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1. Introduction

In this work, we consider the following integral equation

u(t, z) = u0(t, z) +
t∫

0

∫
R

F
(
u(t − s, z − y), s, y

)
dy ds, t � 0, z ∈ R, (1.1)

and its limiting form
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u(t, z) =
∞∫

0

∫
R

F
(
u(t − s, z − y), s, y

)
dy ds, t � 0, z ∈ R. (1.2)

Thieme and Zhao [21] showed that the spreading speed of (1.1) coincides with the minimal wave
speed of monotone traveling waves for (1.2) in the case where F (u, s, y) is monotone in u. Note that
certain population models may be described by (1.1) with appropriate choices of F (see, e.g., [5,19]).
Also some reaction–diffusion models in population biology can be rewritten as the form (1.1), and the
existence and uniqueness of traveling waves for these reaction–diffusion equations are equivalent to
those for (1.2) (see examples in [21,25]). The main purpose of this paper is to study the nonexistence,
existence and uniqueness (up to translation) of traveling waves for (1.2) in the case where F (u, s, y)

is non-monotone in u.
Throughout this paper, a traveling wave solution of (1.2) always refers to a pair (U , c), where U is a

bounded, continuous, nonnegative and nonconstant function from R to R such that u(t, z) := U (z+ct)
satisfies (1.2). Clearly, U (x) satisfies the following wave profile equation

u(x) =
∞∫

0

∫
R

F
(
u(x − y − cs), s, y

)
dy ds, x ∈ R. (1.3)

We first recall some existing methods on the existence of traveling waves for non-monotone
equations. Wu and Zou [23] and Huang and Zou [13] studied the existence of traveling waves for
time-delayed reaction–diffusion equations by the exponential ordering and iteration method. Ou and
Wu [17] established the persistence of wavefronts for time-delayed nonlocal reaction–diffusion equa-
tions via the perturbation method. But these results are valid only for small delays. Faria, Huang and
Wu [9], also using the perturbation method, obtained the existence of traveling waves with large
wave speed for time-delayed nonlocal reaction–diffusion equations. In [15], Ma employed Schauder’s
fixed point theorem to prove the existence of traveling waves with speed c > c∗ for the following
time-delayed nonlocal reaction–diffusion equation

ut(t, z) = Duxx(t, z) − g
(
u(t, z)

) + h
(
u(t, z)

) ∫
R

f
(
u(t − r, y)

)
J (z − y)dy, t � 0, z ∈ R. (1.4)

However, the nonexistence of traveling waves with speed c < c∗ was not addressed in [15]. More re-
cently, Hsu and Zhao [12] investigated the spreading speed and traveling waves for the non-monotone
integro-difference equation

un+1(x) =
∫
R

f
(
un(y)

)
k(x − y)dy, x ∈ R, n � 0. (1.5)

In particular, they also used Schauder’s fixed point theorem to get the existence of traveling waves,
but their constructions of convex subset are quite different from those in [15].

Regarding the uniqueness of traveling wave solutions, Diekmann and Kapper [6] studied the inte-
gral equation

u(x) =
∫
R

g
(
u(y)

)
k(x − y)dy, x ∈ R. (1.6)

They used the powerful Tauberian Ikehara’s theorem for Laplace transforms to get the exact asymp-
totic behavior of monotone wave profiles at −∞, and for non-monotone wave profiles, they provided
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a nice idea to estimate the asymptotic behavior of wave profiles. Carr and Chamj [3] employed this
Tauberian method to study the integro-differential equation

ut = J ∗ u − u + f (u), (1.7)

where J ∗u(z) = ∫
R

J (z− y)u(y)dy, J has compact support and f is monostable. A different approach
was developed by Chen and Guo [4] to establish the uniqueness of traveling waves for the lattice
equation

u̇ j = g(u j+1) + g(u j−1) − 2g(u j) + f (u j), j ∈ Z, (1.8)

where g is increasing and f is monostable. They estimated the asymptotic behavior of the wave
profile U by analyzing the limit of U ′(x)

U (x) as x → ∞. Ma and Zou [16] used the same idea to prove the
uniqueness of traveling waves with speed c > c∗ for the following time-delayed lattice equation

ut(x, t) = D
[
u(x + 1, t) + u(x − 1, t) − 2u(x, t)

] − du(x, t) + b
(
u(x, t − r)

)
, x ∈ R, (1.9)

where b ∈ C1(R) and b(0) = 0 = dK − b(K ) for some K > 0 under monostable assumption. As dis-
cussed in [3], the key point in these two methods is to estimate the asymptotic behavior of wave
profiles at −∞.

The rest of this paper is organized as follows. In Section 2, the spreading speed c∗ for (1.1), as a
complement of [21], is presented; the nonexistence of traveling waves with speed c < c∗ for (1.2) is
then obtained by the result on spreading speeds; the existence of traveling waves with speed c > c∗
is established via Schauder’s fixed point theorem, and the existence of the traveling wave with speed
c∗ is proved by a limiting argument. In Section 3, the exact asymptotic behavior of wave profiles at
−∞ is investigated, and then the uniqueness of traveling waves is proved by similar arguments as in
[3,6]. Finally, these results are applied to some population models.

2. The existence

Assume that F (u, s, y) is continuous in u ∈ R+ and Borel measurable in (s, y) ∈ R+×R. We further
impose the following conditions on F :

(A) There exists a function k : R+ × R → R+ such that:
(A1) k∗ := ∫ ∞

0

∫
R

k(s, y)dy ds ∈ (1,∞).
(A2) 0 � F (u, s, y) � uk(s, y), ∀u, s � 0, y ∈ R.
(A3) For every compact interval I in (0,∞), there exists some ε > 0 such that

F (u, s, y) � εk(s, y), ∀u ∈ I, s � 0, y ∈ R.

(A4) For every ε > 0, there exists some δ > 0 such that

F (u, s, y) � (1 − ε)uk(s, y), ∀u ∈ [0, δ], s � 0, y ∈ R.

As stated in [21], assumption (A2) implies that F (0, s, y) = 0, ∀s � 0, y ∈ R. Though we do not
assume that F is differentiable at u = 0, (A2) and (A4) together imply that k is something like the
derivative of F at u = 0. With this in mind, (A2) also states that F is dominated by its linearization
at u = 0.
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Assumptions (A1) and (A2) imply that
∫ ∞

0

∫
R

F (u, s, y)dy ds < ∞, ∀u � 0. Define F̆ : R+ → R+ by

F̆ (u) =
∞∫

0

∫
R

F (u, s, y)dy ds. (2.1)

Let

F+(u, s, y) = max
v∈[0,u] F (v, s, y), ∀s � 0, y ∈ R.

Define F̆+ as in (2.1) with F = F+ . Suppose there exists u∗+ > 0 such that

F̆+
(
u∗+

) = u∗+ and F̆+(u) > u, ∀u ∈ (
0, u∗+

)
.

In addition, we need the following assumptions on F :

(A5) There exists Λ > 0 such that

∣∣F (u1, s, y) − F (u2, s, y)
∣∣ � Λ|u1 − u2|k(s, y), ∀u1, u2 ∈ [

0, u∗+
]
, s � 0, y ∈ R.

(A6) There exist δ0 ∈ (0, u∗+], σ > 1 and a > 0 such that

F (u, s, y) �
(
u − auσ

)
k(s, y), ∀u ∈ [0, δ0], s � 0, y ∈ R.

(A7) There exists some L > 0 such that

∣∣F (u, s, y1) − F (u, s, y2)
∣∣ � L

∣∣k(s, y1) − k(s, y2)
∣∣, ∀u ∈ [

0, u∗+
]
, s � 0, y1, y2 ∈ R.

Let

F−(u, s, y) := min
v∈[u,u∗+]

F (v, s, y), ∀s � 0, y ∈ R.

Then we can define F̆− similarly. It then follows that F± are both continuous and nondecreasing in u.
Clearly, F̆ and F̆± are all functions from [0, u∗+] to [0, u∗+] and

F−(u, s, y) � F (u, s, y) � F+(u, s, y), ∀u ∈ [
0, u∗+

]
, s � 0, y ∈ R.

