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1. INTRODUCTION AND MAIN RESULTS

Let (M, |) be a symplectic manifold and G a compact Lie group which
acts symplectically on M, that is |( gu, gv)=|(u, v) for g # G, u, v # Tx M.
Let H: M_R � R be a time dependent Hamiltonian function of class C2

which is 2?-periodic in t # R and invariant under the action of G: H(gx, t)=
H(x, t) for g # G, x # M, t # R. The time dependent Hamiltonian vector field
Xt associated with H is defined by |( } , Xt)=dHt . We are interested in
periodic solutions of the Hamiltonian system

z* (t)=Xt (z(t)). (1.1)

This is an old problem and there has been a lot of work devoted to various
aspects of it. In this paper we consider the following situation. Suppose the
fixed point set MG=[x # M : gx=x for all g # G ] is discrete. Then the
invariance of H under the action of G implies that the constant functions
z0(t)#x0 # MG solve (1.1). These solutions are called trivial and we want
to find nontrivial 2?-periodic solutions. The basic idea is to combine local
information on H near a trivial periodic solution, given by its Conley�
Zehnder or Maslov index, with global information on the topology of M
and the behavior of H at infinity (if M is not compact).

In this generality the problem is complicated. We shall restrict our atten-
tion to the special case where M=T*TN is the cotangent space of the
N-torus, G=Z�2 and the action of G on M is induced by the antipodal
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map on R2N. Before stating our result we discuss the result of our first
paper [BaW] in this direction. There we considered the case where
M=T2N is the 2N-dimensional torus with its standard symplectic struc-
ture. The action of the group G=Z�2=[1, {] on T2N=R2N�Z2N is also
induced by the antipodal map x [ &x on R2N. This action has precisely
22N fixed points on M, namely all elements of the form x=(x1 , ..., x2N)
mod Z2N with xi # [0, 1�2], i=1, ..., 2N. Thus there are already as many
trivial stationary solutions of (1.1) forced by the symmetry as the Arnold
conjecture predicts; cf. [A], [CoZ1]. To a 2?-periodic solution z of (1.1)
on T 2N we may associate its Conley�Zehnder index i(z) # Z and its nullity
&(z) # N0 ; see [CZ] or [L1, 2] for definitions. The main result of [BaW]
is the following.

Theorem 1.1. Suppose all trivial solutions of (1.1) in (T 2N)G are non-
degenerate. Then (1.1) has at least max |i(z0)|&N pairs of nontrivial
2?-periodic solutions where the maxiumum is taken over all trivial stationary
solutions z0 of (1.1).

The nondegeneracy assumption in Theorem 1.1 can be weakened but this
is not essential. The proof in [BaW] is based on a variational principle.
For a 2?-periodic smooth map z=(p, q) : S1=R�2?Z � R2N we set

f (z) :=|
S1

q* } p dt&|
S1

H(p, q, t) dt. (1.2)

This induces a function on E=W1�2, 2(S1, R2N) and on (E0 �E=
0 )�Z2N$

T2N_E=
0 where E0$R2N is the space of constant maps. Critical points of

f correspond to 2?-periodic solutions of (1.1). The invariance of H with
respect to the reflection { on T 2N implies that f is even, more precisely
f ({x,&u)= f (x, u) for x # T 2N, u # E=

0 . The main new problem in finding
nontrivial critical points of f is the presence of the trivial critical points
which are also fixed under the action of {.

In this paper we consider the case where M=T*TN$RN_TN is the
cotangent space of the torus T N with the natural symplectic structure.
The action of the group G=Z�2=[1, {] on M is again induced by the
antipodal map on R2N. By abuse of notation we shall not distinguish
between elements of M and R2N. We also write x [ &x for the action on
M induced by the antipodal map on R2N. The fixed point set MG contains
precisely the 2N elements of the form x=(0, q) with q=(q1 , ..., qN) mod ZN

and qi # [0, 1�2] for i=1, ..., N. In addition to these fixed points the non-
compactness of M causes problems. Therefore we need assumptions on the
behavior of H(p, q, t) as |p| � �. We require the following hypotheses:

(H1) H: T*T N_R � R is of class C2 and 2?-periodic in t # R.
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(H2) H is even: H(&x, t)=H(x, t).

(H3) There are constants +>1 and R>0 such that

0<+H(p, q, t)�p } Hp (p, q, t) if | p|�R.

(H4) There are constants a>0, s�+ such that

|Hq (p, q, t)|�a(1+| p| s) for all t # R, (p, q) # M.

(H5) All trivial solutions are nondegenerate.

For a 2?-periodic solution z0 of (1.1) we let i(z0) # Z be its Conley�
Zehnder index and &(z0) # N0 its nullity.

Theorem 1.2. Suppose (H1)�(H5) are satisfied. Let z0 be a trivial solu-
tion of (1.1).

(a) If i(z0)>N then (1.1) has at least m=i(z0)&N pairs of nontrivial
2?-periodic solutions \z1 , ...,\zm . If they are nondegenerate then their
Conley�Zehnder indices are given by i(zj)=i(z0)&m&1+ j=N&1+ j for
j=1, ..., m.

(b) If i(z0)<0 then (1.1) has at least m=|i(z0)| pairs of nontrivial
2?-periodic solutions \z1 , ...,\zm . If they are nondegenerate then their
Conley�Zehnder indices are given by i(zj)=i(z0)+ j for j=1, ..., m.

The result on the Conley�Zehnder indices can be used to distinguish the
nontrivial solutions which we obtain. Suppose, for instance, w0 and z0

are trivial solutions with i(w0)<0 and i(z0)>N. We can apply (a) of
Theorem 1.2 to z0 and (b) to w0 . Then we obtain i(z0)&N pairs of non-
trivial solutions with Conley�Zehnder indices N, N+1, ..., i(z0)&1 and
|i(w0)| such pairs with indices i(w0)+1, i(w0)+2, ..., 0. Thus we have
i(z0)&N+|i(w0)| different pairs of nontrivial solutions. This argument
requires of course that the nontrivial solutions are nondegenerate.

The nondegeneracy assumptions in Theorem 1.2 can be weakened. We
expect the result to be true without assumption (H5). On the other hand,
(H5) is only an assumption on a finite number of known solutions which
can be checked for a given Hamiltonian system. The statements on the
Conley�Zehnder indices of the nontrivial periodic solutions can be
generalized to the degenerate case provided the nontrivial solutions are
isolated. Let zj be one of the nontrivial solutions with Conley�Zehnder
index i(zj) and nullity &(zj). In the case of 1.2(a) we have the inequalities

i(zj)�i(z0)&m&1+ j�i(zj)+&(zj) for j=1, ..., m.
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Similarly, in 1.2(b) we have the inequalities

i(zj)�i(z0)+ j�i(zj)+&(zj) for j=1, ..., m.

