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ABSTRACT On-lattice simulations of two-dimensional self-avoiding chains subject to homogeneous intramolecular attractive
interactions were performed as a model for studying various density regimes in globular proteins. For short chains of less than
15 units, all conformations were generated and classified by density. The range of intramolecular interactions was found to
increase uniformly with density, and the average number of topological contacts is directly proportional to density. The uniform
interaction energy increases the probability of high density states but does not necessarily lead to dominance of the highest
density state. Typically, several large peaks appear in the probability distribution of packing densities, their location and amplitude
being determined by the balance between entropic effects enhancing more expanded conformations and attractive interactions
favoring compact forms. Also, the homogeneous interaction energy affects the distribution of most probable interacting points
in favor of the longer range interactions over the short range ones, but in addition it introduces some more detailed preferences
even among short range interactions. There are some implications about the characteristics of the intermediate density states
and also for the likelihood that the native state does not correspond completely to the lowest energy conformation.

INTRODUCTION

Studies of the denatured states of proteins have established
the occurrence of partially folded equilibrium intermediate
structures (Ptitsyn, 1987; Kuwajima, 1989). These can be
stable states, experimentally observed under mild denatur-
ating conditions (Kuwajima et al., 1976; Dolgikh et al., 1981,
1984; Ikeguchi et al., 1986; Ptitsyn, 1987; Kuwajima, 1989).
They are more loosely packed compared with the native state
and yet exhibit substantial secondary structure. The term
"molten globule" was introduced by Oghushi and Wada
(1983) to describe these relatively compact but partially de-
natured states. The presence of compact intermediate states
accumulating before native state formation is also supported
by kinetic studies and spectroscopic measurements.

In parallel with such experimental work, a sequential fold-
ing mechanism based on intermediates of significant popu-
lation was proposed by Kim and Baldwin (1982), with more
detail than the classical "all-or-none" two-state theory of
structural transitions in polypeptides. More recently, the tran-
sitions among the intermediate, molten globule, and the na-
tive states have been theoretically investigated (Finkelstein
and Shakhnovich, 1989; Shakhnovich and Finkelstein,
1989). In their view, denaturation to the molten globule state
is postulated to be driven by the disruption of the tight pack-
ing of the side chains of amino acid residues. The rotational
isomerization of side chains is thought to take place only if
the intramolecular free volume exceeds a threshold value
large enough to entropically compensate the loss in attractive
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non-bonded energy (Shakhnovich and Finkelstein, 1989). In
one estimate, the increase in volume or decrease in density
of the molten globule state relative to the native state has been
stated (Ptitsyn and Semisetnov, 1991) to be approximately
30%. In another recent statistical mechanical analysis of the
stabilities of the three states of globular proteins (unfolded,
compact denatured, and native), Alonso et al. (1991) ana-
lyzed the role and strength of hydrophobic, electrostatic, and
entropic contributions. Reviews of the dominant forces in
proteins, either during the process of folding (Dill, 1990) or
in denatured states (Dill and Shortle, 1991), have appeared.
Conforming with Kauzmann's early viewpoint (Kauzmann,
1959), hydrophobic interactions are shown to play a major
role in protein stability, whereas the important effects of con-
formational entropy and electrostatic interactions, both op-
posing protein folding, are also recognized. In an alternative
approach, Ben-Naim and co-workers (Ben-Naim, 1989; Ben-
Naim et al., 1989a, b) argued that intramolecular hydrophilic
interactions and direct interactions with water are expected
to affect highly specific biochemical processes such as pro-
tein folding more effectively than hydrophobic interactions.
From an analysis of long-range contact residue types,
Miyazawa and Jernigan (1985) concluded that the strongest
interactions were among hydrophobic residues, but the most
specific ones were among the hydrophilic ones. This quali-
tative difference might lead one to expect a hydrophobic
collapse before an optimal arrangement of polar residues.

There also could be another reason for placing polar resi-
dues on the exterior and, by default, hydrophobic residues in
the interior. Proteins also have a network of polar hydrogen
bonds in their interiors. Earlier, Wada and Nakamura (1981)
suggested that helical dipoles, i.e., the interior electrostatics,
are arranged in a highly favorable way. If the polar side
chains were to be randomly embedded within such an inte-
rior, they would reduce the favorable interactions in the hy-
drogen bond network. Such a disruption would be especially
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large in the protein interior, which is generally perceived to
be a medium of rather low dielectric constant and conse-
quently stronger electric interactions. Nevertheless, we note
that, in aqueous media, the net effect of interactions between
amino acid residues, whether of hydrophilic or hydrophobic
origin, is invariably the occurrence of intramolecular attrac-
tive potentials enhancing the close packing of the globular
structure.

Generally, the thermodynamic picture that emerges from
all studies is that of a delicate balance between energetic
interactions in favor of the compact state and entropic driving
forces that oppose compactness. This balance determines the
preferential state, denatured, molten globule, or native, of the
protein, under well defined conditions. In fact, calorimetric
measurements indicate that the native states are only mar-
ginally stable relative to the unfolded states (Privalov, 1979).

Thus, two major factors need be considered in the crudest
model of protein structures. The first is entropic and is as-
sociated with the conformational freedom of the macro-
molecule, which inherently favors a loosely packed organi-
zation of the residues. This is the same factor that manifests
itself in the elastic response of polymer chains (Volkenstein,
1963; Flory, 1969). The second is the energetic/enthalpic
interaction between residues, with two principal aspects.
1) Repulsive interactions operate if residues are too close to
each other, i.e., van der Waals overlaps. In particular, spatial
overlap of two or more residues is not possible physically.
This effect is commonly referred to as the excluded
volume effect in polymer statistics (Yamakawa, 1967).
2) Nearby non-bonded residues interact directly with one
another through an attractive potential. This effective at-
traction is particularly evident for hydrophobic residues in
an aqueous environment. It would not be so apparent for
residues in good solvents, where monomeric units could
have a favorable contact energy with solvent.