Lemma 2.1. Let F± , F̆± and u∗+ be defined as above. Assume that F satisfies (A1)–(A6). Then the following
statements are valid:

(1) F± both satisfy (A1)–(A6).
(2) There exist u∗ ∈ (0, u∗+] and u∗− ∈ (0, u∗] such that

F̆
(
u∗) = u∗, F̆ (u) > u, ∀u ∈ (

0, u∗),
and

F̆−
(
u∗−

) = u∗−, F̆−(u) > u, ∀u ∈ (
0, u∗−

)
.
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Proof. (1) For F+ , it suffices to prove that (A2) and (A5) hold. By the definition of F+ , it follows that

F+(u, s, y) = max
v∈[0,u] F (v, s, y) � max

v∈[0,u] vk(s, y) = uk(s, y),

and for any u∗+ � u1 > u2 � 0,

F+(u1, s, y) − F+(u2, s, y) = max
v∈[0,u1] F (v, s, y) − max

v∈[0,u2] F (v, s, y)

� max
{

0, max
v∈[u2,u1] F (v, s, y) − max

v∈[0,u2] F (v, s, y)
}

� max
v∈[u2,u1] F (v, s, y) − F (u2, s, y)

� max
v∈[u2,u1]Λ(v − u2)k(s, y)

= Λ(u1 − u2)k(s, y).

For F− , it suffices to prove that (A3)–(A6) hold. (A3) is obvious. Let

Ω1 := {
(s, y) ∈ R+ × R: k(s, y) = 0

}
, Ω2 := R+ × R \ Ω1.

Then F satisfying (A2) implies

F (u, s, y) = 0, ∀u � 0, (s, y) ∈ Ω1,

and

F (u, s, y)

k(s, y)
� u, ∀u � 0, (s, y) ∈ Ω2.

Since F satisfies (A3)–(A4), it follows that for any ε > 0, there exist δ > 0 and η > 0 such that

F (u, s, y)

k(s, y)
� (1 − ε)u, ∀u ∈ [0, δ], (s, y) ∈ Ω2,

and

F (u, s, y)

k(s, y)
� η, ∀u ∈ [

δ, u∗+
]
, (s, y) ∈ Ω2.

Note that

lim
u→0+

F (u, s, y)

k(s, y)
= 0 uniformly for (s, y) ∈ Ω2.

Then there exists δ1 ∈ (0, δ) such that

sup
(s,y)∈Ω2

F (u, s, y)

k(s, y)
< η, ∀u ∈ [0, δ1].

Thus, for any u ∈ [0, δ1],
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F−(u, s, y) = min
v∈[u,δ] F (v, s, y) � min

v∈[u,δ](1 − ε)vk(s, y) = (1 − ε)uk(s, y),

and for any u∗+ � u1 > u2 � 0,

F−(u1, s, y) − F−(u2, s, y) = min
v∈[u1,u∗+]

F (v, s, y) − min
v∈[u2,u∗+]

F (v, s, y)

� max
{

0, min
v∈[u1,u∗+]

F (v, s, y) − min
v∈[u2,u1] F (v, s, y)

}
� F (u1, s, y) − min

v∈[u2,u1] F (v, s, y)

� max
v∈[u2,u1]Λ(u1 − v)k(s, y)

= Λ(u1 − u2)k(s, y).

Note that there exist δ0 ∈ (0, u∗+], σ > 1 and a > 0 such that

F (u, s, y) �
(
u − auσ

)
k(s, y), ∀u ∈ [0, δ0], s � 0, y ∈ R,

and the function u − auσ is increasing when u is sufficiently small. It then follows that there exist
δ2 ∈ (0, δ0) and δ3 ∈ (0, δ2) such that for any u ∈ [0, δ3],

F−(u, s, y) = min
v∈[u,δ2] F (v, s, y) � min

v∈[u,δ2]
(

v − avσ
)
k(s, y) = (

u − auσ
)
k(s, y).

(2) Since F and F− satisfy (A1) and (A4), there exists δ4 > 0 such that F̆ (u) > u and F̆−(u) > u
when u ∈ (0, δ4). Since

F̆−(u) � F̆ (u) � F̆+(u) � F̆+
(
u∗+

) = u∗+, ∀u ∈ [
0, u∗+

]
,

it follows that such u∗ and u∗− exist. �
Since F± are both nondecreasing, the following two equations

u(t, z) = u0(t, z) +
t∫

0

∫
R

F−
(
u(t − s, z − y), s, y

)
dy ds (2.2)

and

u(t, z) = u0(t, z) +
t∫

0

∫
R

F+
(
u(t − s, z − y), s, y

)
dy ds (2.3)

admit the comparison principle (see [20, Lemma 3.2]).
We use the same definitions of K(c, λ) and c∗ as in [21]. Let

K(c, λ) :=
∞∫ ∫

e−λ(y+cs)k(s, y)dy ds (2.4)
0 R
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and

c∗ := inf
{

c � 0: K(c, λ) < 1 for some λ > 0
}
. (2.5)

We call K(c, λ) = 1 as the characteristic equation. Note that the definitions of K(c, λ) and c∗ involve
only the function k. Thus, for Eqs. (1.1), (2.2) and (2.3), they have the same c∗ and K(c, λ). In order
to analyze K(c, λ), we make a couple of assumptions concerning k.

(B) k : R+ × R → R is a Borel measurable function such that:
(B1) For any c � 0, there exists some λ	 = λ	(c) ∈ (0,∞] such that K(c, λ) < ∞ for λ ∈ [0, λ	)

and limλ↑λ	(c) K(c, λ) = ∞.
(B2) There exist numbers σ2 > σ1 > 0, ρ > 0 such that

k(s, y) > 0, ∀s ∈ (σ1,σ2), |y| ∈ [0,ρ).

(B3) k is isotropic, i.e., k(s, y) = k(s,−y), ∀s � 0, y ∈ R.

The following properties of c∗ and K(c, λ) will be used.

Proposition 2.1. (See [21, Lemmas 2.1 and 2.2 and Proposition 2.3].) Let (B) hold. Then c∗ ∈ (0,∞), and the
following statements are valid:

(1) limc→∞ K(c, λ) = 0 for λ ∈ (0, λ	(0)] with λ	(c) from assumption (B1).
(2) lim infc→0 K(c, λ) � k∗ uniformly in λ � 0.
(3) For every c > 0, there is some λ > 0 such that K(c, λ) < K(c,0) = k∗ .
(4) For λ > 0, K(c, λ) is a decreasing convex function of c.
(5) For c � 0, K(c, λ) is a convex function of λ.
(6) For any c > c∗ , there exist λ1 < λ2 < λ	(c) such that K(c, λ1) = 1 = K(c, λ2) and K(c, λ) < 1 for

λ ∈ (λ1, λ2).
(7) There exists a unique λ∗ ∈ (0, λ	(c)) such that K(c∗, λ∗) = 1 and K(c∗, λ) > 1 for λ 	= λ∗ . Moreover,

c∗ and λ∗ are uniquely determined as the solutions of the system

K(c, λ) = 1,
∂K
∂λ

(c, λ) = 0.

We say u0 in (1.1) is admissible if for every c, λ > 0 with K(c, λ) < 1, there exists some γ > 0
such that

u0(t, z) � γ eλ(ct−|z|), ∀t � 0, z ∈ R. (2.6)

We say F̆ has the property (P) provided that:

(P) If v, w ∈ (0, u∗+] with v � u∗ � w , v � F̆ (w) and w � F̆ (v), then v = w .

Then, by [12, Lemma 2.1] with f = F̆ , we have the following observation.

Lemma 2.2. Either of the following two conditions is sufficient for the property (P) to hold:

(P1) u F̆ (u) is strictly increasing for u ∈ (0, u∗+].
(P2) F̆ (u) is nonincreasing for u ∈ [u∗, u∗+] and F̆ 2(u)

u is strictly decreasing for u ∈ (0, u∗], where F̆ 2(u) =
F̆ ( F̆ (u)).
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The following result complements [21, Proposition 2.4 and Theorem 2.5], which shows that c∗ is
the spreading speed of solutions to (1.1).