Theorems 1.1 and 1.2 are quite different in spirit from other papers on
Hamiltonian systems on T2N or T*TN, or equivalently on spatially peri-
odic Hamiltonian systems on R2N. In [CoZ1] Conley and Zehnder proved
the existence of 22N2?-periodic solutions if M=T 2N, provided all periodic
solutions are non-degenerate, and 2N+1 without this assumption.
Similarly, if M=T*T N and if H satisfies certain growth conditions then
one can prove the existence of 2N periodic solutions (respectively N+1, if
degenerate solutions are allowed); cf. [R3], [Fe], [FoM], for instance.
These results have been generalized to the case M=T 2N1_T*T N2_R2N3

by K. C. Chang in [Ch3], Theorem IV.2.5. If H is even as in Theorems 1.1
and 1.2 the papers quoted above do not yield any nontrivial solution. The
presence of the many trivial solutions makes it difficult to find nontrivial
solutions. Although we shall not treat the general case as in [Ch3] we
want to mention that Theorems 1.1 and 1.2 can be combined to a more
general result on even Hamiltonian systems on T2N1_T*TN2_R2N3. This
does not need any new ideas, it merely complicates the notation.

The proof of Theorem 1.2 is also based on a variational approach using
the functional f from (1.2). As in [BaW] we need some abstract critical
point theory for even functionals defined on the product of a torus and a
Hilbert space. Unfortunately, the technicalities are more complicated here.
First, we cannot make an Amann�Zehnder type reduction to a finite-
dimensional functional f� . Second, we have to modify the Hamiltonian H
for | p| large because otherwise f will not be defined on all of E and
will not satisfy the Palais�Smale condition even if restricted to
W1, 2(S1, R2N)/E. In section 2 we shall develop some abstract critical
point theory for f generalizing our earlier result in [BaW] for f. We
want to emphasize that due to the presence of the fixed points of the
action of Z�2 it does not seem possible to use standard tools like the genus
or the cohomological index (cf. [FaR]). The main result of section 2,
Theorem 2.2, will be proved in section 3 using Borel cohomology. Finally,
in section 4 we prove Theorem 1.2. Here we shall follow the technical set-
ting up of the problem as in Felmer's paper [Fe] although our final result
is quite different in nature from the one in [Fe].

As a consequence of the abstract results of section 2 we obtain another
existence theorem for periodic solutions of (1.1).

Theorem 1.3. Suppose (H1)�(H4) are satisfied with +>2 in (H3). Then
(1.1) has infinitely many pairs of nontrivial 2?-periodic solutions \z1 ,
\z2 , ... . If z0 is a trivial solution with Maslov index i(z0) and if all solutions
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are nondegenerate then the Maslov indices are given by i(zj)=i(z0)+ j for
j�1.

If one is just interested in the existence of the infinitely many nontrivial
periodic solutions then Theorem 1.3 follows from a special case of
Theorem 2.2 which can be proved with the help of the genus. We sketch
this in section 3.

2. SOME ABSTRACT CRITICAL POINT THEORY

Let E be a Hilbert space with scalar product ( } , } ) and B: E_E � R a
continuous symmetric bilinear form. This induces a quadratic form
Q: E � R, Q(z)= 1

2 B(z, z), and a bounded linear self adjoint map L: E � E
which satisfies B(z1 , z2)=(Lz1 , z2) . We assume that 0 is isolated in the
spectrum of L and M(0) :=ker L is finite dimensional. We call &(Q)=
&(L)=dim M(0) the nullity of Q and L. We decompose E=E& �
M(0)�E+ according to the spectrum of L. There exists :>0 such that
\Q(z)�: &z&2 for z # E\. We also assume that E+ and E& are
orthogonal sums of finite dimensional subspaces M(\l), l # N, which are
invariant under L, E+=� l�1 M(l) and E&=� l� &1 M(l). We set
Ek :=� |l| �k M(l) and E\

k & E\, k # N. These data are fixed throughout
this section.

Now we want to associate a relative Morse index to a nondegenerate
compact perturbation of the quadratic form Q. We write K(E) for the
space of self adjoint, compact linear maps E � E. For C # K(E) let
QC: E � R, QC (z) := 1

2(Cz, z) , be the associated quadratic form. Then it is
not difficult to see the following proposition.

Proposition 2.1. For C # K(E) with Q+QC nondegenerate there exists
kC # N such that for k�kC the difference of Morse indices

+((Q+QC) |Ek
)&+(Q |Ek

)=+((Q+QC) |Ek
)&dim E&

k

is independent of k.

For such C # K(E) we may therefore define the relative Morse index

+r(Q+QC) :=+((Q+QC) |Ek
)&+(Q |Ek

), k�kC .

Clearly we have &(Q)=dim M(0) and +r (Q)=0. It is very well possible
that the relative Morse index +r (Q+QC) is negative.

It is also possible to deal with degenerate critical points (and degenerate
periodic solutions of Hamiltonian systems).
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We are interested in critical points of functionals f # C2(E, R) of the
form f =Q+g where g # C2(E, R) is such that the gradient g$ : E � E is a
compact nonlinear operator. For a critical point z # E of f the Hessian
C=g"(z) # K(E), so the nullity and the relative Morse index of Q+QC

are defined. We set &( f, z) :=&(Q+QC) and +r ( f, z) :=+r (Q+QC). The
basic assumptions on f and g are as follows.

(A1) g # C 2(E, R) and the gradient g$ is compact.

(A2) g is even: g(&z)=g(z) for every z # E.

(A3) There are N linearly independent elements e1 , ..., eN # E0 such
that g(z+�N

i=1 li ei)=g(z) for all z # E, l1 , ..., lN # Z.

We set TN :=span[e1 , ..., eN]�ZN, Z :=(span[e1 , ..., eN])= and X :=
Z & (E& �E0). Assumption (A4) implies that f induces a C2-function
TN_Z � R which we continue to denote by f. For simplicity of notation
we write z both for elements of E and for elements of T N_Z=E�ZN.

(A4) f =Q+g satisfies the (PS)*-condition with respect to the
sequence (Ek). This means that any sequence (zki) i # N with ki � �, zki # Eki ,
f (zki) bounded and ( f |Eki

)$ (zki) � 0 has a subsequence which converges in
TN_Z to a critical point of f.