In the present work, the probability distribution of various
packing densities was analyzed for various length chains, by
simulating self-avoiding walks (SAWs), representative of
protein chains, on a planar square lattice. The perturbation in
the density distributions brought about by various strengths
of attractive interactions was considered. The possible oc-
currence of well populated intermediate density states with
substantial structural organization was investigated, as well
as various characteristics of their organization. Two-
dimensional contact maps were used to analyze structural
similarities between different density regimes, just as the
crystal structures of different proteins were compared. Two
important questions asked were: 1) What and how well de-
fined are the characteristics of intermediates? and 2) Do the
structural characteristics of the intermediates persist into the
native state?
The approach here is simple but includes the major factors

of conformational entropy, excluded volume, and attractive
interactions that predominantly affect globular structures of
proteins. The important role of such low resolution models
and computational methods for exploring the type and
strength of factors which lead to stable tertiary structures in
globular proteins have been studied recently (Jernigan,

1992). In contrast to the classical methods of polymer con-
formational statistics (Flory, 1969), which have been widely
used as the basic model for molecular dynamics simulations
of biological systems (Brooks et al., 1988), the atomic-level
details of the structures are not considered in most such on-
lattice simulations of proteins. Many of these studies have
aimed at obtaining correct overall folds rather than focusing
on all atomic details (Covell and Jernigan, 1990; Hinds and
Levitt, 1992). In general, each regular site is identified with
at most one amino acid residue, which implicitly takes into
consideration the intrinsic excluded volume effect of real
chains. It is noted, however, that in a further simplification
to include more than one residue at one lattice point to con-
sider larger proteins, multiple occupancy was allowed in re-
cent lattice simulations by Hinds and Levitt (1992). The gen-
eral fold and arrangements of intramolecular contacts
corresponding to specific proteins were successfully cap-
tured in that low resolution approach. Thus, one main ad-
vantage of low resolution models appears to be the regular-
ization and reduction of conformational space, thus
improving the possibilities for understanding the factors af-
fecting specific folding patterns or those essential to stabilize
a particular structural motif.

In the case of short chains, a systematic analysis of all
possible configurations in a geometrically approximate but
numerically complete set that includes the native state is
feasible by the complete enumeration approach. An excellent
example is the work of Chan and Dill, whose exhaustive
simulations ofcompact short chains in square (Chan and Dill,
1989a, b) and simple cubic (Chan and Dill, 1990a, b) lattices
have provided important insights into the appearance of sec-
ondary structures, such as helices and sheets, in globular
proteins. From their studies, dense packing and/or restricted
conformational freedom emerges as a major factor respon-
sible for the regular components of the internal architecture
of globular proteins. Hydrogen bonding is thought to come
into play only at the stage of stabilizing some of the regular
patterns already driven by steric packing, in agreement with
previous work (Jaenicke, 1987). Those lattice simulations are
also notable in elucidating the preferential occurrence of
shorter helices in compact globular proteins, in contrast to the
more common longer helix behavior of homogeneous poly-
peptides in solution, and in providing estimates of the relative
proportions of different types of secondary structures ob-
served in the folded state.

MODEL AND METHODS

General approach
Polypeptide chains are represented as SAWs on a two-dimensional square
lattice. A given protein molecule consists ofNbonds connectingN + 1 units,
indexed from 1 to N + 1, each occupying a lattice site. It is convenient to
identify each unit sequentially with the individual amino acids in the se-
quence, as has been done in a large number of previous simulations of
proteins on a lattice. Alternatively, each unit could be viewed as a group of
several residues closely associated with each other, by hydrogen bonding
or other specific interactions, so as to be considered as a single united entity.
The position vector of the ith unit along the chain is denoted as ri. The units
are connected byNvirtual bonds, each oflength d., equal to the size oflattice
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cells. The geometry of the lattice restricts the available bond angles at each
step to the three discrete values ± 900 and 1800. A given chain conformation
is characterized by the set of position vectors corresponding to chain units
and is represented as {r} = {r,, r2, r3, . . ., rN+1}. Chain length refers to
the total number of units in a given chain. All sterically allowable confor-
mations were generated for chain lengths up toN + 1 = 14 units. Exhaustive
simulations of all SAWs on regular lattices have been extensively used in
polymer statistics (Barber and Ninham, 1970). Their application to the struc-
tural analysis of globular proteins has proven to be quite informative
(Taketomi et al., 1975; Go and Taketomi, 1978, 1979a, b; Chan and Dill,
1989a, 1990b).

Intramolecular interactions

The binary interaction between non-bonded units i and j is given by the
square well potential

(1)
Here ri-rjI is the magnitude of the separation vector ri - rj between units
i and j. 8 is the Kronecker delta, which is equal to 1 if its argument is equal
to 0 and is 0 otherwise. E. is the potential occurring in the case of a complete
overlap of residues i and j, and here always has the hard sphere value of
infinity. It accounts for the excluded volume effect present in SAWs. Eij is
the energy parameter corresponding to the specific interaction between units
i and j. A negative value is assumed for Eij to account for the general at-
tractive interactions between residues, as described above for proteins. In
the homogeneous system which is the subject of the present work, we do
not distinguish between individual units; therefore, the subscript ij on Eij can
be omitted. However, we choose to leave the subscripts for generality, an-

ticipating the consideration of specific interactions to be treated in the ac-

companying paper. It is clear from the above equation that units interacting
through this attractive potential are only those occupying neighboring sites
on the lattice, although they are not directly (by a single bond) connected
along the chains. Conforming with previous terminology, this type of con-
tact is referred to as a topological contact. Topological contacts between
units separated by k bonds along the chain sequence are referred to as
contacts of order k; as previously defined (Chan and Dill, 1989a).