Theorem 2.1. Assume that (A1)–(A5) and (B) hold. Let u(t, z) be the unique solution of (1.1). Then the follow-
ing statements are valid:

(1) For every admissible u0 , u(t, z) satisfies limt→∞, |z|�ct u(t, z) = 0, ∀c > c∗ .
(2) Let u0 : R+ × R → R+ be a bounded and Borel measurable function with the property that u0(t, z) �

η > 0, ∀t ∈ (t1, t2), |z| � η, for appropriate t2 > t1 � 0, η > 0. If u(t, z) is bounded, then for each c ∈
(0, c∗), there holds

u∗− � lim inf
t→∞, |z|�ct

u(t, z) � lim sup
t→∞, |z|�ct

u(t, z) � u∗+.

(3) Let assumptions in (2) hold. Assume that F̆ (u)
u is strictly decreasing for u ∈ (0, u∗+] and F̆ (u) has the

property (P). Then there holds limt→∞, |z|�ct u(t, z) = u∗ , ∀c ∈ (0, c∗).

Proof. Statement (1) is from [21, Theorem 2.1]. For statement (2), let u+ and u− be the solutions of
(2.2) and (2.3), respectively. Then the comparison principles of (2.2) and (2.3) imply

u−(t, z) � u(t, z) � u+(t, z), ∀t > 0, z ∈ R.

Since F± satisfy (A1)–(A5) and (B), we see from [21, Theorem 2.4] that c∗ is the spreading speed for
both equations (2.2) and (2.3), and hence limt→∞, |z|�ct u±(t, z) = u∗± , ∀c < c∗ . Thus, we reach the
conclusion in (2).

For statement (3), we use similar arguments as in the proof of [12, Theorem 2.2(3)]. Using the
same notations and arguments as in the proof of [21, Theorem 2.5], we see that for 0 < c < γ < c∗ ,

V∗(c, γ ) �
∞∫

0

∫
R

g
(

V∗(c, γ ), V ∗(c, γ ), s, y
)
k(s, y)dy ds,

V ∗(c, γ ) �
∞∫

0

∫
R

g
(

V ∗(c, γ ), V∗(c, γ ), s, y
)
k(s, y)dy ds, (2.7)

where V∗ , V ∗ and g are defined as follows

V∗(c, γ ) = inf
c<β<γ

lim inf
t→∞, |z|�βt

u(t, z), V ∗(c, γ ) = sup
c<β<γ

lim sup
t→∞, |z|�βt

u(t, z),

and

g(v, w, s, y) =
{

inf{ F̃ (u, s, y): v � u � w}, if v � w,

sup{ F̃ (u, s, y): w � u � v}, if w � v,
(2.8)

with

F̃ (u, s, x) =
{

F (u,s,x)
k(s,x) , if k(s, x) > 0,

0, if k(s, x) = 0.
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Moreover, 0 < V∗(c, γ ) � V ∗(c, γ ). By the definition of g , we can find v, w ∈ [V∗(c, γ ), V ∗(c, γ )] ⊂
(0, u∗+] such that

F̆ (w) =
∞∫

0

∫
R

g
(

V∗(c, γ ), V ∗(c, γ ), s, y
)
k(s, y)dy ds

and

F̆ (v) =
∞∫

0

∫
R

g
(

V ∗(c, γ ), V∗(c, γ ), s, y
)
k(s, y)dy ds.

It then follows from (2.7) that

F̆ (w)

w
� 1 = F̆ (u∗)

u∗ � F̆ (v)

v
. (2.9)

This, together with the strict monotonicity of F̆ (u)
u on (0, u∗+], shows that v � u∗ � w . Then the

property (P) implies that v = w . Thus, 0 < V∗(c, λ) = V ∗(c, λ) � u∗+ . From (2.7), (2.9) and the property
of F̆ , we have V∗(c, λ) = V ∗(c, λ) = u∗. By the definitions of V∗(c, λ) and V ∗(c, λ), we arrive at

lim
t→∞, |z|�ct

u(t, z) = u∗, ∀c ∈ (
0, c∗).

This completes the proof. �
Now we are in a position to prove the main result of this section.

Theorem 2.2. Let (A) and (B) hold. Then the following statements are valid:

(1) For any c ∈ (0, c∗), (1.2) has no traveling wave (U , c) with lim infx→−∞ U (x) < u∗− .
(2) For any c > c∗ , (1.2) has a traveling wave (U , c) with U (−∞) = 0; for c = c∗ and any small number

β > 0, (1.2) has a traveling wave (U , c∗) with U (0) = β , U (x) � β , ∀x < 0; and all these wave profiles
have the following asymptotic behavior at +∞:

u∗− � lim inf
x→+∞ U (x) � lim sup

x→+∞
U (x) � u∗+.

If, in addition, F̆ (u)
u is strictly decreasing for u ∈ (0, u∗+] and F̆ (u) has the property (P), then U (+∞) = u∗ .

Proof. (1) Assume, by contradiction, that for some c0 ∈ (0, c∗), Eq. (1.2) has a traveling wave u(t, z) :=
U (z + c0t). It then follows from Theorem 2.1(2) that

lim inf
t→∞, |z|�ct

u(t, z) � u∗−, ∀c ∈ (
0, c∗).

Choose c̃ ∈ (c0, c∗) and let z = −c̃t . Then

lim inf
t→∞ u(t,−c̃t) = lim inf

t→∞ U
(
(c0 − c̃)t

)
� u∗−,

but lim infx→−∞ U (x) < u∗− , a contradiction.
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(2) Let Cu∗+ := {φ ∈ C(R,R): 0 � φ(x) � u∗+, ∀x ∈ R}. For given c > c∗ , define a map T : Cu∗+ → Cu∗+
by

T (φ)(x) =
∞∫

0

∫
R

F
(
φ(x − y − cs), s, y

)
dy ds, ∀x ∈ R, φ ∈ Cu∗+ . (2.10)

Let T ± be defined as in (2.10) with F replaced by F± . It then follows that T ± is nondecreasing with
respect to the pointwise ordering on Cu∗+ , and that

T −(φ) � T (φ) � T +(φ), ∀φ ∈ Cu∗+ . (2.11)

Define

φ+(x) = min
{

u∗+eλ1x, u∗+
}
, ∀x ∈ R,

and

φ−(x) = max
{

0, δ
(
1 − Meεx)eλ1x}, ∀x ∈ R,

where λ1 = λ1(c) is defined as in Proposition 2.1. Since F± both satisfy (A1)–(A6), by the proof of [21,
Theorem 3.3], we can choose appropriate positive numbers δ, M and ε such that T +(φ+) � φ+ and
T −(φ−) � φ− .

In order to apply Schauder’s fixed point theorem, we need to construct a nonempty, closed and
convex subset in a Banach space and define a compact operator on this subset. For a given λ > 0, let

Xλ :=
{
φ ∈ C(R,R): sup

x∈R

∣∣φ(x)
∣∣e−λx < ∞

}

and ‖φ‖λ = supx∈R |φ(x)|e−λx , then (Xλ,‖ · ‖λ) is a Banach space. Note that for any given λ ∈ (0, λ1),
φ± are elements of Xλ . Thus, we can define the set

Y := {
φ ∈ Xλ: φ− � φ � φ+}

,

which is nonempty, closed and convex subset of Xλ . For any φ ∈ Y ,

φ− � T −(
φ−)

� T −(φ) � T (φ) � T +(φ) � T +(
φ+)

� φ+,

and hence, T (Y ) ⊂ Y . Further, for any φ,ψ ∈ Y , we have

∥∥T (φ) − T (ψ)
∥∥

λ
�

∞∫
0

∫
R

∣∣F
(
φ(x − y − cs), s, y

) − F
(
ψ(x − y − cs), s, y

)∣∣e−λx dy ds

� Λ

∞∫
0

∫
R

‖φ − ψ‖λk(s, y)e−λ(y+cs) dy ds

= ΛK(c, λ)‖φ − ψ‖λ, (2.12)
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where K(c, λ) < +∞ since λ < λ1 < λ	(c). This implies that T is continuous on Y . It then follows
from assumption (A7) that for any φ ∈ Y , x1, x2 ∈ R, there holds