The antipodal map z [ &z on E induces an involution on TN_Z which
has precisely 2N fixed points, namely all elements of the form z=(x, 0) #
TN_Z with x=�N

i=1 xi ei mod ZN, xi # [0, 1�2] for i=1, ..., N. Since f is
invariant under this symmetry by (A3) these fixed points must be critical
points of f. They are called trivial critical points.

For the main result of this section we need one more assumption on f.

(A5) There exists a complement Y of X in Z and an integer n�&1
such that f is bounded below on T N_(Xn�Y)/T N_Z. Here Xn :=
X & En , X&1 :=[0].

Theorem 2.2. Suppose (A1)�(A5) hold. Let z0 be a nondegenerate trivial
critical point and assume that all other trivial critical points z with
f (z)< f (z0) are nondegenerate. Then f has at least m :=+r ( f, z0)+
dim Xn&dim E0 pairs of nontrivial critical points \z1 , ...,\zm with critical
values between inf f (TN_(Xn�Y)) and f (z0). If the nontrivial solutions are
nondegenerate then their relative Morse indices are given by +r ( f, zj )=
+r ( f, z0)&m&1+ j=dim E 0&dim Xn&1+ j for j=1, ..., m.

We postpone the proof of Theorem 2.2 to the next section. A few remarks
are in order. We believe that the result is also true without the nondegeneracy
assumption on the trivial critical points below the level f (z0). As with the
corresponding hypothesis (H5) in section 1 this nondegeneracy assumption
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is a generic assumption on f at a finite number of known points and can
be checked for a given f.

If the nontrivial critical points are possibly degenerate then we only
obtain two inequalities relating the relative Morse indices +r ( f, zj) and the
nullities &( f, zj), namely

+r ( f, zj)�+r ( f, z0)&m&1+ j�+r ( f, zj )+&( f, zj ) for j=1, ..., m.

This follows from a slight modification of the proof of Theorem 2.2 in
section 3 using critical groups; see section 3.

It is also possible to use a dimension argument as in the proof of
Proposition 1.2. In fact, the critical points zj are limits of almost critical
points zk, j # Ek as k � � and f "(zk, j) � f "(zj). Thus if f "(zj) is positive
(or negative) definite on a subspace of E, so is f "(zk, j) for k large.

Condition (A5) can be somewhat weakened. It is possible to replace the
subspace Xn�Y of Z by a more general subspace W of Z. Then the dimen-
sions and codimensions of the intersections of W with E+ and X come into
play which would only complicate the statement of the result.

The proof of Theorem 2.2 uses machinery from algebraic topology,
namely Borel cohomology for the group Z�2. This is due to the fact that
we have to find nontrivial critical points on level sets of f which may con-
tain some of the trivial critical points. Theorem 2.2 can be proved in a more
standard way using the genus of Krasnoselski and Yang if there are no
other trivial critical points on levels below f (z0). Moreover, in that case we
obtain a better bound for the number of nontrivial critical points.

Theorem 2.3. Suppose (A1)�(A5) hold. Let z0 be a trivial critical point
and assume that there are no other trivial critical points z with f(z)< f (z0).
Then f has at least m+N=+r ( f, z0)+dim Xn&dim E0+N pairs of non-
trivial critical points \z1 , ...,\zm+N with critical values between inf f (TN_
(Xn�Y )) and f (z0)). If the nontrivial solutions are nondegenerate then their
relative Morse indices are given by

+r ( f, zj)=+r ( f, z0)&m&1&N+ j for j=1, ..., m+N.

A sketch of the proof of Theorem 2.3 follows at the end of section 3. It
is possible to improve the lower bound for the number of nontrivial critical
points in Theorem 2.2 if one knows the number of trivial critical points z
with f (z)< f (z0). Theorem 2.3 is the simplest example in this direction. It
is also possible to replace the torus T N by other compact manifolds M with
an action of the group G=Z�2=[1, {] and to investigate the existence of
nontrivial critical points of even functionals f: M_Z � R. This can be
applied to investigate even Lagrangian or Hamiltonian systems on
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cotangent bundles T*M instead of T*TN. We plan to pursue this in a
sequel to this paper.

We conclude this section with two corollaries of Theorem 2.2 which are
adapted to our application to Hamiltonian systems. There we have
dim M(l)=2N for all l # Z which we assume from now on. Then the
relative Morse index of f and the Morse index of fk := f |Ek

at the trivial
critical point z0 are related by the equation

+( fk , z0)=+r ( f, z0)+2kN for k large. (2.1)

In our application z0 is a stationary, hence, 2?-periodic solution of a
Hamiltonian system and f is the associated action functional. To such a
periodic solution one can associate its Conley�Zehnder index i(z0) # Z and
its nullity &(z0)�0. It is easy to see that &(z0)=&( f, z0) is the same as the
nullity of z0 as a critical point of f. Moreover, Long [Lo1] proved that the
Conley�Zehnder index satisfies the equation (cf. Lemma 4.2)

+( fk , z0)=i(z0)+(2k+1)N for k large. (2.2)

From (2.1) and (2.2) we deduce

+r ( f, z0)=i(z0)+N. (2.3)

Corollary 2.4. Suppose the assumptions of Theorem 2.2 hold with
n=&1 in (A5), so f is bounded below on TN_Y/T N_Z. Then f has at
least +r ( f, z0)&2N=i(z0)&N pairs of nontrivial critical points \zj with
values between inf f (TN_Y) and f (z0). If they are nondegenerate then their
Conley�Zehnder indices are given by i(zj)=i(z0)&m&1+ j=N&1+ j for
j=1, ..., m :=i(z0)&N. K

The corollary is only useful if the Maslov index satisfies i(z0)>N, that
is, if the relative Morse index satisfies +r ( f, z0)>2N. We now state a result
which applies to the case where i(z0) is negative. For this we replace (A5)
by a dual assumption.

(A6) There exists an integer n�0 such that f is bounded above on
TN_(X�E+

n ). Here E+
0 =[0].

Corollary 2.5. Suppose (A1)�(A4) and (A6) hold. Let z0 be a non-
degenerate trivial critical point such that all other trivial critical points z with
f (z)> f (z0) are nondegenerate. Then f has at least

m := &+r ( f, z0)+(2n+1)N=&i(z0)+2nN
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pairs of nontrivial critical points \z1 , ...,\zm with critical values between
f (z0) and sup f (T N_(X�E+

n )). If they are nondegenerate then their
Conley�Zehnder indices are given by i(zj )=i(z0)+ j for j=1, ..., m.