In analogy to the expression for binary interactions, the energy for three-
body interactions among chain units i, j, and k is

E(r;, rj, rk) = Ejjk8(d. - ri - rj )8(d, - r; - rkI ) (2)
This expression represents the extra energy, in addition to that already ex-

isting between pairs, arising from the simultaneous linear contact of three
units. The generalization of the above expression to n-body interactions is
straightforward. In a two-dimensional square lattice with only nearest neigh-
bor lattice points interacting, no direct many-body interaction involving
more than z = 4 units, the lattice coordination number, is possible. Such a

quaternary cluster of interactions has not been considered here. Second, as
is shown, even ternary interactions are found to be of secondary importance,
which does not justify extensions in such a direction.
A given chain with conformation {r} is then subjected to the overall

conformational potential E{r}

E{r} = Y, [,Eij8(d. - ri -rjl + E.8(ri -rj)]
i,j

+ E Eijk8(d. ri -rj I ) 8(do - ri - rkI (3)
i,j,k

The above summations were performed over all distinct non-bonded units
participating in binary and ternary interactions.

Packing densities

The simulations in two dimensions were performed according to a chain
growth algorithm which eliminates, at each step, all of the self-intersecting
paths as well as all conformations related to each other by rigid body ro-
tations (or mirror reflection). This leads to a substantial reduction in the
conformational space compared with the random walk generations which

lead to 0 ((z - 1)N) conformations. The decrease in the number of attainable
conformations is the basis of the inherent free energy gain associated with
the excluded volume effect. Likewise, the variations in the population of
various packing density regimes give an indication of the entropic free
energy gain or loss associated with the compactness or expansion of the
chain.

Inasmuch as the probability distribution of various packing densities is
of interest, the generated chains can be classified according to their com-
pactness. The measure of packing density adopted in previous lattice simu-
lations (Chan and Dill, 1989a; 1990a) was taken to be the number Nr of
topological contacts in a given conformation, relative to that (Nc,max) oc-
curring in the most compact state. This ratio was referred to as compactness.
In the present work, a somewhat different approach was undertaken. Each
chain was assigned a number density p{r} on the basis of its length and the
spatial distribution of its individual units. Clearly, the analog of volume in
two dimensions is simply the surface S{r} value for a particular confor-
mation. For a chain ofN + 1 residues in the conformation {r}, p{r} is found
from the ratio

p{r} = (N + 1)IS{r} (4)
The estimation ofS{r} used here is illustrated in Fig. 1. The method closely
resembles that of Lee and Richards (Lee and Richards, 1971; Richards,
1977) for assigning surface areas/volumes to monomers. Accordingly, the
surface of a given protein is determined from the loci of the center of a probe
sphere that is rolled around the protein. The rolling ball is usually the size
of a solvent molecule. Here, a ball the size of an average residue was
adopted.

Three distinct conformations of a chain of 13 units are displayed in parts
(a) to (c) of Fig. 1, and the contour of S{r} in all cases are drawn. By
adopting the value do = 1, the corresponding densities are calculated as (a)
0.634, (b) 0.628, and (c) 0.621. On the other hand, the lowest attainable p{r}
value for a chain of the same length is 0.480, corresponding to the fully
extended state. It should be noted that the range of density values estimated
by the present approach is relatively narrow compared with the differences
in the dimensions of real expanded or collapsed chains, and real atoms for
a complete residue placed at each point would impart a substantially in-
creased roughness that would considerably change these surface areas. The
results here should be interpreted with these aspects of the model in mind.
The present estimation of the space allocated to a given chain is approximate
but is found to provide a systematic measure of overall packing densities,
being most effective in discriminating among different compact shapes of
globular structures, as shown below.

In terms of the previous measures of compactness, the three configu-
rations (a) to (c) would not be distinguishable, inasmuch as all three have
the same number (six) of topological contacts, as shown by the dashed lines.
This represents in fact the maximum number of contacts for a chain of 13
units. However, the present approach does afford the possibility of distin-
guishing among the three conformations by assigning different p{r} values
in the order (a) > (b) > (c), which conforms with their relative surface
contour lengths shown in Fig. 1. This latter quantity, which would be equiva-
lent to the surface exposure in three dimensions, is generally recognized as
an important characteristic of globular proteins. Other examples of con-
figurations with identical numbers NC of topological contacts but distin-
guishable number densities were observed in simulations, which support the
adoption of the present approach as an appropriate measure for analyzing
globule densities. Meanwhile, it is shown below that there is an exact linear
relationship between the topological number Nc of contacts and the above
number densities, provided that both quantities are averaged over the set of
conformations ranging within well-defmed packing density regimes.

In this way, a set of discrete density values can be obtained for each chain
length. Table 1 summarizes the number Np of discrete density values at-
tainable by a given chain for the entire collection of accessible conforma-
tions. Those numbers clearly increase with N because of the larger variety
of shapes possible with longer chains. The third column in Table 1 lists, on
the other hand, the maximum numberNc of topological contacts in each
case. Both quantities, each of discrete densities or each number of the at-
tainable topological contacts, may be used to characterize the chain com-
pactness. The first is adopted here, whereas the second has been commonly
used in previous work. From an examination of these values, it is clear that
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(a)

( k ) ~~~~~~(b)

(C)

FIGURE 1 Schematic representation of three compact structures of a
chain ofN + 1 = 13 units on a square lattice. All chains have the same
number (six) of topological contacts, indicated by the dotted lines. The
curved contours indicate the perimeters enclosing the surface S allocated to
the chains. They are used to obtain the surface densities (a) p = 0.634, (b)
p = 0.628, and (c) p = 0.621 for the packing densities in the three con-
formations.

a substantially more detailed classification of various chain packing den-
sities is possible by considering p{r} values rather than Nc values.