∣∣T (φ)(x1) − T (φ)(x2)
∣∣ �

∞∫
0

∫
R

∣∣F
(
φ(y), s, x1 − y − cs

) − F
(
φ(y), s, x2 − y − cs

)∣∣dy ds

�
∞∫

0

∫
R

L
∣∣k(s, x1 − y − cs) − k(s, x2 − y − cs)

∣∣dy ds

�
∞∫

0

∫
R

L
∣∣k(s, x1 − x2 + y) − k(s, y)

∣∣dy ds

= g(x1 − x2), (2.13)

where g(x) = ∫ ∞
0

∫
R

L|k(s, x + y) − k(s, y)|dy ds. Clearly, limx→0 g(x) = 0. Therefore, T (Y ) is a family
of uniformly bounded and equi-continuous functions. Thus, for any given sequence {ψn}n�1 in T (Y ),
there exists a subsequence, still denoted by {ψn}n�1, and ψ ∈ C(R,R) such that ψn(x) → ψ(x) uni-
formly for x in any compact subset of R. Since φ− � ψn � φ+ , we have φ− � ψ � φ+ , and hence,
ψ ∈ Y . Now it remains to show ψn → ψ in Xλ . Note that ψn(x)e−λx → ψe−λx uniformly for x in any
compact subset of R and lim|x|→∞ |φ+(x) − φ−(x)|e−λx = 0. It then follows that for any ε > 0, there
exist B > 0 and N > 1 such that

0 �
∣∣φ+(x) − φ−(x)

∣∣e−λx < ε, ∀|x| � B,

and

∣∣ψn(x) − ψ(x)
∣∣e−λx < ε, ∀|x| � B, n � N.

Thus,

‖ψn − ψ‖λ < ε, ∀n � N.

Now Schauder’s fixed point theorem implies that the operator T admits a fixed point U in Y . Clearly,
U (−∞) = 0 and U is continuous, nonnegative, nonconstant and bounded. Thus, (U , c) is a traveling
wave solution connecting 0.

For c = c∗ , we use a limiting argument (cf. [1] and [21]). Choose a sequence {c j} ⊂ (c∗,∞) such
that lim j→∞ c j = c∗ . According to the above arguments, there exists a traveling wave (U j, c j) of (1.2)
and for each j,

u∗− � lim inf
x→+∞ U j(x) � lim sup

x→+∞
U j(x) � u∗+.

Since each U j(x + h), h ∈ R, is also such a solution, U j(−∞) = 0 and lim infx→+∞ U j(x) � u∗− , we can
assume that U j(0) = β < u∗− and U j(x) � β , ∀x < 0, ∀ j � 1. For any x1, x2 ∈ R, we have

∣∣U j(x1) − U j(x2)
∣∣ =

∣∣∣∣∣
∞∫ ∫

F
(
U j(y), s, x1 − c j s − y

) − F
(
U j(y), s, x2 − c js − y

)
dy ds

∣∣∣∣∣

0 R
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�
∞∫

0

∫
R

L
∣∣k(s, x1 − c j s − y) − k(s, x2 − c js − y)

∣∣dy ds

=
∞∫

0

∫
R

L
∣∣k(s, y + x1 − x2) − k(s, y)

∣∣dy ds.

Thus, {U j(x)} is an equi-continuous and uniformly bounded sequence of functions on R. By Ascoli’s
theorem and a nested subsequence argument, it follows that there exists a subsequence of {c j}, still
denoted by {c j}, such that U j(x) converges uniformly on every bounded interval, and hence pointwise
on R to U∗(x). Note that

U j(x) =
∞∫

0

∫
R

F
(
U j(x − c j s − y), s, y

)
dy ds, ∀x ∈ R. (2.14)

Letting j → ∞ in (2.14) and using the dominated convergence theorem, we then get

U∗(x) =
∞∫

0

∫
R

F
(
U∗(x − c∗s − y

)
, s, y

)
dy ds, ∀x ∈ R, (2.15)

and U∗(0) = β , U∗(x) � β , ∀x < 0.
By similar arguments as in the proof of [12, Theorem 3.1], it follows that for all these profiles with

speed c � c∗ , we have

u∗− � lim inf
x→+∞ U (x) � lim sup

x→+∞
U (x) � u∗+.

Indeed, for a fixed c � c∗ , let U (x) = U (z + ct) be a profile. Then for given c ∈ (0, c∗), it follows from
Theorem 2.1(2) that

u∗− � lim inf
t→∞, |z|�ct

U (z + ct) � lim sup
t→∞, |z|�ct

U (z + ct) � u∗+,

and hence,

u∗− � lim inf
t→∞ U

(
(c − γ )t

)
� lim sup

t→∞
U

(
(c − γ )t

)
� u∗+

uniformly for γ ∈ [0, c]. This implies that

u∗− � lim inf
t→∞ U (st) � lim sup

t→∞
U (st) � u∗+

uniformly for s ∈ [c − c, c]. Let

an = n(c − c), bn = nc, ∀n � 1.

Thus, there exists N0 > 1 such that an+1 − bn < 0,∀n � N0, and hence,
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⋃
n�m

[an,bn] = [am,+∞), ∀m � N0.

It then follows that u∗− � lim infx→+∞ U (x) � lim supx→+∞ U (x) � u∗+ . The rest part of statement (2)
follows from Theorem 2.1(3) and the above arguments. �

For the case c = c∗ in Theorem 2.2(2), we may expect that there exists a traveling wave (U , c∗)
with U (−∞) = 0. However, we can only show that for any small number β > 0, there exists a wave
profile U∗ such that lim supx→−∞ U∗(x) < β .

3. The uniqueness

In this section, we study the uniqueness of traveling waves established in Section 2. For any c > c∗ ,
let λ1(c) be defined as in Proposition 2.1(6), and λ1(c∗) := λ∗ . For convenience, we use λ1 to denote
λ1(c). Given two real numbers c and λ, we define lc,λ(y) := e−λy

∫ ∞
0 k(s, y − cs)ds, ∀y ∈ R. Clearly,∫

R
lc,λ(y)dy = K(c, λ). We impose the following condition on F and k.

(H) Assumptions (A1)–(A6) and (B) hold with Λ = 1 in (A5), and lc,λ ∈ L∞(R) for any c � c∗ and
λ ∈ (0, λ1).

Note that the assumption Λ = 1 will be used only in the proof of Theorem 3.1. If F (u, s, y) is
differentiable in u � 0, then this technical assumption can be explained as ∂u F (u, s, y) � ∂u F (0, s, y),
∀u > 0, s � 0, y ∈ R.

To prove the uniqueness of traveling waves for (1.2), we need a series of lemmas.

Lemma 3.1. Assume (H) holds. Let c∗ be defined as in (2.5) and u be the profile corresponding to a traveling
wave connecting 0 of (1.2) with speed c � c∗ . Then there exists a positive real number γ = γ (c) such that
u(x) = o(eγ x) as x → −∞.

Proof. From (A1), there exist ε > 0 and M > 1 such that

kM :=
∞∫

0

∞∫
−M

(1 − ε)k(s, y)dy ds > 1.

For the above ε , it follows from (A4) that there exists δ > 0 such that

F (u, s, x) � (1 − ε)uk(s, x), ∀u ∈ [0, δ], s � 0, x ∈ R.

Since u(−∞) = 0, there exists N > 1 such that for x � −M − N and x1 < x, there holds

x∫
x1

u(ξ)dξ =
x∫

x1

∞∫
0

∫
R

F
(
u(ξ − y − cs), s, y

)
dy ds dξ

�
x∫

x1

∞∫
0

∞∫
−M

F
(
u(ξ − y − cs), s, y

)
dy ds dξ

�
x∫

x

∞∫ ∞∫
(1 − ε)u(ξ − y − cs)k(s, y)dy ds dξ. (3.1)
1 0 −M
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Consequently,

(1 − kM)

x∫
x1

u(ξ)dξ �
x∫

x1

∞∫
0

∞∫
−M

(1 − ε)k(s, y)
[
u(ξ − y − cs) − u(ξ)

]
dy ds dξ.

Note that for any y ∈ R, s � 0, we have

x∫
x1

[
u(ξ − y − cs) − u(ξ)

]
dξ = (y + cs)

1∫
0

[
u
(
x1 − t(y + cs)

) − u
(
x − t(y + cs)

)]
dt.