In the special case when f is bounded above on TN_X, z0 is non-
degenerate and the Conley�Zehnder index i(z0) is negative Corollary 2.5
yields |i(z0)| pairs of nontrivial critical points.

Proof of Corollary 2.5. We apply Theorem 2.2 to f� :=&f. Only some
bookkeeping is needed for this. We set E� + :=E&, E� & :=E+, M� (l) :=M(&l)
etc. It follows that

+( f� k , z0)=dim Ek&+( fk , z0)

=(2k+1) 2N&+( fk , z0)

hence

+r ( f� , z0)=+( f� k , z0)&dim E� &
k

=2N&+r ( f, z0).

With Z� =Z, X� =Z & (E+ �E0) and Y� =E& assumption (A6) implies that
f� is bounded below on TN_(X� n �Y� ). Theorem 2.2 yields at least

+r ( f� , z0)+dim X� n&dim E� 0=&+r ( f, z0)+(2n+1)N

pairs of critical points of f� with critical values between inf f� (T N_(X� n �Y� ))
and f� (z0). The statement on the Conley�Zehnder indices follows from
the corresponding statement on the relative Morse indices in 2.2 and the
relation (2.3). K

3. PROOF OF THEOREM 2.2

In order to make this paper readable we first recall some notions from
topology. With H*(A, B; F2)=H*(A, B) we denote the Alexander�Spanier
cohomology of a pair (A, B) of topological spaces with coefficients in the
field F2 of two elements. Consequently H*(A, B) is a vector space over F2 .
Given a C2-function f : X � R on a manifold X and a critical point x # X
of f the critical groups (vector spaces) of f at x are defined by

C*( f, x) :=H*( f c, f c"[x]) where c= f (x).
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Another way to define C*( f, x) for an isolated critical point x of f is by
setting

C*( f, x)=H*( f c&= _ U, f c&=),

where U is a neighborhood of x which contains no other critical point and
such that the negative gradient flow .t associated to f satisfies
.t(U)/ f c&= _ U for all t�0. In other words, the pair ( f c&= _ U, f c&=) is
an index pair in the sense of Conley index theory. For an isolated critical
point it is always possible to find =>0 and U as above. In fact they may
be chosen arbitrarily small. If x is nondegenerate then dim Ck( f, x)=$k+

where +=+( f, x) is the Morse index of f at x. If x is an isolated but
possibly degenerate critical point then Ck( f, x)=0 for k � [+, ++&] where
& is the nullity of x. In the range k # [+, ++&] the critical vector space
Ck( f, x) can have arbitrary but finite dimension.

Now we consider spaces A with an action of the group G=Z�2=[1, {],
that is, with an involution { on A. We write AG=[x # A : {x=x] for the
fixed point set and A�G=A�(xt{x) for the orbit space. If the action is
free, that is, if {x{x for all x # A, then the projection A � A�G is a fibre
map. Moreover, A�G is a manifold if A is one. This is not the case in
general. The Borel construction helps in the non-free case. We fix a con-
tractible free G-space EG, for instance, the unit sphere in an infinite-dimen-
sional normed R-vector space where G acts via the antipodal map {. The
orbit space BG :=EG�G is then (homotopy equivalent to) the infinite pro-
jective space RP�. For a G-space A the product EG_A is a free G-space
even if AG{<. The orbit space EG_G A :=(EG_A)�G or the bundle
EG_G A � EG�G=BG is called the Borel construction for A. Given a pair
B/A of G-spaces the Borel cohomology of (A, B) is defined by

h*(A, B)=H*G (A, B) :=H*(EG_G A, EG_G B).

The cup product in cohomology induces a product

�: hk(A, B)�hl(A, C) � hk+l(A, B _ C)

which turns h*(A) into a ring with unit 1A # h0(A) and h*(A, B) into a
graded commutative module over h*(A). The constant map pA : A � pt
turns h*(A, B) into a module over R :=h*(pt) by setting :! :=p*A (:) � !
for : # R, ! # h*(A, B). The coefficient ring R is isomorphic to H*(RP�)$
F2[|] with | # h1(pt)=H 1(RP�)$F2 . If A is a free G-space then
EG_G A is homotopy equivalent to A�G, hence h*(A, B)$H*(A�G, B�G)
for free G-spaces B/A. In particular, if G acts on the sphere Sn&1 via the
antipodal map then h*(Sn&1)$H*(RPn&1)$F2[|]�|n and the homo-
morphism

F2[|]$R=h*(pt)$h*(Bn) � h*(Sn&1)$F2[|]�|n (3.1)
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which is induced by the inclusion Sn&1YBn or by the constant map
Sn&1 � pt is the canonical quotient map.

If G acts on a manifold X and f # C2(X, R) is invariant, that is
f ({x)= f (x) for x # X, then one can define the equivariant critical groups
of f at a critical orbit Gx=[x, {x] by setting

C*G ( f, Gx) :=h*( f c"Gx) where c= f (x).

If x{{x then using excision it follows that

C*G ( f, Gx)$h*( f c & U, f c & U"Gx)

$H*(( f c & U)�G, ( f c & U"Gx)�G)

$H*( f c�G, ( f c�G)"[Gx])

$C*( f, x),

where U is a neighborhood of Gx such that G acts freely on U. In other
words, the equivariant vector critical spaces of f at Gx are just the ordinary
critical vector spaces of f at x, provided x is not a fixed point of the action.

After these preliminaries we begin with the proof of Theorem 2.2. For
k # N we let fk : TN_Zk � R be the restriction of f to TN_Zk , where
Zk :=Ek & Z. For j=1, ..., m :=+r ( f, u0)+dim Xn&dim E0 we first define
a sequence of almost critical values ck, j , k>n. The definition of ck, j works
as in [BaW]. We may assume that z0=0 # T*TN and that f (z0)=0. We
remind the reader that we do not distinguish between elements of TN (or
T*TN) and those of RN (or RN_RN). Setting B :=[x # TN : &x&�1�4]
and S :=�B=[x # T N : &x&=1�4] we consider the following homomor-
phisms in Borel cohomology which are all induced by inclusions:

hN(B, B"[0]) w�
i*1 hN(B) w� hN(B"[0])$0

i*2

hN(TN, TN"[0])

i*3

hN(T N).