For a statistical analysis of the probability distribution of p{r} , the total
accessible density range for each chain length is divided into an equal num-
ber (seven) of intervals of size Ap. Chain conformations leading to distinct
density intervals p ± Ap are grouped together to evaluate the probability
distribution function P(p) as

P(p) = Z`1 exp(- E{r p}/RT) (5)
{r p}

where R is the gas constant and T is the absolute temperature. The notation
{r p} refers to the subset of conformations whose packing densities range
in the particular interval p ± Ap. The above summation is performed over
all conformations belonging to that subset. Z is the conformational partition
function evaluated as usual from the summation of the Boltzmann weights
of all of the generated SAWs.

Contact maps

Two-dimensional maps of inter-residue separations have proven to be quite
useful in reflecting secondary and tertiary structures of globular proteins
(Liljas and Rossmann, 1974). The axes represent therein the indices of the
amino acid residues ordered as in the primary sequence, and contours of
equal separation between residues are drawn. The utility of this represen-
tation lies in detecting long-range topological neighborhoods between pairs

TABLE 1 Numbers of attainable discrete densities and
maximum numbers of topological contacts per chain for
different chain lengths

Chain length
(N + 1) Np Nc,max

6 8 2
7 11 2
8 17 2
9 21 4
10 28 4
11 36 5
12 44 6
13 51 6
14 62 7

of residues which are well separated along the chain sequence. In this re-
spect, it contrasts to two-dimensional contour energy plots, which account
only for the interdependence of locally connected bonds. Another principal
advantage of the maps is that secondary structures such as a-helices and
(3-sheets stand out strikingly, thus allowing for a global analysis of structural
similarities between different globular proteins. a-Helices appear as lines
of slope -1 near the diagonal. Parallel (3-sheets have slope -1 but are located
farther from the diagonal, and antiparallel (3-sheets have a slope of + 1.

This type of representation has been used by Chan and Dill (1989a, b;
1990a, b) for analyzing the topological contacts between residues in the
chains simulated on regular lattices. Accordingly, contacts are assigned free
energies, depending on the reduction of the conformational space brought
about by their occurrence. Those free energies are readily calculated from
the ratio of the number of chains subject to a given contact to the total
number of generated SAWs. In the present case of chains subject to intra-
molecular interactions, Boltzmann weighting factors are used to evaluate the
probability of occurrence of particular conformations, leading to the ex-
pression

AG(i, j) = -RT ln[Z E exp(-E{r [i, j]}IRI]
r (i,j))

(6)

for the change in free energy due to topological contact between units i and
j. In analogy to the notation used in Eq. 5, {r [i, j]} denotes the subset of
conformations in which units i and j are in contact. The summation is per-
formed over all conformations in this subset. The term in brackets represents
the probability of occurrence of a conformation having topological contact
between units i and j. This quantity is denoted as P(i, j).

For purposes of characterizing the conformations of intermediates as well
as compact states, the present approach may be extended to analyze the free
energy changes associated with specific contacts in well defined density
regimes. Thus considering a given density interval p ± Ap, an expression
analogous to Eq. 6 reads

AG(p; i, = ln[Z-'P(p) 1 exp(-E{rI (p; i,j)}IRT)]
RT [ {rI(p;i,j)}

= - ln[P(p; i, j) P(p)] (7)
Here {r (p; i, j)} stands for the conformations having contact [i, j], within
the studied density interval. AG(p;i, j) represents the free energy change
associated with contact [i, j], provided that the density interval p ± Ap is
presumed. Thus, the last expression in square brackets in Eq. 7 is the con-
ditional probability of occurrence of a chain with contact [i, j], in the speci-
fied density range.

RESULTS FROM CALCULATIONS AND
DISCUSSION

Probability distribution of packing densities

To elucidate the relative contributions of the entropic and
enthalpic effects on the probability distribution of packing
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densities, simulations were carried out for two major cases:
1) systems subject to no other intramolecular interaction than
volume exclusion (or a hard-sphere interaction potential with
the interaction energy parameters Eij and Eijk taken to be zero),
and 2) systems subject to attractive intramolecular interac-
tions. The first is interpreted as the chain entropic contri-
bution. The second yields the perturbations brought about by
the introduction of homogeneous intramolecular attractive
interactions. Inasmuch as we focus here on nonspecific in-
teractions, a constant value of Eij = E is adopted for inter-
actions among all units i, j of the chain. Ternary interactions
will not be included in the calculations except in the last
section below. Results are expressed in terms of dimension-
less reduced energy parameters E = E/RT. In this way, the
representation of interaction energies can be alternatively
interpreted in terms of temperature.
The probability distribution functions P(p) calculated for

various chain lengths, 6 . N + 1 . 14, by taking Eij = 0,
are shown in Fig. 2. Solid (odd) and open (even) circles
represent the results of the simulations. They are connected
by lines to guide the eye. On the right, the total number of
distinct SAWs generated for each chain length are listed,
which are in agreement with previous work (Chan and Dill,
1989a). The striking multi-modal shape exhibited by the
shorter chains (N ' 9) was the feature which initially mo-
tivated the present study. However, the latter is found to
vanish gradually as larger sized chains are considered. The
question of the possible preference for well defined density
regimes, based upon a simple consideration of entropic and
homogeneous intramolecular attractive effects, was posed.
The counterpart of Fig. 2 obtained in the presence of at-

tractive interactions of magnitude Eij/RT = E = -0.84 is
shown in Fig. 3 for 9 ' N + 1 ' 14. In general, the packing
densities are shifted toward higher values, as a natural con-
sequence of the attractive interactions favoring more com-
pact structures.
A closer examination of the effect of various attractive

interaction strengths is shown in Fig. 4, where the pertur-
bation in the probability distribution of packing density for
two distinct values of the reduced energy parameters is
shown for a chain of 9 units. The heavy dashed curve rep-
resents the unperturbed distribution function. The light
dashed and smooth curves correspond to the cases E = -0.84
and -1.68, respectively. It is clearly shown that the increase
in the attractive interaction or decrease in temperature sig-
nificantly changes the distribution function and enhances the
probability of the denser states. The most compact state cor-
responding to the point on the curves most to the right does
not so readily become the most probable due to its intrinsic
low population. The value of E = -0.84 corresponds, for
example, to an attraction of 0.5 kcal/mol at 300 K, which may
be considered a rather weak interaction. However, its effect
on the distribution function is dramatic.

