 9
7 } k }

2k�+, and |V |� 81
56 } k

*
} 2k

*�+ hold due to Lemma 6.3 and Theorem 6.4. In
particular, log( |K | )=O(n) for K # [F, G, U, V ]. Let : :=G(0). Then 0<
|:|�|G| and log(|:| )=O(n).

The two subproblems are now transformed to the standard form
required in Theorem 1.4: Define F� :=F, U� :=U�|U |, G� (z) :=G*�:, and
V� (z) :=V*�|V |. Then F� # 6 1

k , U� # 6k&1 with |U |=1, G� # 6 1
k

*
, and V� #

6k
*

&1 with |V |=1.
For computing decompositions of U� �F� and V� �G� , let �$ :=��(2r

*
) and

choose error bounds ="�min[=$�(3 } ( |G|+1)), '$�(5 |V | )], =$$$�min[=$�
(3 |:| |F | ), '$�(5 |U | )], '"�'$�(5 } |U | } ( |G|+1)), and '$$$�'$�(5 } |V | }
( |F |+1)). The above estimates show that log(1�/)�s+O(n) for / # [=",
=$$$, '", '$$$] is sufficient.

Hence (�$, �$�(15n))-E-decompositions

U� �F� rQ� 1 �P� 1+ } } } +Q� m �P� m err(=", '")

and

V� �G� rQ� m+1 �P� m+1+ } } } +Q� l �P� l err(=$$$, '$$$)

with |Qj |�2n#+n log n+O(n) for j # [l] can be computed in time

O(�(k3log k+k3#+kH(n1)(s+n)))

+O(�(k3

*
log k

*
+k3

*
#+k

*
H(n2)(s+n)))

=O(�(n3 log n+n3#+nH(n)s)),

where n1=(n1 , ..., nm), n2=(nm+1 , ..., n l ), and n=(n1 , ..., nl ) denote the
vectors of the degrees of the Pj .

Now let Pj :=P� j and Qj :=|U | } Qj for 1� j�m. For the other factors
(m+1� j�l ), let ; :=:1�k

*, P j :=;nj } P� j* and Qj :=|V | } ;nj&k* } Q� j*.
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Finally, let F� :=P1 } } } Pm , G� :=Pm+1 } } } Pl , Rj :=F� �Pj for 1� j�m, and
Rj :=G� �Pj for m+1� j�l. Then

|P&P1 } } } Pl |�|P&FG|+|F | } |G&G� |+|G� | } |F&F� |

�=$�3+|F | } |:| } =$$$+( |G|+|:| } =$$$) } ="�=$

and

}Q& :
m

j=1

Q jRj G� & :
l

j=m+1

QjRjF� }
�|Q&UG&VF |+|U | } |G&G� |+|V | } |F&F� |

+|G� | } }U& :
m

j=1

QjRj }+|F� | } }V& :
l

j=m+1

Qj Rj }
�'$�5+|U | } =$$$+|V | } ="+|G� | } |U | } '"+|F� | } |V | } '$$$�'$,

hence Q�PrQ1 �P1+ } } } +Ql �Pl err(=$, '$). Now let i, j # [l] with i{ j ;
let w0 , w$0 # V(Pi) and w1 # V(Pj ). Then dS(w0 , w$0)�2 } |w0&w$0 |�4 } �$
and dS(w0 , w1)�min[ |w0&w1 |, |1�w0&1�w1 |, 1�(2n)]��$�(15n) due to
Lemma 2.1. Hence the APFD of Q�P is a (2�$, �$�(15n))-S-decomposition.

To transform back to the original problem, let A=|Sr p| 1�n and
B=|Srq|, pj (z) :=Anj } Pj (z�r), and qj (z) :=B } Anj&n } Qj (z�r). Then

q�prq1�p1+ } } } +ql �pl err(;n(S1�r) } |Sr p| } =$, ;n-1(S1�r) } |Sr p| } '$).

The error bounds are at most

;n(S1�r) } |Sr p| } =$�;n(S1�r) } ;n(Sr) } | p| } =$�rn

*
} =$�=

and

;n&1(S1�r) } |Sr q| } '$�;n&1(S1�r) } ;n&1(Sr) } |q| } '$�rn

*
} '$�'.