The map i2* is an excision isomorphism and i1* is onto by exactness of the
top row. Consequently there exists an element ! # hN(TN, TN"[0]) such
that i1* b i2*(!)=|N } 1B # hN(B). We set ' :=i3*(!) # hN(T N) and write
'=! |T N since we think of ' as the restriction of ! to T N. Similar notation
will be used below.
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For k>n we set

dk := :
k

l=n+1

dim M(&l)&1

and define our almost critical values by

ck, j :=inf[c # R : |dk+ j?*(') | f c
k
{0]

=sup[c # R : |dk+ j?*(') | f c
k
=0].

Here ?: TN_Z � TN is the projection, so ?*(') # hN(T N_Z),
?*(') | f c

k
# hN( f c

k) and |dk+ j?*(') | f c
k
# hdk+ j+N( f c

k). We need a uniform
bound for the ck, j .

Lemma 3.1. There exist b<0 such that for k>n large

a :=inf f | TN_(Xn�Y )�ck, 1� } } } �ck, m�b.

Proof. For any =>0 we have

f a&=
k /T N_(Zk"Xn�Yk)&TN_S dk&1 (3.2)

because dk=dim Zk&dim Xn�Yk . Since G acts freely on Zk"Xn�Yk &
Sdk&1 we have

hr(T N_(Zk"Xn�Yk))$hr(TN_S dk&1)

$H r((TN_S dk&1)�G)

$0

for r�N+dk . It follows that |dk+ j?*(') |T N_(Zk"Xn�Yk )=0, hence
|dk+ j?*(') | f k

a&==0 for every j�1. This implies ck, j�a&= for k>n, j�1,
any =>0.

In order to see that ck, 1 , ..., ck, m are bounded away from 0 let F& be the
negative eigenspace of f "(0)=L+g"(0). Then we have for =>0 small

b := 1
2 sup[ f (z) : z # F&, &z&==]<0.

We fix such an =>0. Let F&
k be the negative eigenspace of f k"(0)=

L |Ek
+(g | Ek)" (0). For k large we obtain

sup[ fk (z)= f (z) : z # F&
k , &z&==]�b. (3.3)
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Therefore f b
k contains the sphere Sk of radius = in F&

k . Now we look at the
commutative diagram

h+( fk , 0)&1(TN) www�
?* h+( fk , 0)&1(TN_Z)

h+( fk , 0)&1(B) www�
(? | Sk)* h+( fk , 0)&1(Sk).

Observe that the projection ?: TN_Z � TN maps Sk into B=
[x # TN : &x&�1�4], provided =�1�4. The vertical homomorphisms are
induced by inclusions. Since by construction ' |B=|N } 1B we obtain

|+( fk , 0)&N&1?*(') |Sk=(? |Sk)* (|+( fk , 0)&N&1' |B)

=|+( fk , 0)&11Sk

{0.

Here we used that dim Sk=+( fk , 0)&1, so h*(Sk)$F2[|]�|+( fk , 0).
Consequently |+( fk , 0)&N&1?*(') | f k

b{0 and therefore ck, j�b for j�m
because m=+( fk , 0)&N&1&dk , k large. K

The proof of Theorem 2.2 can now be concluded as follows. For k fixed
the sublevel sets f c

k change topology as c passes ck, j . Therefore there exist
points zk, j # Ek with

& f $k (zk, j)&+| fk (zk, j)&ck, j |<
1
k

.

Since f satisfies the (PS)*-condition (A4) the almost critical points zk, j

converge along a subsequence towards a critical point of f. However, it
remains to prove that we obtain m nontrivial pairs of critical points of f.
After passing to subsequences we may assume that ck, j � cj as k � � and
a�c1� } } } �cm�b.

Lemma 3.2. (a) Suppose c=cj= } } } =cj+l for some j # [1, ..., m],
0�l�m& j. Let

Ac :=Kc&K G
c =[z # TN_Z : f (z)=c, f $(z)=0, z{ &z mod ZN]

be the set of nontrivial critical points of f at the level c. Then
|l } 1Ac{0 # hl(Ac).
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(b) Suppose all critical points at the level cj are nondegenerate. Then
there exists a critical point z # Acj with relative Morse index +r ( f, z)=
+r ( f, z0)&m&1+ j.

As a consequence of Lemma 3.2(a) we have Acj{< for every j=1, ..., m.
Moreover, if c=cj= } } } =cj+l for some l�1 then dim Ac�l�1, hence Ac

contains infinitely many elements. This proves the first statement in
Theorem 2.2. The second statement on the relative Morse indices follows
from 3.2(b). It remains to prove Lemma 3.2.

Proof of Lemma 3.2(a). Arguing indirectly we assume that |l } 1Ac=0.
The continuity of Alexander�Spanier cohomology implies that |l } 1V=
0 # hl(V) for some invariant neighborhood V of Ac . Since the trivial critical
points at the level c are nondegenerate by assumption the set Kc is the
topological sum Kc=Ac+K G

c . In addition, for x # K G
c there exist =x>0,

kx # N and an invariant neighborhood Wx of x in TN_Z with the following
property. For =<=x and k�kx the pair Wx & f c+=

k , �Wx & f c+=
k is

homotopy equivalent (via odd maps) to the pair (B+( fk , x), S +( fk , x)&1). This
can be achieved as follows. Let F+

x respectively F&
x be the positive

respectively negative eigenspace of f "(x)=L+g"(x). Then we set Wx :=
x+B$1

(F+)_B$2
(F&) where $1 , $2>0 are chosen such that

f (x+B$1
(F+)_�B$2

(F&))< f (x)&2=x for some =x>0.

We may also assume that ({f (x+z), P+
x v) >0 is bounded away from 0

uniformly for z # �B$1
(F+)_B$2

(F&) with x+z � f c&=x. Here P+
x : E � F+

x

is the orthogonal projection. Then one may use the negative gradient flow
of fk to produce a homotopy equivalence

(Wx & f c+=x
k , �Wx & f c+=x

k )& (B+( fk , x), S+( fk , x)&1)

provided k is large.
As a consequence of the construction of Wx we obtain from (3.1) that the

homomorphism h*(Wx & f c+=x
k ) � h*(�Wx & f c+=x

k ) which is induced by the
inclusion, is onto. Setting W :=�x # K c

G Wx we may assume that V & W=<.
Now U :=V _ W is an invariant neighborhood of Kc=Ac _ K G

c .
Let .k be the negative gradient flow associated to fk on TN_Zk . By

standard arguments it follows from the Palais�Smale condition (A4)
that there exist =>0 and k0 # N with the following property. For any
k�k0 , any z # f ck, j+l+=

k there exists Tk (z)�0 such that .t
k (z) # f ck, j&=

k _ U
if t�Tk (z). Thus the flow .k yields a deformation hk : f ck, j+l+=

k _
[0, 1] � f ck, j+l+=

k satisfying hk (z, 0)=z and hk (z, 1) # f ck, j&=
k _ U. Setting

Mk := f ck, j&=
k _ U this implies that

|dk+ j+l } ?*(') | Mk
{0 for k large. (3.4)
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Next we look at the Mayer�Vietoris sequence of the triad (Mk"V;
Mk"U, W):

hdk+ j+N&1(Mk"U)�hdk+ j+N&1(W) w� hdk+ j+N&1(W & Mk"U)

w�
$ hdk+ j+N(Mk"V)

w� hdk+ j+N(Mk"U)�hdk+ j+N(W).