These results invite attention to the intermediate density
states that can be stabilized by the intramolecular attractive
interactions. In the case of longer chains, the structured
shape of the probability distribution function is relatively
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FIGURE 2 Probability distribution of densities for model protein chains
of 6 ' N + 1 ' 14 units in the absence of an intramolecular attractive
potential. The complete number of distinct self-avoiding chains generated
for each chain length is indicated on the right. Open (even) and solid (odd)
circles represent results from simulations averaged over conformations in
the seven density intervals within the full density range accessible to each
chain. Points are connected to guide the eye.

smoothed, as illustrated in Fig. 5, but the appearance of a
highly probable high-density domain, with packing effi-
ciency close to that of the most compact state, is even more
pronounced. In addition, for values used here, the most com-
pact state is not the most favored state. The observations lend
support to the simple hypothesis that favorable, even ho-
mogeneous, intramolecular interactions could be the main
source of stabilization of intermediate compact but denatured
states in proteins. It also supports the view that the most
compact conformation may not be the most favorable.
The appearance of the above peaks in the distribution func-

tions rests on a sensitive balance between entropic and en-
thalpic effects. The substantial decrease in the conforma-
tional space as one moves into a more compact regime may
or may not be counterbalanced by intramolecular interac-
tions, depending on the strengths of the latter. If we confine
our attention to the two most compact density intervals for
chains with N > 10, for example, the total number of ac-
cessible SAWs is found to decrease by a factor of about 5,
as one moves into this higher density range. If the newly
reached compact regime allows for the occurrence of an ad-
ditional topological contact, which may lower the free energy
by more than -RT ln 5, then the most compact state will
become preferred, because the attractive potential more than
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FIGURE 3 Probability distribution of densities for model protein chains

of 9 s N + 1 ' 14 units in the presence of attractive interactions of 0.5

kcallmol between residues at 300 K (see legend to Fig. 2). In general, the
peaks are shifted toward larger values compared with Fig. 2, because of
inter-residue attractions. The multi-modal character of the distribution func-
tions corresponding to longer chains also is more pronounced.

overcomes the entropic effect opposing compact forms. Oth-
erwise, the less dense structures will dominate. The attractive
interactions of '1.68 RT adopted in the above calculations

0.40 F 9 units -1.0 kcal/mlw

0,~~~~

0.30.

o.o

arehowfore =0, 0.5, an -1.0 kcamllmol30K Svrl ek

0.20

,0~~~~~
0.1
~~ ~ ~ ~ ~ 0

0.00
0.46 0.50 0.54 0.58

density

FIGURE 4 Influence of attractive interactions of various strengths on the

probability distribution of densities for the model chains of 9 units. Curves

are shown for E = 0, -0.5, and -1.0 kcallmol, T = 300 K. Several peaks

are observed, indicating intermediate density regimes can be stabilized by
homogeneous attractive potentials.
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FIGURE S Influence of attractive interactions of various strengths on the
probability distribution of densities for model chains of 12 units. Curves are
shown for e = 0, -O.S, and -1.0 kcal/mol, T = 300 K. Next-to-highest
density regime is enhanced by the increase in attractive interactions.

are large enough to enhance the probability of the two highest
density regimes, yet relatively weak such that a preference
for the less dense regime of the two prevails. Stronger at-
tractive interactions would simply lead to a distribution func-
tion strictly increasing with packing density.

Topological contacts in various density regimes
The average number of topological contacts per chain oc-

curring at various density intervals is shown in Fig. 6. The
ordinate Nc(p) is calculated by considering all conformations
ranging in a given density interval for chains of fixed length.
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FIGURE 6 Increase in the average number N,(p) of topological contacts
in a given density regime with increasing density p. Results for various chain
lengths, 6 ' N + 1 ' 14, are almost indistinguishable, yielding the linear

relationship between Nc(p) and p.
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It is observed that results obtained for various chain lengths
are almost indistinguishable. The resulting master curve in-
dicates an approximately linear relationship between the
number NC of topological contacts and the packing densities
p{r}, provided that both are averaged over distinct density
ranges. This analysis provides a direct validation of the use
of the number of topological contacts for measuring packing
density.
A more detailed analysis is achieved by classifying the

topological contacts according to their order, i.e., the sepa-
ration along the chain, between units participating in a given
contact. Because of the particular geometry of the lattice,
contacts between units separated by an even number ofbonds
are not possible. The lowest order contact that can occur is
between units separated by three bonds. These are the only
types of contacts observed at low densities. With a gradual
increase in density, contacts of higher order come into play
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possible cases giving rise to them: in a chain of 14 residues
as considered above, 11 pairs of residues may participate in
contacts of order 3, while only a single pair, the terminal
residues, are responsible for contacts of order 13. In this
respect, the contributions of the more distant pairings are
underestimated if their a priori probabilities of occurrence are
disregarded. The above analysis gives information on the
probability of contacts of various orders, in general, but does
not give information on the relative participation of specific
units in those contacts. Thus, although contacts of order 3 are
highly probable, for example, not all of the units are expected
to be involved with the same probability in those contacts.
These features are most clearly analyzed with the help of
contact maps.