Lemma 9.4 implies that the above APFD of q�p is a (2r
*

�$, �$�(15r
*

n))-
S-decomposition, which is a (�, ��(30r2

*
n))-S-decomposition because of

�$=��(4r
*

) and a (�, ��(120n))-S-decomposition because of 1�r
*

�2.
This completes the proof of Theorem 1.6. K

Comments. If *( p)�1 (first case), then it is not necessary to scale the
argument. P0 := p and Q0 :=q are used instead. In practice, scaling with an
approximation for *( p) may be better than scaling with a factor of 2. One

432 PETER KIRRINNIS



File: DISTL2 048156 . By:JB . Date:07:09:98 . Time:14:05 LOP8M. V8.B. Page 01:01
Codes: 3739 Signs: 2824 . Length: 45 pic 0 pts, 190 mm

may prefer other constant factors in the definition of pj , e.g., p1(z) :=
: } P1(z�2) and pj (z) :=Pj (z�2) for j>1, and corresponding qj .

For the sake of clarity, two technical details have been omitted. First,
multiplication with factors like A, :, ;nj, etc. cannot be performed exactly.
It is sufficient to compute the multiplications within error bounds 2&c } n } =
resp. 2&c } n } ' and to replace =$, '$ with =$�2, '$�2.

The second omission is that root perturbation has not been taken into
account in the estimates for *� ( pj ) and for the separation of the roots. This
problem can be analyzed like in the proof of Theorem 1.4 in Subsection 9.2.
For example, it turns out that in the first case it is sufficient to choose
�$=��4&$ with a small $ and =$�(��(const. } n)). This does not affect the
asymptotic time bound. The lower bound for the distance of the roots of
different factors of p can still be guaranteed, because the above lower
bound ��(15n) is a simplification which may as well be replaced by
��(14.01n). This can also be seen from the proof of Theorem 1.4.

Another reduction from the unbounded to the bounded case is described
in Appendix A.7. This reduction is more elegant than the one described
here, but it yields substantially worse separation bounds.

9.4. High Precision Root Calculation

Proof of Theorem 1.10. Let =�min[2&n(s+3), 2&n(#+5)] and �=
2&(#+3). Compute polynomials pj # 6 0

nj
( j # [l]) with | p& p1 } } } pl |<= and

*� ( pj )<�. Due to Theorem 1.4, this can be done within the asserted
time bound. It is assumed w.l.o.g. that *( p1 } } } pl )<1. Lemma 4.9 implies
2( p, p1 } } } pl )<min[2&(s+1), �]. Let v� j=z� ( pj ) for j # [l]. The estimate
2( p, p1 } } } pl )<� implies that each disk Dj=D2�(v� j ) contains at least one
zero of p. With sep( p)>8� it follows that each Dj contains exactly one
zero uj . This zero has multiplicity nj=deg( pj ) and fulfils |uj&v� j |<2&(s+1).
Let pj=znj+a j, 1znj&1+ } } } . Then v� j=aj, 1 �nj , and the required root
approximation vj is obtained by computing this value up to 2&(s+1). K

Proof of Theorem 1.11. Let =�min[2&s } ( 7
8 } �)n&1, 2&n(#+5)] and � :=

2&(#+3). Compute pj # 6 0
nj

( j # [l]) with | p& p1 } } } pl |<=, *� ( pj )<�, and
(w.l.o.g.) *( p1 } } } pl )<1. Let the zeros u1 , ..., un of p and v1 , ..., vn of p1 } } } pl

be numbered such that max j # [n] |uj&vj |=: $ is minimal and |u1&v1|=$.
Lemma 4.9 implies $<�. Like in the proof of Theorem 1.10, it follows
that each disk Dj contains a root of p. As p is squarefree and sep( p)�8�,
all pj are linear factors and l=n. Because of |v1|<1, the estimate
=> | p(v1)|�$ } (8�&$)n&1�$ } ( 7

8 } �)n&1 holds, hence $<2&s. The time
bound follows from Theorem 1.4 and the definition of =. K

Proof of Theorem 1.12. The first step is ``to make p squarefree'':
Compute f = p�gcd( p, p$), This can be done in time O(n } (log n)2 }
log log n } �(l )). Let p(z)=a0(z&v1)n1 } } } (z&vl )

nl with vi{vj for i{ j.
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Then f (z)=b0 } (z&v1) } } } (z&vl ) with some b0 # Z. Let | p|2 denote the
l2 -norm of p. Then the Landau�Mignotte-bound (Mignotte, 1992,
Theorem 4.4) asserts | f |�2l } | p|2�2l } - n } | p|<2l } (n+1)3�2 } 2L<2L+3n.