It then follows from Fubini’s theorem that

(1 − kM)

x∫
x1

u(ξ)dξ

�
∞∫

0

∞∫
−M

(1 − ε)k(s, y)

x∫
x1

[
u(ξ − y − cs) − u(ξ)

]
dξ dy ds

=
∞∫

0

∞∫
−M

(1 − ε)k(s, y)(y + cs)

{ 1∫
0

[
u
(
x1 − t(y + cs)

) − u
(
x − t(y + cs)

)]
dt

}
dy ds. (3.2)

By assumption (B1), we know that K(c, λ) is infinitely often differentiable for λ in some interval [0, δ]
with δ > 0. Thus, it is easy to verify that

d

dλ
K(1, λ)

∣∣∣∣
λ=0

= −
∞∫

0

∫
R

k(s, y)(s + y)dy ds

and

d2

dλ2
K(0, λ)

∣∣∣∣
λ=0

=
∞∫

0

∫
R

y2k(s, y)dy ds.

Since |y| � 1
2 (1 + y2),

∫ ∞
0

∫
R

|y|k(s, y)dy ds exists. It follows that for each c > 0, there exists ac > 0
such that

∞∫
0

∫
R

k(s, y)|y + cs|dy ds < ac .

Observing each traveling wave is bounded, that is, there exists a bound d > 0 such that u(x) < d,
x ∈ R, we see that as x1 → −∞ in (3.2),
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x∫
−∞

u(ξ)dξ � 1

kM − 1

∞∫
0

∞∫
−M

(1 − ε)k(s, y)(y + cs)

1∫
0

u
(
x − t(y + cs)

)
dt dy ds

� d

kM − 1

∞∫
0

∞∫
−M

(1 − ε)k(s, y)|y + cs|dy ds

� d

kM − 1

∞∫
0

∫
R

(1 − ε)k(s, y)|y + cs|dy ds

<
dac(1 − ε)

kM − 1
. (3.3)

Since v(x) := ∫ x
−∞ u(ξ)dξ is increasing, it follows from (3.3) that

x∫
−∞

v(ξ)dξ � 1

kM − 1

∞∫
0

∞∫
−M

(1 − ε)k(s, y)(y + cs)

1∫
0

v
(
x − t(y + cs)

)
dt dy ds

� 1 − ε

kM − 1

∞∫
0

∞∫
−M

k(s, y)|y + cs|
1∫

0

v(x + tM)dt dy ds

� 1 − ε

kM − 1

∞∫
0

∞∫
−M

k(s, y)|y + cs|v(x + M)dy ds

<
ac(1 − ε)

kM − 1
v(x + M). (3.4)

Choose r0 > 0 such that μ := ac(1−ε)
r0(kM−1)

< 1. Then for any x � −M − N , we have

v(x − r0) � 1

r0

x∫
x−r0

v(ξ)dξ � 1

r0

x∫
−∞

v(ξ)dξ � μv(x + M).

Define h(x) = v(x)e−γ1x , where γ1 = 1
M+r0

ln 1
μ . Then we have

h(x − r0) = v(x − r0)e−γ1(x−r0)

� μv(x + M)e−γ1(x+M)+γ1(M+r0)

= μeγ1(M+r0)h(x + M)

= h(x + M), (3.5)

which shows h is bounded. Consequently, v(x) = O (eγ1x) as x → −∞ and there exists p > 0 such
that v(x) � peγ1x , ∀x � 0. Now we claim that for any γ ∈ (0, γ1), u(x) = o(eγ x) as x → −∞. In-
deed, define the iterative scheme u(1)(x) := v(x), u(k)(x) = ∫ x

−∞ u(k−1)(ξ)dξ , k > 1. It then follows
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that u(1)(x) = v(x) � peγ1x and u(k)(x) � p

γ k−1
1

eγ1x , ∀k > 1, x � 0. Using [6, Lemma 4.4] with f = u, we

have 1
k!

∫ x
−∞(x − ξ)ku(ξ)dξ = u(k+1)(x) � p

γ k
1

eγ1x , ∀k � 0, x � 0. Thus, we have

x∫
−∞

eλ(x−ξ)u(ξ)dξ =
∞∑

k=0

1

k!λ
k

x∫
−∞

(x − ξ)ku(ξ)dξ � peγ1x
∞∑

k=0

(
λ

γ1

)k

, ∀λ ∈ (0, γ1), x � 0.

This shows that
∫ x
−∞ e−λξ u(ξ)dξ is convergent for λ < γ1, so is

∫
R

e−λξ u(ξ)dξ . On the other hand,
for any λ ∈ (0,min(λ1, γ1)), we have

e−λxu(x) = e−λx

∞∫
0

∫
R

F
(
u(x − y − cs), s, y

)
dy ds

� e−λx

∞∫
0

∫
R

u(x − y − cs)k(s, y)dy ds

=
∫
R

u(x − y)e−λ(x−y)lc,λ(y)dy

� ‖lc,λ‖∞
∫
R

u(y)e−λy dy < +∞.

It then follows that for any γ ∈ (0,min(λ1, γ1)), u(x) = o(eγ x) as x → −∞. �
In order to distinguish the traveling waves with different speeds, in the rest of this section, we use

u(c, x) to denote the profile corresponding to the traveling wave with speed c. For each c > 0 and λ

satisfying 0 < Reλ < γ , by Lemma 3.1, we can define the Laplace transform

U (c, λ) :=
∫
R

e−λxu(c, x)dx.

Then we have the following observation.

Lemma 3.2. Assume that (H) holds. Then for each c � c∗ , U (c, λ) is analytic for Reλ ∈ (0, λ1), and has a
singularity at λ = λ1 .

Proof. Rewrite the wave profile equation (1.3) as

u(c, x) −
∞∫

0

∫
R

u(c, x − y − cs)k(s, y)dy ds = R(u)(x), (3.6)

where

R(u)(x) =
∞∫ ∫ [

F
(
u(c, x − y − cs), s, y

) − u(c, x − y − cs)k(s, y)
]

dy ds.
0 R
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It then follows that

[
1 − K(c, λ)

]
U (c, λ) =

∫
R

e−λx R(u)(x)dx. (3.7)

We first claim that, if the left-hand side of (3.7) is analytic for Reλ ∈ (0, r), r < λ	(c), where λ	(c) is
defined as in assumption (B1), then there exists η > 0 such that the right-hand side of (3.7) is analytic
for Reλ ∈ (0, r + η). Indeed, let γ be defined as in Lemma 3.1. Since

0 � R(u)(x) � −a

∞∫
0

∫
R

uσ (c, x − y − cs)k(s, y)dy ds,

by choosing η such that η
σ−1 < γ and r + η < λ	(c), we see that u(c, y)e− η

σ−1 y is bounded by a
positive number M , and for any λ ∈ (0, r + η),

∣∣∣∣
∫
R

e−λx R(u)(x)dx

∣∣∣∣ = −
∫
R

e−λx R(u)(x)dx

� a

∫
R

e−λx

∞∫
0

∫
R

uσ (c, x − y − cs)k(s, y)dy ds dx

= a

∫
R

∞∫
0

∫
R

e−λ(x+y+cs)uσ (c, y)k(s, x)dx ds dy

= aK(c, λ)

∫
R

e−λyuσ (c, y)dy

= aK(c, λ)

∫
R

e−(λ−η)yu(c, y)
(
u(c, y)e− η

σ−1 y)σ−1
dy

� aMσ−1 K(c, λ)U (c, λ − η) < +∞. (3.8)

Note that U (c, λ) has a singularity at λ = λ1. This is because the right-hand side of (3.7) is identi-
cally 0 if U (c, λ1) < +∞, and hence u(c, x) is identically 0 due to the assumption (A2) on F . Now we
use a property of Laplace transform [22, p. 58]. Since u is positive, there exists a real number B = B(c)
such that U (c, λ) is analytic for Reλ ∈ (0, B) and has a singularity at λ = B . Next we show B = λ1.
Firstly, B � λ1. Otherwise, taking λ = λ1 in (3.7), we know u(c, x) is identically 0, a contradiction.
Since the abscissa of convergence of U (c, λ) is different from that of the right-hand side of (3.7), we
have that B must be the smallest positive root of the characteristic equation K(c, λ) = 1, and hence
B = λ1. �

With the help of the above results, we can estimate the exact asymptotic behavior of wave profiles.