Contact maps
uflil way, ao IIIULtLdLrU iii 1rig. I lul LII CnailnUi 1 We concentrated on the chain of 14 units because of its large

Here the abscissa indicates the seven distinct density number (110,188) of accessible distinct SAWs. This con-
ls that were examined. The fraction of lowest order formational space was considered large enough to yield sta-
) contacts diminishes as one moves into more compact tistically reliable results.
s. Gradually, contacts of order k = 5, 7, ... etc. ap- The two upper triangular maps in Fig. 8 display the change*nd their relative frequency also follows the same hi- in free energy due to topological contacts, AG(i, j), resulting
ical order. The pie chart on the lower left corner of the from (a) entropic and (b) entropic plus enthalpic effects. The
shows the fraction of contacts of various orders oc- reduced energy parameterE* is taken as 0 in (a). It is equal
in the highest density regime. The probability dis- . i (no ~~~~~~~~~~~~to-1.68 in (b). The residues with indices 1 c- i c< 11 andrn of contacts of various orders in the most compact . + 3 - i - 14 are shown in the ordinate and abscissa,
further explored below, respectively. These are the only units that may participate inhigh probability of occurrence of lowest order topo- topological contacts in a square planar lattice. Positions
contacts arises, in part, from the larger number of along the diagonal correspond to contacts of lowest order

(k = 3). Contacts of higher order are located farther from the
diagonal, their displacement increasing with their order.
Darker regions in the maps indicate lower energy contacts.
As mentioned above, contacts between units separated by an
even number of bonds are not geometrically possible. For
visual clarity, these contacts are smoothed by assigning mean