The root separation of p and f is bounded by sep( p)=sep( f )>
n&(n+2)�2 } | p| 1&n

2 >n&(n+2)�2 } | p|1&n>n&(n+2)�2 } 2&(L+3n) } (n&1)>2&nL&4n2

(Mignotte, 1992, Theorem 4.6). The root radius of p and f is at most r :=
*( p)=*( f )�| p|�n } 2L (Mignotte, 1992, Theorem 4.2(i)).

Now let F(z) := f (rz)�(b0rn). Then F # 6 1
n and sep(F )=sep( f )�r�

2&(n+1) } L&4n2&3n. Theorem 1.11 implies that the roots vj �r of F can be
computed up to 2&(s+L+3n) in time O(�(n3 } log n+n4 } L+n } log n } s)).
The roots vj of p are obtained from vj �r by rescaling. K

APPENDIX A: PROOF OF DETAILS

A.1. Remainder Computation

With the notation from Lemma 3.4, Scho� nhage's algorithm for polyno-
mial division (1982a, Sect. 4) works as follows: The Laurent coefficients of
F�P at zero are used to compute an approximation Q for the quotient Q�
with |Q&Q� |�2&s&3. An approximate remainder R is then computed from
the relation F&QP=H } zn+R. Let F=Q� P+R� . Then (Q� &Q) } P=
H } zn+(R&R� ). Hence |R� &R|�|H |+|R� &R|=|H } zn+(R� &R)|=
|(Q� &Q) } P|�|(Q� &Q)| } |P|�2&s&2, because |P|�2. The error bound
leaves a margin for rounding errors in the computation of R.

A.2. Root Radius Computation

Computation of Extremely Small or Large Root Radii (Lemma 3.10). The
root radius of a polynomial p is computed by an algorithm described in
Sect. 15 of [S]. The analysis results in the time bound stated in Lemma 3.10.
This lemma requires the additional restriction 2&Cn�*( p)�2Cn which is
not mentioned explicitly in [S]. However, such a condition is needed:
Initially, the polynomial p is transformed such that 1�*( p)�O(n). This is
achieved by replacing pm(z) with 2&k } p(2k } z) with suitable k # Z, i.e., k�
|log(*( p))|&O(log n). This transform can be computed in time O(n } |k| ).
This is within the time bound of Lemma 3.10, if |k|=O(n } (log log n+
log(1�_)) } log(1�_)). In particular, the above restriction is sufficient.

In the technical description of the root radius algorithm in [S], the
scaling is performed after the first root squaring step. The problem remains
the same. K

Computing the Centered Root Radius. The equation *� ( p)=*(Tz� ( p)( p))
suggests to compute *� ( p) with a Taylor shift and subsequent application of
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Lemma 3.10. This involves the following problem: The Taylor shift p [
p1rTz� ( p)( p) must be computed with a precision which guarantees that
*( p1) equals *� ( p) up to a small relative error. As *� ( p) is unknown, one
might have to compute the transform repeatedly with increasing accuracy.
For the applications in this paper, it is sufficient to compute an approxima-
tion for *� ( p) if this value exceeds a given bound �. This leads to the
concept of ``standard � approximation'' introduced in Definition 3.11. The
accuracy for the translation can be chosen according to �. Lemma 4.9
shows that O(n log(1��)) bits are sufficient for the Taylor shift.