Lemma 3.3. Let u(c, x) be a wave profile with c > c∗ . Then there exists a positive number θ such that
limx→−∞ u(c, x)e−λ1x = θ .
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Proof. Let λ2 be defined as in Proposition 2.1. Choose ε > 0 such that λ1(1 + ε) < λ2 and 1 + ε < σ .
Let β ∈ (λ1, λ1(1 + ε)). Then lc, β

1+ε
∈ L∞(R). Therefore, there exists M1 > 0 such that uσ (c, x) �

M1u1+ε(c, x) and

e− β
1+ε xu(c, x) � e− β

1+ε x

∞∫
0

∫
R

u(c, x − y − cs)k(s, y)dy ds

=
∫
R

u(c, x − y)e− β
1+ε (x−y)lc, β

1+ε
(y)dy < M1.

For the remainder R(u)(x) in (3.6), we have the following estimate:

0 � R(u)(x) � −a

∞∫
0

∫
R

uσ (c, x − y − cs)k(s, y)dy ds

= −aM1

∞∫
0

∫
R

u1+ε(c, x − y − cs)k(s, y)dy ds

= −aM1

∞∫
0

∫
R

(
u(c, x − y − cs)e− β

1+ε (x−y−cs))1+ε
eβ(x−y−cs)k(s, y)dy ds

� −aM2+ε
1 K(c, β)eβx

= −Meβx, (3.9)

where M := aM2+ε
1 K(c, β). In the rest of this proof, we use the similar arguments as in the proof of

[6, Theorem 6.3]. Consider the iterative scheme v(0)(x) := e−βx R(u)(x) and

v(n)(x) :=
∞∫

0

∫
R

v(n−1)(x − y − cs)e−β(y+cs)k(s, y)dy ds + e−βx R(u)(x), n � 1.

Since R(u)(x) � 0, the sequence v(n)(x), n � 0, is nonincreasing. Note that

v(n)(x) � inf
x∈R

v(n−1)(x)K(c, β) + inf
x∈R

v(0)(x)

� inf
x∈R

v(0)(x)
(
1 + K(c, β) + · · · + (

K(c, β)
)n)

� −M
(
1 + K(c, β) + · · · + (

K(c, β)
)n)

, ∀n � 1, (3.10)

where K(c, β) < 1. It then follows that the sequence v(n)(x), n � 0, is bounded, and hence there is a
limit function v(x) � 0 such that v(x) is bounded and satisfies the following non-homogeneous linear
equation

φ(x) =
∞∫ ∫

φ(x − y − cs)e−β(y+cs)k(s, y)dy ds + e−βx R(u)(x), (3.11)
0 R



J. Fang, X.-Q. Zhao / J. Differential Equations 248 (2010) 2199–2226 2217
which is also satisfied by u(c, x)e−βx . Thus, w(x) := u(c, x) − v(x)eβx is nonnegative but not identi-
cally 0. Let k(y) := ∫ ∞

0 k(s, y − cs)ds. Then w satisfies the homogeneous linear equation

w(x) =
∫
R

w(x − y)k(y)dy. (3.12)

Since u(c, x) and v(x) are both bounded, w(x) satisfies the estimates 0 � w(x) � C(1 + eβx) for some
constant C . As argued in the proof of [6, Theorem 6.3], w(x) = θeλ1x for some constant θ > 0, and
hence

lim
x→−∞ u(c, x)e−λ1x = lim

x→−∞
[

w(x)e−λ1x + v(x)e(β−λ1)x] = θ + 0 = θ.

This completes the proof. �
Now we are ready to prove the main result of this section.

Theorem 3.1. Assume (H) holds. Then for each c > c∗ , there is at most one (up to translation) traveling wave
of (1.2) connecting 0.

Proof. Let u1(c, x) and u2(c, x) be two wave profiles with c > c∗ . Set

w(c, x) = ∣∣u1(c, x) − u2(c, x)
∣∣e−λ1x.

Then, after propriate translation of u1, we have the following properties of w(c, x):

(1) w(c,±∞) = 0.
(2) There exists x0 such that w(c, x0) = maxx∈R w(c, x).

Property (1) follows from Lemma 3.3, and the existence of maximum value is implied by property (1).
Note that

∞∫
0

∫
R

· · ·
∞∫

0

∫
R

n∏
i=1

k(si, yi)eλ1
∑n

i=1(yi+csi) dy1 ds1 · · · dyn dsn = 1, ∀n ∈ N. (3.13)

Using the Lipschitz constant Λ = 1, we then have

w(c, x0) �
∞∫

0

∫
R

w(c, x0 − y − cs)k(s, y)e−λ1(y+cs) dy ds

�
∞∫

0

∫
R

· · ·
∞∫

0

∫
R

w

(
c, x0 −

n∑
i=1

(yi + csi)

)

×
n∏

i=1

k(si, yi)e−λ1
∑n

i=1(yi+csi) dy1 ds1 · · · dyn dsn

� w(c, x0), ∀n ∈ N. (3.14)
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One can choose (y, s) ∈ R × R+ such that y + cs 	= 0 and k(s, y) 	= 0, which, together with inequal-
ity (3.14), indicates that w(c, x0 − n(y + cs)) = w(c, x0), ∀n ∈ N. This implies that w(c, x0) = 0 since
w(c,±∞) = 0. More precisely, we have u1(c, x) ≡ u2(c, x). �
4. Applications

In this section, we apply Theorems 2.1, 2.2 and 3.1 to some nonlocal reaction–diffusion population
models, which can be transformed into the form (1.1). Firstly, we investigate a general population
model, then give a detailed conclusion on spreading speeds and traveling waves for a specific case.
Finally, we present a complement result on uniqueness of traveling waves for an epidemic model.

In literature, the equation for mature members of some age-structured population is described by
the reaction–diffusion equation of the following form

∂u

∂t
= D�u − g(u) +

∞∫
0

∫
R

f
(
u(t − s, z − y)

)
J (s, y)dy ds, (4.1)

where D > 0, f , g ∈ C(R+,R+) and J ∈ L1(R+ × R) with J (s, y) = J (s,−y), ∀s � 0, y ∈ R. When
J (s, y) = δ(s − τ ), ∀y ∈ R with τ > 0, (4.1) reduces to the model studied in [21], which is a gener-
alization of the model derived in [18] (see also [10]); when g(u) = du, (4.1) reduces to the model
investigated in [11,14]; when g(u) = βu2, (4.1) reduces to the model studied in [7]. However, the
spreading speeds and traveling waves for (4.1) are still unsolved in the general case.

For any α > 0, let gα(u) = αu − g(u) and Γα(t, z) be the Green function of ∂t u(t, z) = Duzz(t, z) −
αu(t, z). Then, by the standard variation of constant formula, (4.1) can be transformed into the fol-
lowing form

u(t, z) =
∫
R

Γα(t, z − y)u(0, y)dy +
t∫

0

∫
R

Γα(t − s, z − y)gα

(
u(s, y)

)
dy ds

+
t∫

0

∫
R

Γα(t − s, z − y)

( ∞∫
0

∫
R

f
(
u(s − r, y − x)

)
J (r, x)dx dr

)
dy ds. (4.2)

By changing the order of the variables of integration, we can simplify (4.2) into the form

u(t, z) = u0(t, z) +
t∫

0

∫
R

Γα(t − s, z − y)gα

(
u(s, y)

)
dy ds

+
t∫

0

∫
R

f
(
u(t − s, z − y)

)( s∫
0

∫
R

Γα(s − r, y − x) J (r, x)dx dr

)
dy ds, (4.3)

where

u0(t, z) =
∫
R

Γα(t, z − y)u(0, y)dy

+
t∫ ∫

Γα(t − s, z − y)

( ∞∫
s

∫
f
(
u(s − r, y − x)

)
J (r, x)dx dr

)
dy ds.
0 R R
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Let

k1(s, y) = Γα(s, y)

and

k2(s, y) =
s∫

0

∫
R

Γα(s − r, y − x) J (r, x)dx dr.