,..,, ...ss MIvalues as the arithmetic average of the four neighboring
~~~~~points for inner ones with four neighbors, or two neighboring
points along the edges for those involving either one of the
terminal units. Alterative three- dimensional views of the
same results are shown in Fig. 9, (a) and (b), which permit~~~~~~~~~~~~~anesie viulzto ofte for ofte free eneg sufae

........>X3i_22e. e-...... * =;0f| An examination of Figs. 8 and 9 reveals several important
..° k=11 consequences of introducing intramolecular attractions.

From the comparison of the two contact energy maps in parts
~~k=5 ~~(a) and (b) of Fig. 8, the dominance of contacts of order 3,

.._ 0 k=3 along the diagonal, is found to be significantly attenuated.
..............Contacts between terminal residues and any other residue in

X .. ............... .the chain now compete more efficiently with them. In par-
1 2 3 4 5 6 7 ticular, contacts between the two terminal residues are con-

DENSITY RANGES siderably enhanced. These are attributed to the joint effect of
the high mobility or greater conformational freedom of the

7 Fractional contribution of contacts of ranges of interaction in terminal units, supplemented by attractive interactions fa-
density regimes for model chains of 14 units. Only odd-numbered voring compact forms. The new energy surface appears to
epermitted because of the lattice geometry. The proportion of lower
itacts decreases with increasing density. The pie chart on the lower
rates the fraction of contacts of various orders observed in the high- so distinguishable in the absence of interaction energetics.
ty regime. However, a more important feature seen in the figures is the
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FIGURE 8 Maps of contact free energies AG(i, j) between residues 1 '
i < 11 and i + 3 ' j ' 14 for the complete set of 110,188 chains of 14
units subject to (a) entropic effects only and (b) entropic plus enthalpic
effects with attractions of -1 kcal/mol between residues at 300 K. Residue
indices are shown on both edges of the upper triangular maps. Darker re-
gions indicate the lower energy contacts. Points along the diagonal represent
contacts of lowest order between residues i and i + 3. Loci away from the
diagonal correspond to more distant residues. The smooth distribution of
energies in (a) becomes more specific in the presence of attractive inter-
actions. An enhanced probability for contacts involving terminal residues
is observed in (b). See legend to Fig. 9.

significant lowering of the free energy surface in (b) as com-
pared with (a). This may be verified from the relative heights
of the two surfaces in Fig. 9. The difference between the
maximum and minimum values in the absence of intramo-
lecular interactions is 3.1 RT. Inclusion of intramolecular
attractions reduces this value to 1.3 RT. This decrease sug-
gests that the homogeneous attractions between residues fa-
vor contacts, which are not quite favorable from the entropic
point of view alone, at the expense of those occurring be-
tween nearest neighbors along the primary sequence. An
analysis of this enthalpic contribution AH(i, j) to the free
energy of contacts is carried out by taking the difference of
the energy values in the two cases. The results are shown in
Fig. 10. The upper part is the map of contact enthalpies and
the lower part shows the corresponding isoenthalpic con-
tours, ranging from -1.6 RT to 0.4 RT with 0.2 RT incre-
ments. The contacts of order 3 along the diagonal are subject
to positive enthalpy values. It is clear that the enthalpic ef-
fects promote contacts between sequentially more distant

3.2 RT

AG (i,j)

0

1.4 RT

a 9 7

i 273 7St 1

11

11AG (i,j)

0

FIGURE 9 An alternative representation of the free energy surfaces
AG(i, j) of Fig. 8 (a) and (b). A decrease by a factor of about 2 is observable
in the height of the free energy surface upon introduction of attractive in-
teractions between residues. The net effect is to reduce to a large extent the
proportion of contacts between nearby residues (along the diagonal) and to
enhance higher order contacts.

residues, their impact being largest at the nearly maximally
separated pair [2, 13].

Finally, from the comparison of the diagonals in the two
maps of Fig. 8, we note that an even-odd type effect occurs
in (b), favoring alternating contacts of order 3. For example,
with an interaction energy, although the contact [1, 4] is
highly probable, the next contact, between residues 2 and 5,
has a considerably lower probability. The contact [1, 4] ne-
cessitates two consecutive bond angles of 900. A given chain
cannot simultaneously exhibit both [1, 4] and [2, 5] contacts
due to square-planar lattice geometry. Inasmuch as the ter-
minal residue has a larger degree of conformational freedom
than the second, the probability of chains with the [1, 4]
contact is larger and precludes the [2, 5] contacts. This ex-
plains the relative energies of the two highest points along
the diagonal. On the basis of the decreased mobility of inner
residues, one might expect to observe a lower probability of
contact as subsequent points along the diagonal are consid-
ered. This is not the case. The contact [3, 6] is more favorable
than [2, 5]. The origin of this behavior lies in the existence
of strong correlations between contact pairs. In fact, contact
[1, 4] is observed to be accompanied by [3, 6] in a large
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FIGURE 10 Enthalpy change AH(i, j) of contact [i, j] due to attractive
interactions between residues. Both contact map (top) and isoenergetic con-
tours (bottom) are displayed for completeness. Contours are drawn at in-
tervals of 0.2 RT ranging from -1.6 RT to 0.4 RT. Labels indicate reduced
values, i.e., AH(i, j)IRT. Homogeneous attractive interactions are found to
lead to an unfavorable enthalpic effect on the association of nearby residues,
while contacts between more distant pairs are favored.

number of conformations. The simultaneous occurrence of
those two contacts gives rise to a helical structure, one of the
regular structures driven by compact state formation. Thus,
the introduction of even relatively mild attractive interac-
tions, aspresentlyperformed, enhances the tendency ofchain
segments to be organized into regular patterns. Correlations
induced by specific attractive interactions are further ex-
plored in more detail in the accompanying paper.
We studied the similarities between topological contacts

occurring in various density regimes. The three highest pack-
ing density intervals (p = 0.645, 0.621, and 0.598) were
considered forN = 13. Fig. 11 displays the free energy sur-
faces corresponding to the cases (a) p = 0.645, (b) p =
0.621, and (c) p = 0.598, respectively. The close similarity
between the two surfaces (a) and (b) is clearly apparent,
whereas case (c) yields a free energy surface quite distinct
both from qualitative and quantitative standpoints. Corre-
sponding contact energy maps and contours are also pre-
sented as parts (a) to (c) of Fig. 12. Contours are drawn
uniformly with 0.2 RT increments, starting from the lowest
energy level (at [1,4]contact) up to 1.4 RT in each case, to
facilitate a comparison of the results. The maximum energy

FIGURE 11 Comparison of the free energy surfaces AG(i, j) obtained in
three highest density regimes for chains of 14 units subject to homogeneous
attractive interactions of -1.0 kcal/mol between residues at 300 K. The
respective densities are (a) 0.645, (b) 0.621, and (c) 0.598. See also legend
to Fig. 12.

(2.2 RT) occurs in part (c), at location [2, 13], as indicated.
A closer examination of the surfaces in Fig. 12, (a) to (c),
indicates that the two most compact structures preserve most
of the same topological contacts, while the topology ob-
served in the next slightly looser packing density regime
exhibits substantial change. The most striking feature is the
disappearance of higher order contacts and a more uniform
frequency for the shortest range interactions, with a slight
lowering of the chain density. It is noted that the average
numbers of contacts per chain occurring in those domains are
(a) 7, (b) 5.95, and (c) 4.71, as shown in Fig. 6. Thus, about
one contact on the average is broken upon the decrease in the
packing density as one moves from (a) to (b) and then (c).
The passage from (a) to (b) does not bring about severe
changes in topological contacts. However, a slight further
expansion in chain dimensions from (b) to (c) leads to the
disruption of the contacts between the most distant (in the
primary sequence) residues. These contacts may, in fact, play
a major role in stabilizing observed tertiary structure of the
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4 5 6 7 8 9 10 11 12 13 14

FIGURE 12 Contact maps and correspond-
ing contour plots for the free energy surfaces
AG(i, j) displayed in Fig. 11. The respective
densities are (a) 0.645, (b) 0.621, and (c) 0.598.
Contour labels are given in reduced units. (a)
and (b) exhibit similar structural characteristics,
whereas in (c) the probability of topological
contacts between more distant residues is sig-
nificantly decreased, as indicated by the high
energy domain of 2.2 RT centered around the
pair [2, 13].
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globular proteins, and a major disruption of the folded
molecule may be engendered near this point.

Contacts of lowest order in compact structures

We studied the fractional contribution of contacts of various
order in the subset of conformations subject to the largest
numbers of topological contacts. The pie chart in Fig. 7 in-
dicates that, for a 14-unit chain, the contribution of lowest
order (k = 3) contacts is 39% in the highest density regime,