Proof of Lemma 3.12. The example pn(z) :=(z&1)n } (z+1) with
*� ( pn)=1+(n&1)�(n+1) shows that *� ( p) can be almost twice as large as
*( p). Therefore, the polynomial p is rescaled such that the root perturba-
tion Lemma 4.9 can be applied directly: Let p1(z) :=4&n } p(4z). Then
p1 # 6 1

n , *( p1)�1�4 and hence *� ( p1)�2 } *( p)�1�2.
Let v :=z� ( p1) and p� :=Tv p1 . Then *(P)<1 for all P # 6n with

|P& p� |<2&n. This is seen as follows: Assume that P has a zero of modulus
at least 1. The roots of polynomials depend continuously on the coef-
ficients. Hence there is $ # (0, 1] such that P$ := p� +$ } (P& p� ) has a root
w with |w|=1. The error bound implies | p� (w)|=|P$(w)& p� (w)|<2&n. On
the other hand, all roots u& of p� have modulus �1�2, whence p� (w)�
>n

&=1 |w&u& |�2&n, a contradiction.
Now let �=2&#. A standard � approximation for *� ( p) is computed as

follows: First, the center of gravity of the roots of p is shifted into the
origin: Compute an approximation P # 6 0

n for p� such that |P& p� |<2&n

(then *(P)<1) and 2(P, p� )���800. Due to Lemma 4.9, |P& p� |<(��C )n

with some C>0 is sufficient. Hence the Taylor shift can be computed in
time O(�(n2 } #)).

The second step is to estimate the order of magnitude of *(P) from the
size of the coefficients of P. This is done by counting the number of zero bits
after the binary point of the coefficients. Let P(z)=zm+a1 zn&1+ } } } +an

and _ :=max1�m�n
m
- |am | Then _�n�*(P)<2_ (see Subsection 2.2).

A crude approximation for log(1�_) is obtained as follows: For m�1, let
cm :=max[ |Re(am)|, |Im(am)|] and :m=W&log cmX , the position of the
first nonzero bit after the binary point (:m=�, if cm=0). Then cm�
|am |�- 2 } cm and 2&:m�cm<2 } 2&:m, hence 2&:m�|am |<2 - 2 } 2&:m.
Moreover, *(P)<1 yields |am |<( n

m)�2n&1 and hence :m�1&n.
Let ; # Z be an approximation for min1�m�n :m �m in the sense that

:m �m�; for all m and :m �m�;+1 for at least one m. With the above
estimates, it is straightforward to show that 1

2 } 2&;�_<2&; and hence
2&;�(2n)�*(P)<2 } 2&;.

Computationally, proceed as follows: Determine whether ;�#+4 and if
not, compute ;. This simply means to find the position of the first 1 bit in
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the binary expansion of Re(am) and Im(am) and to divide this number by
m�n, This can be done in time O(�(n2 } #)).

If ;�#+4, then *(P)�2 } 2&;���8, hence *� ( p1)=*( p� )���8+
��800<��4 and *( p)<�. In this case, � is returned as a standard �
approximation for *( p).

If ;�#+3, then 2&;�(2n)�*(P)�2 } 2&;. To obtain more precise infor-
mation about *(P), rescale again: P1(z) :=2;n } P(2&; } z). Then P # 6 0

n and
1�(2n)�*(P1)�2. This scaling is done by shifting the coefficients in time
O(n2 } ;)=O(n2 } #).

Now choose {>1 with {2�199�197 and compute an approximation R1

for *(P1) with R1 �{�*(P1)�{ } R1 . Lemma 3.10 shows that R1 can be
computed in time O(�(n2 log log n)). Let R :=2&; } R1 , then R�{�*(P)�
{ } R and R�{&��800�*( p� )=*� ( p1)�{ } R+��800 because of 2(P, p� )�
��800. With *� ( p)=4*� ( p1), this means 4R�{&��200�*� ( p)�4{ } R+��200.