Then (4.3) takes the form

u(t, z) = u0(t, z) +
t∫

0

∫
R

gα

(
u(t − s, z − y)

)
k1(s, y)dy ds

+
t∫

0

∫
R

f
(
u(t − s, z − y)

)
k2(s, y)dy ds. (4.4)

Thus, u(t, z) satisfies

u(t, z) = u0(t, z) +
t∫

0

∫
R

F α
(
u(t − s, z − y), s, y

)
dy ds, z ∈ R, t � 0, (4.5)

with

F α(u, s, y) = gα(u)k1(s, y) + f (u)k2(s, y).

For any φ ∈ L1(R+ × R) with the property that there exists some λ > 0 such that

∞∫
0

∫
R

e−λ yφ(s, y)dy ds < +∞,

we define

Kφ(c, λ) :=
∞∫

0

∫
R

e−λ(y+cs)φ(s, y)dy ds, ∀c > 0, λ ∈ [0, λ),

and

φ∗ := Kφ(c,0), ∀c > 0.

From [21, Propositions 4.2 and 4.1(2)], we see that

Kk1(c, λ) = KΓα (c, λ) =
∞∫

e−(cλ+α−Dλ2)s ds, k∗
1 = 1

α
,

0
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and

Kk2(c, λ) = K J (c, λ)

∞∫
0

e−(cλ+α−Dλ2)s ds, k∗
2 = J∗

α
.

We impose the following condition on J :

(L1) For any c � 0, there exists λ	 = λ	(c) ∈ (0,+∞] such that K J (c, λ) < +∞ whenever λ ∈ (0, λ	)

and limλ↑λ	(c) K J (c, λ) = +∞.

Assumption (L1) implies that for any c > 0, Kk(c, λ) = 1 admits two real roots λ1 < λ2 < λ	 , where
k(s, y) = g′

α(0)k1(s, y) + f ′(0)k2(s, y). In addition, we assume that:

(L2) For any c > c∗ and λ ∈ (0, λ1), the function e−λx
∫ ∞

0 k2(s, x − cs)ds is in L∞(R).

We will impose the following conditions on f and g .

(L3) f : R+ → R+ is continuous and bounded, g : R+ → R+ is continuously differentiable and strictly
increasing, f (0) = g(0) = 0, f (u) > 0, g(u) > 0, ∀u > 0, and the equation f (u) = g(u) has a
smallest positive solution u.

(L4) f ′(0), f ′′(0) and g′′(0) exist, g′(u) � g′(0), ∀u > 0, f ′(0) J∗ > g′(0) and

∣∣ f (u) − f (v)
∣∣ � f ′(0)|u − v|, ∀u, v > 0.

Define

F α+(u, s, y) := max
v∈[0,u] F α(v, s, y), F̆ α+(u) :=

∞∫
0

∫
R

F α+(u, s, y),

and

F̆ α(u) :=
∞∫

0

∫
R

F α(u, s, y).

Note that f is bounded and g is strictly increasing. It then follows that there exists M > 0 such that
maxv∈[0,u] f (v) J∗ < g(u), ∀u � M . For the above M , there exists α0 > 0 such that for any α � α0,
maxv∈[0,u] gα(v) = gα(u), ∀u ∈ [0, M]. Thus, we have

F̆ α+(M) =
∞∫

0

∫
R

F α+(M, s, y)dy ds

=
∞∫

0

∫
R

max
v∈[0,M]

[
gα(M)k1(s, y) + f (M)k2(s, y)

]
dy ds

�
∞∫ ∫ [

max
v∈[0,M] gα(M)k1(s, y) + max

v∈[0,M] f (M)k2(s, y)
]

dy ds
0 R
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= 1

α

[
gα(M) + max

v∈[0,M] f (v) J∗]

= M + 1

α

[
max

v∈[0,M] f (v) J∗ − g(M)
]

� M,

which implies that there exists uα,∗
+ ∈ (0, M) such that

F̆ α+
(
uα,∗

+
) = uα,∗

+ and F̆ α+(u) > u, ∀u ∈ (
0, uα,∗

+
)
.

Then, as in Lemma 2.1, we can define uα,∗ and uα,∗
− . Actually, uα,∗ = u since u is the smallest spatially

homogeneous equilibrium.

Lemma 4.1. Assume (L1)–(L4) hold. Then there exists α1 > 0 such that for any α > α1 , assumption (H) is
satisfied with F (u, s, y) = F α(u, s, y) and k(s, y) = g′

α(0)k1(s, y) + f ′(0)k2(s, y).

Proof. Note that g is continuous differentiable and increasing. It follows that there exists α1 � α0
such that

max
u∈[0,uα,∗

+ ]
g′(u) � max

u∈[0,M] g′(u) � 2α − g′(0), ∀α > α1.

Then for any uα,∗
+ � u 	= v � 0, there holds

g′(0) � g(u) − g(v)

u − v
� 2α − g′(0).

This implies that

∣∣gα(u) − gα(v)
∣∣ � g′

α(0)|u − v|,
and hence, (A5) with Λ = 1 holds. Since the other assumptions can be easily verified, we omit the
details here. �
Lemma 4.2. Assume (L1)–(L4) holds. For each α > 0, let c∗

α be defined as in (2.5) with k(s, y) =
g′
α(0)k1(s, y) + f ′(0)k2(s, y). Then c∗

α is independent of α.

Proof. Note that assumptions (L1)–(L4) imply that the assumption (B) with k(s, y) = g′
α(0)k1(s, y) +

f ′(0)k2(s, y) holds and that the condition in Proposition 2.1(7) is satisfied. Thus, c∗
α is determined by

the positive root of the following system

Kk(c, λ) = 1,
d

dλ
Kk(c, λ) = 0. (4.6)

Since

Kk(c, λ) = g′
α(0)Kk1(c, λ) + f ′(0)Kk2(c, λ)

=
{

1
α+cλ−Dλ2 [g′

α(0) + f ′(0)K J (c, λ)], α + cλ − Dλ2 > 0,

2
+∞, α + cλ − Dλ � 0,
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and g′
α(0) = α − g′(0), it then follows that system (4.6) is equivalent to

⎧⎨
⎩

−g′(0) + f ′(0)K J (c, λ) = cλ − Dλ2,

f ′(0)
d

dλ
K J (c, λ) = c − 2Dλ.

(4.7)

Thus, c∗
α is independent of α. �

Since c∗
α is independent of α, we denote c∗

α by c∗ . Define

u∗− := sup
α>α1

uα,∗
− and u∗+ := inf

α>α1
uα,∗

+ .

We further assume that:

(L5) There exists some α > α1 such that f (u) J∗−g(u)
u is strictly decreasing for u ∈ (0, uα,∗

+ ] and F̆ α has
the property (P).

As argued in [21], the wave profile equation of (4.1) is equivalent to that of the limiting equation
of (4.5). By Theorems 2.1, 2.2 and 3.1, as applied to integral equation (4.5), we have the following
result.

Theorem 4.1. Let u, u∗± be defined as above and u(t, z;φ) be the unique solution of (4.1) through φ . Assume
(L1)–(L4) hold. Then the following statements are valid:

(1) For any φ ∈ C(R− × R,R+) with compact support,

lim
t→∞, |z|�ct

u(t, z) = 0, ∀c > c∗;

and for any bounded φ ∈ C(R− × R,R+) \ {0},

u∗− � lim inf
t→∞, |z|�ct

u(t, z;φ) � lim sup
t→∞, |z|�ct

u(t, z;φ) � u∗+, ∀c ∈ (
0, c∗).

If, in addition, (L5) holds, then limt→∞, |z|�ct u(t, z) = u.
(2) For any c ∈ (0, c∗), (4.1) has no traveling wave (U , c) with lim infx→−∞ U (x) < u∗− .
(3) For any c > c∗ , (4.1) has a unique traveling wave (U , c) with U (−∞) = 0; and for c = c∗ and any small

number β > 0, (4.1) has a traveling wave solution (U , c∗) such that U (x) � β , ∀x � 0; and all these
traveling waves satisfy

u∗− � lim inf
x→∞ U (x) � lim sup

x→∞
U (x) � u∗+.