while the fraction of contacts between the most distant resi-
dues is 5%. Calculations repeated for various chain lengths
indicate that the relative contribution of contacts of lowest
order diminishes uniformly with increasing chain length.
Those contacts may be representative of short-range inter-
actions such as hydrogen bonds between residues i and i +
3 in a-helices. The determination of their fractional occur-

rence is important for assessing the relative role of short-
range interactions in stabilizing compact structures. With the
objective of deducing an asymptotic value valid for long
polypeptide chains, compact structures of N + 1 = 16 and
25 units were generated. These numbers belong to the set of
so-called "magic numbers" for two-dimensional planar lat-
tice geometry and present the advantage of leading to a

unique shape (square) for conformations with maximum
numbers of contacts (Chan and Dill, 1989a). Thus, the prob-
lem reduces to the generation of all SAWs confined to 4 X
4 and 5 X 5 squares. 69 and 1081 SAWs result from a com-

plete enumeration of all distinct conformations, for the two
cases, in agreement with previous work (Chan and Dill,
1989a). The pie chart in Fig. 13 indicates the fraction of
contacts of all orders in the most compact chains of 25 units.
The probability of lowest order contacts is now depressed
from 39% in 14 units to 30% for 25 units. An extrapolation
to infinite chains yields a value of about 19% and 20-22%
for proteins with 100-200 amino acids. This relatively low
proportion of near neighbor interactions may explain why

3.94%3.35%

30.12%
5.67%

5.79%

7.68%

11.01%

0 3
M 5

la 7
.9

11
* 13

15
17
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* 21

* 23

FIGURE 13 Distribution of topological contacts of various orders 3 ' k
' 23 in the most compact state of a chain of 25 units. Local interactions
between nearby units (k = 3) amount to 30% of all observed contacts in the
set of 1081 distinct conformations. The proportion of higher order contacts
decreases with their order.

theories based on intrinsic propensities alone (i.e., short
range interdependence between closest residues along the
primary sequence) are insufficient to account adequately for
tertiary and secondary structures in proteins.

Contacts among near neighbors, which amount to about
20% of all possible contacts according to our extrapolation,
would be only those among residues participating in helices
and turns in real proteins. Kabsch and Sander (1984) reported
a participation of 21.2% of residues in helices, 13.9% in
antiparallel sheets and and 4.5% in parallel sheets, based on
crystallographic observation of 62 globular proteins. This
observation offers some support of our extrapolation. Also,
in a recent rotational isomeric states statistical approach with
seven states per residue, Rooman et al. (1992) demonstrated
that conformational probability distributions based on local
interactions (5-15 residues) yield some structural informa-
tion on 44% of protein segments. Those are the segments in
which a minimum energy conformation with a sufficiently
large energy gap between other conformers exists, and about
68% of those minimum energy conformations match the ex-
perimentally observed folds of 69 proteins of well-resolved
structures. Thus, the estimation of the correct tertiary fold on
the basis of local interactions is possible with a probability
of approximately 25%, which is in reasonable agreement
with our extrapolation.

Influence of homogeneous ternary interactions

Contact free energy maps and corresponding contours were
obtained (data not shown) by taking (a) Eijk = 0 and (b) Eijk
= -1.0 kcal/mol at 300 K for the most compact state of a
chain of 25 units. Inclusion of binary attractive interactions
does not alter the maps, because all of the conformations in
this subset are subject to the same number (i.e., 16) of to-
pological contacts, and the relative statistical weights remain
unchanged. The two cases exhibit only nearly indistinguish-
able differences: a small enhanced preference for contacts
involving terminal residue(s) is discernible in case (b). The
corresponding surface is somewhat more articulated than for
case (a). Except for those two features, both maps indicate
the same qualitative and quantitative characteristics. In this
respect, we conclude that nonspecific homogeneous ternary
interactions may have a relatively negligible effect on the
topology of the compact structures themselves.

CONCLUSIONS

It is widely recognized that for a realistic understanding of
protein stability and folding, the heterogeneity and speci-
ficity of intramolecular interactions need be considered. This
is an essential requirement prescribed by the uniqueness of
the most compact, i.e., native state. Likewise, a large portion
of conformations occurring in the less dense, compact, but
denatured regime might be biased by the same type of het-
erogeneous and specific interactions. Those effects were not
considered in the present work. A general perspective was
considered, with the objective of searching for the role of
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homogeneous interactions possibly stabilizing intermediate
density states and, having established their occurrence under
suitable attractive interactions properly counterbalancing the
adverse entropic effects, investigating the topological simi-
larities between the most compact and less tightly packed
stable structures.
The analysis invites attention to one or more intermediate

density structures stabilized by attractive interactions of
about 0.5-1.0 kcal/mol between residues. This is indicated
by the distinct peaks appearing in the probability distribution
functions for packing densities shown in Figs. 3-5. In gen-
eral, the highest peaks are not located at the very highest
density point but are shifted slightly toward less tightly
packed regimes. The next-to-highest density state is pre-
ferred for the longer chains in the present results. These ob-
servations raise the question of whether the native state, or
the most probable state, corresponds to the highest density
form displayed in the figures or to somewhat lower density
states, which exhibit relatively low free energy. Results here
and our previous results (Covell and Jernigan, 1990) and
those of Shakhnovich et al. (1991) suggest that the identi-
fication of native states with the most compact states or mini-
mum energy states may not strictly hold. In fact, if kinetic
accessibility is a factor affecting the type of equilibrium
folded structures observed in proteins, compact but some-
what less dense regimes may well be a better starting point
for investigating the protein folding-unfolding problem.
The occurrence of multiple peaks in the density distribu-

tion functions brings into consideration another question of
whether it possible to identify the energetically favorable
intermediate density states with the molten globule state. The
relative frequency of those intermediate density states rests
on a delicate balance between attractive interactions favoring
compact forms and the entropic effect enhancing less dense
states with higher conformational freedom. The present
study suggests that the existence of stable compact but de-
natured states in globular proteins with packing density lower
than the native state may be accounted for by a simple model
of SAW chains with a homogeneous intramolecular attrac-
tive potential. The attractive interactions between residues
may be viewed as an indirect consequence of the hydropho-
bic effect, inherently favoring condensation of the protein
structure. In this respect, the present work brings into con-
sideration the possible nonspecific role of hydrophobic in-
teractions in stabilizing the molten globule state.
A comparison of the structural characteristics of model

chains, with and without interactions between residues, in-
dicates that the homogeneous attractive interactions between
units have an adverse effect on the association of nearby
units, while contacts between more distant residues along the
primary sequence are enhanced. This interesting feature
emerges from the contact enthalpy map displayed in Fig. 10.
Another interesting observation was the close resemblance of
the two most compact regimes, which distinctly disappeared
upon a small decrease in packing density. The major struc-
tural difference arising in the lower density range was the
substantial elimination of the topological contacts between

residues located farther apart along the primary sequence.
These types of disruptions may be critically important in
inducing the complete denaturation of the molecule. Such a
result is qualitatively consistent with a picture in which the
range of interactions increases upon folding, if the density
increases directly at every folding step. However, the present
results are not consistent with a view (Miyazawa and Jerni-
gan, 1982; Moult and Unger, 1991) that conformational char-
acteristics (probably contact pairs) observed at states of
lower density persist to states of higher densities. As a final
remark, the present analysis indicates that contacts among
near neighbors along the primary sequence amount to ap-
proximately 20% of all possible contacts in compact struc-
tures in typical proteins of about 100-200 amino acids. This
relatively low proportion suggests that intrinsic propensities
are not the major factor determining the tertiary structure of
globular proteins.
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time and staff support at the Biomedical Supercomputing Center at the
Frederick Cancer Research and Development Center.
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