If 4{ } R� 199
200 } �, then *� ( p)��, and � is returned. Otherwise, ��200<

4{R�199 and hence *� ( p)< 200
199 } 4{R==: * and *� ( p)�4R�{&4{R�199=

( 199
200 } {&2& 1

200) } *�0.98 } * because of the choice of {, i.e., * is a standard
� approximation for *� ( p). K

A.3. Modular Arithmetic

Correctness Proof and Time Analysis for Algorithm 5.2. It is obvious
that |q1 p2+q2 p1|�n1, 2 } 2n1, 2 } M. Using the rough estimate | p~ j |<2 } | p j |,
it can be shown like in the correctness proof for Algorithm 5.1 that
| p1 p2& p~ 1, 2|<2&(s+(n&n1, 2)+3d1, 2(n)). With |q~ j |<2 } |qj |, one can estimate

|q1 p2+q2 p1&q~ 1, 2|

<'+| p1| } |q2&q~ 2|+| p2| } |q1&q~ 1|+|q~ 1| } | p2& p~ 2|+|q~ 2| } | p1& p~ 1|

<7 } 2&(s+(n&n1, 2)+3d1(n))

<2&(s+(n&n1, 2)+3d1, 2(n)).

Let c>0 be such that two polynomials of degree �& with norm �1 can
be added or multiplied up to an error of 2&N in time �c } �(&N ). (Clearly
addition is much cheaper than multiplication. The same time bound is used
to simplify the analysis. This increases the time bound only by a constant
factor.) Then the time for Algorithm 5.2 is bounded by 4c } �(H1(n) } (s+
n+log(nM )+3d1(n)+1)). The time bound follows by induction similar to
the proof of the time bound for Algorithm 5.1. This proves Theorem 3.8.

Correctness Proof and Time Analysis for Algorithm 5.3. The recur-
sive call of the algorithm in Step 3 is justified by | p1 p2& p~ 1, 2|< 4

9 }
2n1, 2&2n&2d1, 2(n) } 2&(_+m). This estimate is proved like in the correctness
proof for Algorithm 5.1.
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Now | fj& f� j | is estimated for j=1, 2. Lemma 4.4 implies that | f1, 2|�
3
4 } 2m+n1, 2 and thus (estimated roughly again) | f� 1, 2|<2m+n1, 2. Hence
because of Lemma 4.7,

| fj& f� j |� 3
4 } 2n1, 2+nj } | f1, 2& f� 1, 2|

+ 3
8 } 2n1, 2+2nj } | f1, 2| } | p j& p~ j |+

1
8 } 2&(_+m) } | f� 1, 2|

< 3
4 } 2n1, 2+nj } 22h1, 2(n)+n1, 2 } 2&_

+ 3
8 } 2n1, 2+2nj } 3

4 } 2m+n1, 2 } 4
9 } 2nj&2n&2dj (n) } 2&(_+m)

+ 1
8 } 2m+n1, 2 } 2&(_+m)

< 3
4 } 22hj (n)+nj } 2&_+ 1

8 } 22n1, 2+3nj&2n&2dj (n) } 2&_+ 1
8 } 2n1, 2 } 2&_

�22hj (n)+nj } 2&_.

Because of Theorems 3.2 and 3.4, the time for Steps 2 and 4 is bounded
by c } �(n1, 2 } _), if _�m�n, and the time for Step 1 is bounded by
c } �(m } _), where c is a suitable constant. Now it is easy to prove by induc-
tion that the overall running time of the algorithm is bounded by
c } (�(m } _)+�(H1(n) } _)).

Theorem 3.9 follows with _ :=max[s+n+2H�(n), m] and H�(n)=
O(n) (estimate (4.7)). K

A.4. Unit Circle Splitting

This section provides details about unit circle splitting and completes the
proof of Theorem 6.4.

In [S, Sect. 12], it is shown that an =0 -E-splitting (F0 , G0) of P with
=0 :=+4�(k4 } 23n+k+1) (see [S, (11.4)]) and an auxiliary polynomial
H0 # 6k&1 such that H0G0#D0 mod F0 with |D0|�'0 :=+2�(k2 } 22n) can
be computed in time O(�((k+(1�$)) } (n+log(1�+))2)).