We claim that ` :=|dk+ j?*(') | Mk"V=0 # hdk+ j+N(Mk"V). First we
observe that W & Mk"U=W & f ck, j&=

k . By construction of W it follows that
h*(W) � h*(W & Mk"U) is onto, hence, $=0. Next we see that
` | Mk"U # h*(Mk"U) is zero by definition of ck, j because Mk"U/ f ck, j&=

k .
Moreover, ` |W # h*(W) is also zero because ' # h*(TN) is the restriction
of ! # h*(TN, T N"[0]), hence |dk+ j?*(') # h*(TN_Z) comes from
h*(T N_Z, (T N"[0])_Z). Thus ` |W=|dk+ j?*(') |W=0 because W/
(T N"[0])_Z. Now `=0 follows from the exactness of the Mayer�Vietoris
sequence.

Since `=0 there exists : # hdk+ j+N(Mk , Mk"V) such that : |Mk=
|dk+ j?*(') |Mk # hdk+ j+N(Mk). Moreover, there exists ; # hl(Mk , V) such
that ; |Mk=|l } 1Mk because |l } 1V=0 # hl(V). Here we used the exactness
of the appropriate long exact sequences. The naturality of the cup product
implies that :; |Mk=|dk+ j+l?*(') |Mk which is not zero by (3.4). This con-
tradicts the fact that :; lies in hdk+ j+l+N(Mk , (Mk"V) _ V)=0.

Proof of Lemma 3.2(b). For z # Acj let F+
z and F&

z be the positive
respectively negative eigenspace of f "(z). We have E=F+

z �F&
z because z

is nondegenerate by assumption. Now we define Vz :=z+(B$1
(F+

z )_
B$2

(F&
z )) where $1 , $2>0 are chosen analogous to the choice in the proof

of 3.2(a). Thus

f (z+(B$1
(F+

z )_�B$2
(F&

z )))< f (z)&2=0=cj&2=0

for some =0>0, and ({f (z+y), P+
z y) >0 is bounded away from 0

uniformly for y # �B$1
(F+

z )_B$2
(F&

z ) with z+y � f cj&=0. Since Ac is finite
the constants $1 , $2 , =0 may be chosen independently of z # Ac . Now we set
V :=�z # Ac Vz . In the proof of 3.2(a) we showed that for k large there exists
: # hdk+ j+N(Mk , Mk"V) such that : |Mk=|dk+ j?*(') |Mk{0 # h*(Mk);
here Mk= f ck, j&=

k _ U and U=V _ W with W a neighborhood of K G
cj

. Since
all trivial points z # Acj are nondegenerate the critical points of fk at the
level ck, j are also nondegenerate and contained in U for k large. Moreover,
we have for k large that

h*(Mk , Mk"V)$�
Gz

C*G ( fk , Gz)
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where Gz runs through all nontrivial critical orbits of fk at the level ck, j .
Hence there exists zk, j # TN_Zk with f $k (zk, j)=0, fk (zk, j)=ck, j and

Cdk+ j+N( fk , zk, j )=C dk+ j+N
G ( fk , Gzk, j ){0.

This implies that the Morse index of fk at zk, j is dk+ j+N. Now (A4)
implies zk, j � zj along a subsequence k � �. Since f is of class C2 we
finally obtain (for k large)

+r ( f, zj)=+((Q+Qg"(zj)) |Ek)&dim E&
k

=+((Q+Qg"(zk, j )) |Ek)&dim E&
k

=dk+ j+N&dim E&
k

=+r ( f, z0)&m&1+ j.

This concludes the proof of Lemma 3.2 and of Theorem 2.2. K

We conclude this section with a sketch of an elementary proof of
Theorem 2.3. For a space A with an action of the group G=Z�2=[1, {]
we let

#(A) :=min[k # N: there exists .: A � Sk&1

continuous with .({x)=&.(x)]

denote the genus of A. By Borsuk's theorem #(Sn&1)=n if G acts via the
antipodal map on Sn&1. Moreover #(A)=� if AG{<.

As in the proof of Theorem 2.2 we first define almost critical values ck, j

of fk= f | TN_Zk . For k>n we set

ck, j :=inf[c # R : #( f c
k)�dk+ j]

=sup[c # R : #( f c
k)<dk+ j]

where dk=�k
l=n+1 dim M(&l)&1 is as before.

Using the monotonicity of the genus it follows from (3.2) that

#( f a&=
k )�#(TN_S dk&1)=dk

and from (3.3) that

#( f b
k)�#([z # F&

k : &z&==])=dim F&
k =+( fk , z0).
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Here a=inf f (T N_(Xk�Y))�b< f (z0) are as in Lemma 3.1. It follows
that

a�ck, j�b for j=1, ..., +( fk , z0)&dk=m+N.

After passing to subsequences we may assume that ck, j � cj as k � � and
a�c1� } } } �cm+N�b. If c=cj= } } } =cj+l for some j # [1, ..., m+N],
0�l�m+N& j, then #(Kc)�l follows by standard arguments. Since there
are no trivial critical points below the level f (z0) we have K G

c =<. Thus
Kc"K G

c {< for any c=cj and Kc"K G
c has infinitely many elements if

c=cj= } } } =cj+l for some l�1.
For the statement on the relative Morse indices one repeats the above

argument replacing the genus by the cohomological index for G=Z�2
due to Yang [Y] and Fadell and Rabinowitz [FaR]. As in the proof
of Lemma 3.2 one obtains nontrivial critical points zk, j of fk at the level
ck, j with Morse index dk+ j. We leave the details to the interested
reader.

4. PROOF OF THE MAIN RESULTS

4.1. First, we have some preliminaries on the variational set up of the
problem. Consider the Hilbert space E :=W (1�2), 2(S1, R2N). Using Fourier
series, z(t)=�k # Z ak eikt, ak=a� k # CN, belongs to E if and only if

&z&2
E := :

k # Z

(1+|k| ) |ak | 2<�.