Further, if f (u) is nondecreasing for u ∈ [0, u], then U (x) is nondecreasing in x for all c � c∗ and
U (−∞) = 0 for c = c∗; and if (L5) holds, then limx→∞ U (x) = u for all c � c∗ .

Proof. For the first part of statement (1), we use the comparison principle (cf. [20]) of the linearized
equation of (4.1) at u ≡ 0:

ut(t, z) = Duzz(t, z) − g′(0)u(t, z) +
∞∫ ∫

f ′(0)u(t − s, z − y) J (s, y)dy ds. (4.8)
0 R
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For any c > c∗ , we choose c ∈ (c∗, c), then there exists λ > 0 such that K(c, λ) < 1. This implies that
for any γ > 0, γ eλ(ct−|z|) is an upper solution of (4.8). Since φ has compact support, there exists
γ > 0 such that

u(t, z) := γ eλ(ct−|z|) > φ(t, z), ∀t � 0, z ∈ R.

Note that solutions of (4.1) are lower solutions of (4.8) since g(u) � g′(0)u and f (u) � f ′(0)u. It then
follows that u(t, z) � u(t, z), where u(t, z) is the solution through φ of (4.1). Thus, for any c > c∗ ,
there holds

lim
t→∞, |z|�ct

u(t, z) � lim
t→∞, |z|�ct

u(t, z) = lim
t→∞, |z|�ct

γ eλ(ct−|z|) � lim
t→∞γ eλ(ct−ct) = 0.

For any bounded φ ∈ C(R− × R,R+) \ {0}, u0(t, z) in (4.5) satisfies the conditions in Theorem 2.1.
Thus, for any α > α1, we have

uα,∗
− � lim inf

t→∞, |z|�ct
u(t, z) � lim sup

t→∞, |z|�ct
u(t, z) � uα,∗

+ , ∀c ∈ (
0, c∗).

By taking supremum and infimum for α > α1 in the above inequality, we arrive at

u∗− � lim inf
t→∞, |z|�ct

u(t, z) � lim sup
t→∞, |z|�ct

u(t, z) � u∗+, ∀c ∈ (
0, c∗).

Clearly, assumptions (L1)–(L4) imply that (A), (B) and (H) hold with F = F α and k(s, y) =
g′
α(0)k1(s, y) + f ′(0)k2(s, y),∀α > α1. Thus, by Theorems 2.2 and 3.1, we obtain the existence and

uniqueness of traveling waves. As argued above, for all wave profiles we have

u∗− � lim inf
x→+∞ U (x) � lim sup

x→+∞
U (x) � u∗+.

The rest parts follow directly from Theorems 2.2 and 3.1. �
Next we consider the following specific case of (4.1):

ut(t, z) = Duzz(t, z) − du(t, z) + ε

∫
R

1√
4πγ

e− (z−y)2

4γ b
(
u(t − τ , y)

)
dy, z ∈ R, (4.9)

where b(u) = pue−qu . For biological interpretations of these parameters, we refer to [18]. We should
also mention that the local form of (4.9) (i.e., γ = 0) was studied in [8].

Choosing α = d, we transform (4.9) into the form of (4.5) with

u0(t, z) =
∫
R

e−dt

√
4π Dt

e− (z−y)2

4Dt u(0, y)dy

and

F α(u, s, y) = F d(u, s, y) = εpue−quk3(s, y),

where
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k3(s, y) =
⎧⎨
⎩

e−d(s−τ )√
4π(D(s−τ )+γ )

e− y2

4(D(s−τ )+γ ) , s > τ,

0, s ∈ [0, τ ].

Note that Kk3 (c, λ) = eλ2γ −λcτ
∫ ∞

0 e−(d+cλ−Dλ2)s ds and k∗
3 = 1

d . Letting β := εp
d , we have

F̆ d(u) = βue−qu and F̆ d+(u) =
{

F̆ d(u), u ∈ [0, 1
q ],

F̆ d( 1
q ), u ∈ ( 1

q ,∞).

It then follows that

ud,∗
+ =

{ 1
q lnβ, β ∈ (1, e],
β
qe , β ∈ [e,∞),

F̆ d−(u) =
{

F̆ d(u), u ∈ [0, u1],
F̆ d(ud,∗

+ ), u ∈ [u1, ud,∗
+ ],

and

ud,∗
− = F̆ d(u∗+

)
, ud,∗ = 1

q
lnβ,

where u1 is the root of F̆ d(u) = F̆ d(ud,∗
+ ) other than ud,∗

+ .
Now we are ready to describe the spatial dynamics of (4.9) in terms of the parameter β := εp

d .

Theorem 4.2. Let u(t, z;φ) be the solution of (4.9) through φ , and define ud,∗
± and ud,∗ as above. Then the

following statements are valid:

(i) For each β > 1, (4.9) admits a spreading speed c∗ > 0 which coincides with the minimal wave speed of
traveling waves connecting zero, and all traveling waves connecting zero and with wave speed c > c∗ are
unique up to translation.

(ii) For each β ∈ (1, e2], the upward convergence holds, and hence, all wave profiles at +∞ have the same
limit, which is the positive equilibrium ud,∗; for each β > e2 , there exists τ0 = τ0(β) > 0 such that the up-
ward convergence cannot hold for τ > τ0 , and in this case for any bounded φ ∈ C([−τ ,0]×R,R+)\ {0},
there holds

ud,∗
− � lim inf

t→∞, |z|�ct
u(t, z;φ) � lim sup

t→∞, |z|�ct
u(t, z;φ) � ud,∗

+ , ∀c ∈ (
0, c∗).

Proof. Statement (i) follows directly from Theorem 4.1 because (L1)–(L4) are satisfied with g(u) = du,

f (u) = εpue−qu and J (s, y) = δ(s−τ )√
4πγ

e− (z−y)2

4γ when β > 1. It remains to prove statement (ii). Note

that when β ∈ (1, e], F̆ d satisfies the condition (P1) in Lemma 2.2, and when β ∈ (e, e2], F̆ d satisfies
the condition (P2) in Lemma 2.2. It then follows form Lemma 2.2 that F̆ d has the property (P) when
β ∈ (1, e2], and hence, (L5) is also satisfied since f (u)

u = εpe−qu is strictly decreasing for u > 0. Thus,
when β ∈ (1, e2], for any bounded φ ∈ C([−τ ,0] × R,R+) \ {0}, we have the upward convergence

lim
t→∞, |z|�ct

u(t, z;φ) = ud,∗, ∀c ∈ (
0, c∗).

However, for any given β > e2, such convergence does not hold any more for large delay τ . Indeed, the
upward convergence implies that ud,∗ is globally attractive for the following spatially homogeneous
equation
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u′(t) = −du(t) + εpu(t − τ )e−qu(t−τ ), t > 0. (4.10)

On the other hand, [24, Theorem 2.3(ii)] implies that ud,∗ is an unstable equilibrium of (4.10) when
β > e2 and τ > τ0, where τ0 = τ0(β) > 0 is the first Hopf bifurcation point given by

τ0 = arccos 1
1−lnβ

d
√

(ln β)2 − 2 ln β
.

The rest part follows from Theorem 4.1(1). �
When τ > τ0, the upward convergence does not hold. In this case, we see from Theorem 4.1(3)

that for each c > c∗ , the unique wave profile U (x) satisfies

ud,∗
− � lim inf

x→+∞ U (x) � lim sup
x→+∞

U (x) � ud,∗
+ .

This gives rise to an interesting problem: Does U (x) oscillate at +∞? If it oscillates, does it connect
a periodic solution of (4.10)?

Remark 4.1. Capasso [2] presented the following epidemic model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t
u1(t, x) = d�u1(t, x) − a11u1(t, x) +

∫
Ω

K (x − y)u2(t, y)dy,

∂

∂t
u2(t, x) = −a22u2(t, x) + g

(
u1(t, x)

)
,

(4.11)

and Xu and Zhao [25] studied the spreading speed and monotone traveling waves by transforming it
into the integral form (1.2). In particular, the uniqueness of monotone traveling waves was established
under the assumption that g is increasing. By the uniqueness theorem developed in Section 3, even
without monotonicity of g , we can obtain the uniqueness for all possible wave profiles. Thus, there is
no non-monotone traveling wave when g is monotone.
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