Starting with F0 , G0 , and H0 , multidimensional Newton iteration is used
to compute sequences (Ft), (Gt), and (Ht) such that (Ft , Gt) is an =t -E-
splitting of P with some =t�=1.5 t

0 and HtGt#1&Dt mod Ft with |Dt |�
2n+k+1 } (k2�+2) } =t&1(�'0). The polynomials Ft , Gt , and Ht are computed
from Ft&1 , Gt&1 , and Ht&1 in time O(�(n } log(1�=t))). Now let T be the
smallest integer such that =T�=. Then the time for computing F :=FT ,
G :=GT , and HT from the initial values F0 , G0 , and H0 is bounded by
�T

t=1 O(�(n } log(1�=t)))=O(�(n } log(1�=))). Details of this algorithm and
its analysis are given in [S, Sect. 11].

The numerators U and V are computed from F, G, and HT as follows:
Let '1 , '2 , '3>0. (The choice of these error bounds is discussed below.)
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(1) Starting with HT , compute H # 6k&1 such that HG#
1&D mod F with |D|<'1 .

(2) Use polynomial multiplication and division to compute A # 6n&2

and U # 6k&1 such that the error E2 :=QH&AF&U has norm |E2|<'2 .

(3) Use polynomial multiplication and division to compute V # 6n&k&1

and B # 6k&1 such that the error E3 :=(Q&UG)&VF&B has norm
|E3|<'3 .

A and B need not be computed, but are only used to estimate the error.
Hence, ``reduced'' division algorithms may be used, which compute only
the remainder or quotient, respectively.

The error |Q&UF&VG|=|B+E3|�|B|+'3 is estimated as follows:
The congruence B#Q&UG&VF&E3#Q&QHG+E2G&E3#QD+
E2G&E3 mod F implies BG#QDG+E2G2&E3G mod F, i.e., there is
q # 6 with BG+qF=QDG+E2G2&E3G==: K.

Estimate (6.2) from Lemma 6.3 implies |B|� 8
7 } (k�+) } |F | } |K |. Now

|Q|=1, the definition of '1 , '2 , and '3 , and the estimates |F | } |G|�2n&1 }
|F } G|� 9

8 } 2n&1 and |G|� 9
8 } 2n&k (see Lemmas 4.2 and 6.3) yield

|F | } |K |�|Q| } |D| } |F | } |G|+|E2| } |G| } |F | } |G|&|E3| } |F | } |G|

< 9
8 } 2n&1 } ('1+'3)+ 81

64 } 22n&k&1 } '2 .

Altogether this yields

|Q&UG&VF |<
9
7

}
k
+

} 2n&1 } \'1+
9
8

} 2n&k } '2+
3
2

} '3+ .

The cruder, but simpler estimate |Q&UG&VF |<22n } k } ('1+'2+'3)�+
shows that choosing '1='2='3�+ } '�(3k } 22n) yields the desired estimate
|Q&VF&UG|<'.

The estimation of the time needed for the divisions requires bounds for
the size of the polynomials. HG#1&D mod F with |D|<'1 and (6.2) yield
|H |� 8

7 } (k�+) } |F | } (1+'1). |U | and |V | are estimated according to
Lemma 6.3, too, using |UG+VF |<|Q|+'=1+' and (w.l.o.g.) '� 1

8 :

|U |<
8
7

}
k
+

} |F | } (1+')�
9
7

}
k
+

} 2k,

|V |<
8
7

}
n&k

+
} |G| } (1+')�

9
7

}
9
8

}
n&k

+
} 2n&k.
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According to Lemmas 3.2 and 3.4 and the above norm bounds, the multi-
plications and divisions to compute QH, U, Q&UG, and V within the
prescribed error bounds can be performed in time O(�(n } log(2n�(+ } ')))),
which is bounded by the time bound asserted in Theorem 6.4.

A.5. Computation of Splitting Circles

Lemma 6.6 is proved in Sect. 16 of [S]. It is beyond the scope of this
paper to reproduce this proof completely. The algorithm is described
briefly. Details are provided when they cannot be seen immediately from
[S].