Then for z1=(p1 , q1) and z2=(p2 , q2) in W1, 2(S 1, R2N)

B(z1 , z2)=|
S1

(p1 } q* 2+p2 } q* 1) dt

extends to a continuous bilinear form on E, and there exists a linear
bounded selfadjoint operator L: E � E defined by

B(z1 , z2)=(Lz1 , z2) for all z1 , z2 # E,

where ( , ) denotes the inner product in E. Define

f (z)= 1
2(Lz, z) +g(z)= 1

2(Lz, z) &|
S1

H(z(t), t)) dt.
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If H # C1 and in addition H satisfies the following growth condition for
some constants a, b>0 and s>1,

H(z, t)�a |z| s+b for all z # R2N, t # R, (4.1)

then it is known (see e.g. [R3]) that f (z) is of class C1 on E and that z # E
is a critical point of f if and only if z is a 2?-periodic continuously differen-
tiable solution of (1.1).

We shall need some decompositions of E. First, let [e1 , ..., e2N] be the
canonical basis in R2N. Define for l # Z

M(l)=span[sin(lt)ek&cos(lt)ek+N , cos(lt)ek+sin(lt)ek+N | 1�k�N]

so that as in section 2

E=�
l # Z

M(l)=E&�M(0)�E+ (4.2)

with

E&=�
l<0

M(l), E+=�
l>0

M(l)

An equivalent norm on E is defined by

&z&2= 1
2(Lz+, z+)& 1

2(Lz&, z&) +|z0| 2,

where z=z&+z0+z+ with z\ # E\, z0 # M(0), and | } | denotes the usual
norm in R2N.

We shall also need another decomposition of E. Define for l # N

Ep(l)=span[sin(lt)ek , cos(lt)ek | 1�k�N]

and

Eq (l)=span[sin(lt)ek+N , cos(lt)ek+N | 1�k�N].

Note that

M(0)=Ep(0)�Eq(0)=span[e1 , ..., eN , eN+1 , ..., e2N].

Now we set

Ep :=�
�

l=0

Ep (l), Eq :=�
�

l=1

Eq (l),
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so that

E=Ep�Eq�Eq (0). (4.3)

Using Fourier series and (4.2), (4.3), we see the following decomposition of
E also holds:

E=(E&�Ep (0))�Eq �Eq (0).

For _>1, we shall also consider L_#L_(S1, R2N). Then the following
inequality holds (e.g. [Fr]).

&z&_�C_ &z& for all z # E (4.4)

for some constant C_>0 where & } &_ is the norm in L_.
For z=z&+z0

p with z& # E& and z0
p # Ep (0) there exist ;0>0, ;&>0

such that

&z0
p&_�;0 &z&_ (4.5)

&z&&_�;& &z&_ . (4.6)

We refer to [Fe] for these inequalities.

4.2. In this section, we shall prove a few lemmas which will be used
to prove our main results later. Setting

X=E& �Ep (0), Y=Eq , Z=X�Y,

we have E=Eq (0)�Z. Because of (H1), f : E � R can be reduced to a
functional defined on TN_Z which we still denote by f as in Section 2.
Thus we write

f (x, u)= 1
2(Lu, u)+g(x, u) for (x, u) # TN_Z.

As in section 2 we set

Xk=�
k

l=1

M(&l)�Ep (0), Yk=�
k

l=1

Eq (l) and Zk=Xk �Yk .

Finally we set as before

fk := f |T N_Zk
.
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Our first lemma is concerned with the (PS)* condition for f with respect
to TN_Zk as formulated in (A4). For this purpose we also assume the
following:

(H$4) There exist constants a>0 and s<+ such that

|Hz (p, q, t)|�a(1+|p| s) for all z=(p, q) # R2N, t # R.

Note that (H$4) is stronger than (H4). But we shall show later that we can
modify the problem to satisfy (H$4).

Lemma 4.1. With Zk and fk being given above, f satisfies the (PS)* con-
dition on TN_Z.

Proof. The proof is analogous to the one of Lemma 3.2 in [Fe].
Consider a sequence (xki , uki) # T N_Zki such that ki � � and

fki (xki , uki)�C, f $ki (xki , uki) � 0 as i � �.

Then (xki)/T N has a convergent subsequence. To show that (uki) has a
convergent subsequence, we first show that (uki) is bounded in Z=X�Y.
Writing uki=pki+qki with pki # Ep and qki # Eq , we have for i large

c+&pki&� fki (xki , uki)& f $ki (xki , uki) pki

= 1
2(Luki , uki)&(Luki , pki)

&|
2?

0
H(xki+uki , t) dt+|

2?

0
Hp (xki+uki , t) pki dt.

Note that (Luki , pki) =�2?
0 pki } q* ki=

1
2(Luki , uki). Using (H3) we get

c+&pki&�\1&
1
++ + |

2?

0
H(xki+uki , t) dt.

By (H3) again we obtain

&pki&
+
L+�C(&uki&+1), (4.7)

where C is independent of i. Next, for i large we clearly have

| f $ki (xki , uki)u+
ki

|�&u+
ki

& .

This means that

}(Luki , u+
ki

) &|
2?

0
Hz (xki+uki , t)u+

ki
dt }�&u+

ki
&
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and therefore

&u+
ki

&2�(Luki , u+
ki

)�&u+
ki

&+ } |
2?

0
Hz(xki+uki , t)u+

ki
dt } . (4.8)

From (H4) and (4.4) it follows that

} |
2?

0
Hz (xki+uki , t)u+

ki
dt }�C(1+&pki&

s
+) &u+

ki
& .

Using this together with (4.7) and (4.8) we now have

&u+
ki

&�C(1+&pki&
s
+).

Similarly, we can prove

&u&
ki

&�C(1+&pki&
s
+)

and obtain with (4.4)

&u+
ki

&+&u&
ki

&�C(1+&uki&
s�+).

Writing p0
ki

for the projection of pki in Ep (0) we get from (4.5) and (4.7)
that

|p0
ki

|�C &pki&+�C(1+&uki&
1�+).

This yields

&uki&�C(1+&uki&
s�++&uki&

1�+)

so that (uki) is bounded in X_Y.
Since (p0

ki
) has a convergent subsequence, it remains to prove that

(u+
ki

+u&
ki

) has a convergent subsequence. Let u+
ki

+u&
ki

( u0 in E. For any
fixed k�1, we consider v # M(0)�Xk�Yk . Then f $(xki , uki)v � 0 and
therefore

0= lim
i � � _(Luki , v) &|

2?