Variants of Graeffe's method are used to compute an approximation
for *k( p) for a given index k, or, to compute an index k such that *k( p)
is close to R for a given radius R (see [S, Theorems 14.1 and 14.2]). A suf-
ficiently large gap between the roots of p is computed with these algo-
rithms, using binary search. Technically, one proceeds as follows: Let K :=
wn�(2 wlog nx)x and : :=2�(8 wlog nx). With these parameters, a splitting
scale ($1 , ..., $n&1) is defined by $j :=$n& j :=:� j for 1� j� K and $j :=
;�(n&2K&1) for K< j<n&K. Now k and r are computed such that,
with q :=0.98, the estimates ln(r�*k( p))�q$k and ln(*k+1( p)�r)�q$k hold.
Details on how to compute k and r and how to prove +>2&Cn are given
in [S, Sect. 16]. It may be assumed w.l.o.g. that k�n�2 (otherwise replace
P with P*). If k�K, then 1�$�k�(q:)=8 } k } wlog nx�(q2)�4 } n�(q2).
Otherwise 1�$�(n&2K&1)�(q;)�n�(q;)<2 } (K+1) } wlog nx�(q;)�2 }
k } wlog nx�(q;).

A.6. Newton Iteration for Factorization

The analysis of the Newton algorithm for factorization uses the following
technical fact:

A.1. Lemma. (l&1) } (1+1�l 2) l�l for all l # N+ .

Proof. First observe that

(l&1) } (1+1�l 2) l=(l&1) } :
l

j=0
\ l

j+ } l &2j=l+D,

where D=� l
j=1 l 1&2j } ( l

j)&� l
j=0 l&2j } ( l

j). The proof is completed by the
estimate

D< :
l

j=1

l 1&2j } \ l
j+& :

l&1

j=0

l&2j } \ l
j+= :

l&1

j=0

l&2j } \\ l
j+1+<l&\ l

j++
= :

l&1

j=0

l&2j } \ l
j+ } \ l& j

j+1
}
1
l
&1+<0. K
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Correctness Proof and Time Analysis for Algorithm 8.2. For the sake of
clarity, the specification of the algorithm states a larger bound for |h� j | than
is achieved in Step 1. This proof uses the even cruder estimate |h� j |�2M.
Let E := p& p1 } } } pl and Ej :=E mod pj # 6nj&1 . Then Ej= p mod pj , i.e.,
the estimate in Step 2 reads |uj&Ej |�=1 . Now

|vj&h� j Ej |�|vj&h� ju j |+|h� j | } |u j&Ej |

�=2+2M=1=2=2 . (A.1)

Let .̂j :=(h� j } p) mod pj # 6nj&1 and # :=l } M2 } 24n&6 } =. Then

|.~ j&.̂j | � # } = } | pj |. (A.2)

This is proved as follows: If nj�2, then

|.~ j&.̂j | �
(a)

=3, j+|(vj&h� jEj ) mod pj |

�
(b)

=3, j+\1+\2nj&2
n j + } | pj |+ } 2 } =2 .

This follows from (a) the specification of Step 4 and the congruence .̂j#
h� j p#h� jEj mod pj and (b) Lemma 4.4 and (A.1). Now | p j |�1, which
implies 1+( 2nj&2

nj
) } | pj |�22nj&2 } | pj |�22n&4 } | pj |, and the definitions of =2

and =3, j yield (A.2). If nj=1, then |.~ j&.̂j |=|vj&h� j Ej |�2=2�# } = } | p j |.
The congruence .̂#h� jEj#h� j E mod pj and Lemma 4.4 imply |.̂|�

M } 22n&2 } = } | pj |, hence |.~ j |�:~ } | pj | } =, where :~ =M } 22n&2+#<M } 22n&1.
This yields the estimate of | pj& p~ j |. Moreover, :~ } =<1�l 2. Now let

p& p~ 1 } } } p~ l=\p& p1 } } } pl& :
l

j=1

.̂jrj+
=: ê1

&\ :
l

j=1

(.~ j&.̂j ) } rj+&\ p~ 1 } } } p~ l& p1 } } } pl& :
l

j=1

.~ jrj+ .

=: e~ 1 =: e~ 2

Then |e~ 1|�� l
j=1 |.~ j&.̂j | } |rj |�l } 2n } # } =. Estimates for ê1 and e~ 2 are

derived exactly like those for ê1 and ê2 in the proof of Lemma 8.1, simply
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replacing p̂j , .j , hj , ', and : with p~ j , .~ j , h� j , '$, and :~ . This yields |ê1|�
23n&3 } = } '$ and |e~ 2|�2n&1 } l 2 } (:~ =)2 (compare with (8.4) and (8.5)). These
estimates and the definitions of :~ , #, and '$ yield (8.6).

Inequality (8.7) is proved exactly like (8.2): The analog of (8.3) implies
|rj&r~ j |�l } 2n&1 } :~ } =, hence |1&� l

j=1 h� jr~ j |�'$+l 2 } M } 2n } :~ } =, which
yields (8.7) by inserting '$ and :~ .

The time estimate follows from Lemmas 3.2 and 3.4 and Theorems 3.9
and 7.4. K

Correctness Proof and Time Analysis for Algorithm 8.3. A first com-
plication is that all approximate factors pj , p~ j must have root radius less
than one. For arbitrary p # 6 1

n , this cannot be expected even for small =.
This is only a trivial technical restriction, but for a rigorous proof of
Theorem 1.7, and even more for a correct implementation, technical
accuracy requires a slightly sharper restriction for p than just *( p)�1.

The description of the algorithm is simplified by replacing (8.6) with the
more inaccurate estimate | p& p~ 1 } } } p~ l |<l 2 } M2 } 26n } =2.

The algorithm stops, because =̂�2=. Steps 1�3 need no further explana-
tion. To prove the legality of the call of Algorithm 8.2 in Step 4 one first
estimates M� : Because of =0�2&7n�(l 2M2), '0�2&3.5n, and n�2, the
estimate

M� <M$�M }
1+2&n�2

1&2&n�2�l
�2M

holds. Hence =̂�=0�2&(2n&1)�(l 2M� ). If =<C=2
0 , it is to show that '̂ is

sufficiently small: Indeed, '̂=lM 4
- =�C �lM - =0 , hence because of the

assumptions on =0 : '̂�min[2&3.5n, 1�M� ].
If =�C=2

0 , then the estimates

|h� j |�M } (1+23n'0)�M$ } (1&- C=0 )<M$ } (1&- C=),

C=2
0�=, and B=0�(B�- C ) } - = show that the returned data satisfy the

specification.
If =<C=2

0 , then this follows from the definitions of =̂, '̂, and M� . The
product p~ 1 } } } p~ l is in 6 1

n because of | p& p~ 1 } } } p~ l |�=0 , hence p~ j # 6 1
nj

for
j # [l]. For convenience, | pj& p~ j | is estimated ``outside the recursion'':
| pj & p~ j |<2M } 23n&2 } (=0 + C=2

0 + C3=4
0 + C7=8

0 + } } } )<2M } 23n&2 } =0 .
Altogether, the correctness of Algorithm 8.3 is established. The time bound
is derived like that for Algorithm 7.3. K
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A.7. Another Reduction to the Bounded Case

The following reduction of the general to the bounded case is more
elegant than the one described in Subsection 9.3, but the separation bound
for the roots is substantially smaller: Compute a point w # C which is suf-
ficiently far away from all roots of p and let p� (z)= p(z+w), q� (z)=q(z+w)
and f� = p� �q� . Due to Lemma 2.5 of Scho� nhage (1985), one can choose w
with |w|=1 such that the inner root radius **( p� ) is at least 1�(4n3�2).

Now let f� (z)= f� (1�z), p̂(z)= p� *(z)=(Rnp)(z)=znp(1�z), and q̂(z)=
(Rn&1q)(z)=zn&1q(1�z). Then p̂(z) # 6n , q̂(z) # 6n&1 , f� (z)=z } (q̂(z)� p̂(z)),
and R :=*( p̂)�4n3�2. Finally put P(z)= p̂(R } z) and Q(z)=q̂(R } z). Then
*(P)�1, i.e., P and Q fulfil the prerequisites of the bounded case (up to
trivial standardization).

Computing a radius �$ decomposition Q�PrQ1 �P1+ } } } Ql �Pl for
suitably chosen �$ within appropriate error bounds and transforming back
yields a generalized radius � decomposition of q�p which can only be
guaranteed to be ��O(n3)-S-separated because of the extra scaling with R.
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