0
Hz (xki+uki , t)v dt&

=(Lu0 , v)&|
2?

0
Hz (y0+u0 , t)v dt,
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where y0=limi � � (p0
ki

+q0
ki

). Here we also used the hypothesis (H$4). This
shows that (y0 , u0) is a critical point of f. Using the fact that L&1: E&�
E+ � E& �E+ is a compact bounded linear operator, we finally get
u+

ki
+u&

ki
� u0 in E. K

Lemma 4.2. Let z0 # TN_Z be a trivial critical point of f. Then for k
large, the Morse index of z0 with respect to fk in T N_Zk is equal to
(2k+1)N+i(z0), where i(z0) is the Maslov index of z0 considered as a
2?-periodic solution of (1.1).

Proof. See [Lo1] or [Ch3]. K

Next, since we only assume (H4) instead a (H$4), our functional f may
not be defined on all of E. However, we can follow a procedure used in
[Fe] (which was in fact first employed by Rabinowitz) to define a modified
Hamiltonian that satisfies (H$4); note that (H$4) implies (4.1). Then we show
that the solutions obtained for this modified problem are indeed solutions
of the original problem.

Let K>0 and ' # C�(R+, R+) such that '(y)=1 if 0�y�K, '(y)=0
if y�K+1 and '$(y)�0 for K�y�K+1. Define

HK (p, q, t)='( |p| ) H(p, q, t)+(1&'( |p| ))M |p|+,

where M=M(K) is a number satisfying

M� max
K�|p|�K+1

H(p, q, t)
|p|+ .

Then HK satisfies (H1)�(H3) and (H$4). Note that (H3) is satisfied
uniformly in K so that there exists a constant C0>0 such that

HK (p, q, t)�C0( |p|+&1), (4.9)

where C0 is independent of K. This implies that

fK (x, u)= 1
2(Lu, u)&|

S1
HK (x+u, t) dt

is well defined on TN_Z and of class C 2. The following estimate was basi-
cally proved by Felmer in [Fe] though it was not clearly stated in this
form. For its proof we refer to [Fe].
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Lemma 4.3. For any c>0 there exists A=A(c)>0 with the following
property. Whenever (x, u) # TN_Z is a critical point of fK for some K>0
and such that fK (x, u)�c then

|u(t)|�A for all t # [0, 2?].

We shall apply Corollaries 2.4 and 2.5 to our problem. In order to do so
we need some estimates for the functionals f and fK on certain subspaces.

Lemma 4.4. Assume (H1)�(H4). Then there exists C>0 such that for all
K>0, fK is bounded from below by &C on T N_([0]_Y )/T N_Z.

Proof. When we decompose u=up+uq with up # Ep and uq # Eq then
we have for u # [0]_Y that uq=u and up=0. Consequently we obtain for
(x, u) # TN_([0]_Y )

fK (x, u)= 1
2(Lu, u) &|

S 1
HK (x+u, t) dt

= &|
S 1

H(x+uq , t) dt

� &C> &�

for some C>0. Here we have used the fact that H is periodic in q. K

Lemma 4.5 Assume (H1)�(H4). Then there exists C>0 (independent of
K>0) such that fK is bounded above by C on T N_(X_[0])/TN_Z.

Proof. First we observe that (Lu, u)�0 for (x, u) # TN_X. From (H3)
and (4.9) we thus obtain

fK (x, u)= 1
2(Lu, u) &|

S 1
HK (x+u, t) dt

=&C0 |
S1

|up |+ dt+C0 2?

�2?C0<�. K

Lemma 4.6. Assume (H1)�(H4) and in addition +>2 in (H3). Then for
each n�1 there exists Cn>0 such that for all K>0

fK |TN_(X��n
l=1 M(l))�Cn .
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Proof. First note that by Fourier expansion &up&=&uq& for u # E+,
where u=up+uq with up # Ep and uq # Eq . Let us fix n�1. For (x, u) #
TN_(X��n

l=1 M(l)) we write u=u&+u0+u+ # E&�Ep (0)�E+. By
(4.9) we have

fK (x, u)= 1
2(Lu, u) &|

S1
HK (x+u, t) dt

� 1
2(Lu+, u+) &C0 |

S 1
|up|+ dt+2?C0

=n &u+&2
2&C0 |

S 1
|up|+ dt+2?C0

=2n &up&2
2&C0 &up&+

++2?C0

�2n(2?)(+&2)�+ &up&2
+&C0 &up&+

++2?C0

�Cn

for some Cn depending only on n (independent of K). K

4.3. Finally we can prove our main results in this last section.

Proof of Theorem 1.2. First we observe that under (H1)�(H4) fK

satisfies (A1)�(A4) from section 2 for any K>0. Now we distinguish two
cases.

Case 1. i(z0)>N.

By Lemma 4.3, we may consider fK for large K instead of f provided we
can get K-independent upper bounds for the critical values of fK . By
Lemma 4.4 and Corollary 2.4, fK has at least i(z0)&N pairs of nontrivial
critical points having critical values less than

fK (z0)=&|
S1

HK (z0 , t) dt=&|
S1

H(z0 , t) dt

which is independent of K. Thus for K large all these critical points are
critical points of the original functional f. The statements on the Conley�
Zehnder indices of the critical points in Corollary 2.4 and Theorem 1.2
correspond to each other.

Case 2. i(z0)<0.

Note first that Lemma 4.5 implies that fK satisfies (A6) for all K>0 with
n=0 and an upper bound 2?C0 independent of K. By Corollary 2.5, fK has
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at least &i(z0) pairs of nontrivial critical points with critical values less
than or equal to 2?C0 . Thus for K large all these critical points are critical
points of f. Since we assume z0 is nondegenerate &(z0)=0 and we get |i(z0)|
pairs of nontrivial 2?-periodic solutions of (1.1) with the correct Conley�
Zehnder indices. K

Proof of Theorem 1.3. Again under (H1)�(H4) fK satisfies (A1)�(A4) for
any K>0. Let n�1 be fixed. Lemma 4.6 implies (A6) holds for all fK with
an upper bound Cn independent of K. By Corollary 2.5 again fK has at
least 2nN&i(z0) pairs of nontrivial critical points with critical values not
larger than Cn . Thus for K large these are also critical points of f. Since n
is arbitrary f has infinitely many pairs of nontrivial critical points.
As before the statements on the Conley�Zehnder indices in 2.5 and 1.3
correspond to each other. K
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