
Chinese Journal of Aeronautics, (2014),27(5): 1242–1250

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com
Adaptive Gaussian sum squared-root cubature

Kalman filter with split-merge scheme for state

estimation
* Corresponding author. Tel.: +86 535 6635877.

E-mail address: liuyu77360132@126.com (Y. Liu).

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.cja.2014.09.007
1000-9361 ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. Open access under CC BY-NC-ND license.
Liu Yu *, Dong Kai, Wang Haipeng, Liu Jun, He You, Pan Lina
Institute of Information Fusion, Naval Aeronautical and Astronautical University, Yantai 264001, China
Received 23 June 2013; revised 4 December 2013; accepted 6 May 2014

Available online 28 September 2014
KEYWORDS

Adaptive split-merge scheme;

Gaussian sum filter;

Nonlinear non-Gaussian;

State estimation;

Squared-root cubature Kal-

man filter
Abstract The paper deals with state estimation problem of nonlinear non-Gaussian discrete

dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called

the adaptive Gaussian-sum square-root cubature Kalman filter (AGSSCKF) with a split-merge

scheme is proposed. It is developed based on the squared-root extension of newly introduced cuba-

ture Kalman filter (SCKF) and is built within a Gaussian-sum framework. Based on the condition

that the probability density functions of process noises and initial state are denoted by a Gaussian

sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of sys-

tem with the corresponding weights respectively, which is adaptively updated. The new algorithm

consists of an adaptive splitting and merging procedure according to a proposed split-decision

model based on the nonlinearity degree of measurement. The results of two simulation scenarios

(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demon-

strates comparable performance to the particle filter with significantly reduced computational cost.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.
Open access under CC BY-NC-ND license.
1. Introduction

State estimation of nonlinear discrete-time stochastic dynamic
systems is a fast growing area playing a crucial role in many

fields such as target tracking1, satellite navigation, signal
processing, fault detection, adaptive and optimal control prob-
lems and decision-making process.2

A general solution to recursive state estimation problems,
based on the Bayesian approach, is given by the Bayesian

recursive relation (BRR) for probability density functions
(PDFs) of the state conditioned by the measurements. An opti-
mal estimate of the target state is then computed from the pos-

terior density. However, due to the nonlinearities in the system
measurement model of the stochastic dynamic systems, the
optimal solution from Bayesian filtering is mathematically

intractable.3

In the last decade, novel approaches to suboptimal filter
design based on the polynomial interpolation or the unscented

transformation, have been published.

https://core.ac.uk/display/82008973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2014.09.007&domain=pdf
mailto:liuyu77360132@126.com
http://dx.doi.org/10.1016/j.cja.2014.09.007
http://dx.doi.org/10.1016/j.cja.2014.09.007
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2014.09.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation 1243
The suboptimal methods approximate nonlinear functions
in the state or the measurement equation by the Taylor series
up to the first or second order. The BRR’s solution based on

this approximation leads to e.g. the extended Kalman filter
or the second order filter,4 which linearizes the measurement
model and often results in unstable performances, including

poor estimate accuracy and divergences.5

The approximation of the nonlinear functions by means of
Stirling’s polynomial interpolation leads to the divided differ-

ence filters.6 Instead of a direct replacement of the nonlinear
functions in the system description by their approximation,
some moment-matching filters such as the unscented Kalman
filter (UKF),7 the Gauss-Hermite filter8 and the cubature Kal-

man Filter9 deterministically select a set of weighted sample
points to approximate the posterior probability density. These
filters are often referred to as the sigma point Kalman filters or

the derivative-free Kalman (local) filters and show improved
performance over the EKF. However, there is an important
implementation issue that arises in the UKF, particularly in

high-dimensional systems. Specifically, the ‘‘plain’’ UKF10

results in some negative weights for state dimensions greater
than 3, which could potentially lead to numerical problems.

A notable advantage of the CKF over the UKF is its numer-
ical stability. In particular, according to the numerical stability
factor metric defined in Ref.9, the CKF is more stable with
desirable numerical properties. Furthermore, the CKF has bet-

ter accuracy as seen through its lower root mean square posi-
tion error and bias norm compared with the UKF.

Some of the recent nonlinear filtering algorithms built using

sequential Monte-Carlo-based methods such as particle filters
(PF), do provide good performance, but they can be computa-
tionally quite expensive.11,12

Recently, Pei et al.13 proposed an efficient nonlinear filter-
ing algorithm called the Gaussian-sum cubature Kalman filter
(GSCKF) showing comparable performance to the PF for the

bearings-only tracking problem.13 But the split-merge scheme
in GSCKF is not adaptive and the numerical stability of
CKF has to be improved. Especially, the case that there is a
significant amount of process noise is not considered in

GSCKF and it will increase the variance of each term in the
Gaussian sum and thereby create a large overlap of the indi-
vidual Gaussian term.14

In this paper we propose the adaptive Gaussian sum based
squared-root cubature Kalman Filter with split-merge scheme
(AGSSCKF) for the State estimation problem in nonlinear

and non-Gaussian systems and compare its performance
against GSCKF and other conventional algorithms. The main
features of AGSSCKF are the following.

(1) It is built using the squared-root extension of newly
introduced cubature Kalman filter (SCKF),9 which uses
the third-degree spherical-radial rule to numerically

approximate the multidimensional integral involved in
Bayesian filtering.

(2) The initial conditions of the algorithm are similar to that

of the Gaussian sum unscented Kalman filter
(GSUKF),15 whereby the initial condition PDF and pro-
cess noise PDF are given by a Gaussian sum or are

approximated by a Gaussian sum using the SMILE
method16 for circumventing the difficulty associated
with large plant noise. And each Gaussian component

is assigned an independent SCKF with adaptively
updated weight.

(3) It consists of an adaptive split-merge procedure, which is

designed to deal with highly nonlinear scenarios. Specif-
ically, when a measure of nonlinearity for a Gaussian
component exceeds a threshold, it is split into several
components adaptively. Thereafter, some components

are merged so that the computational costs can be
reasonable.

The proposed AGSSCKF demonstrates superior perfor-
mance, comparable to the PF in both RMSE (root mean
square error) and filter consistency, while requiring only a frac-

tion of the computation time needed for the PF.
The paper is organized as follows. Section 2 deals with the

state estimation problem and presents a brief description of the
SCKF. Then, in Section 3, new scheme for Gaussian compo-

nents adaptation is designed and discussed and the novel
Gaussian sum-based state estimation method is proposed. This
section also highlights important practical implementation

issues of weight adaption of Gaussian components. The details
of the simulations and the comparisons of the performances of
the proposed algorithm against several conventional algo-

rithms are given in Section 4. The main contributions of this
paper concluding remarks are summarized in Section 5.

2. Squared-root cubature Kalman filter

Consider the following discrete-time nonlinear stochastic
system

xkþ1 ¼ fðxkÞ þ wk ðk ¼ 0; 1; 2 . . .Þ ð1Þ
zk ¼ hðxkÞ þ vk ðk ¼ 0; 1; 2 . . .Þ ð2Þ

where the vectors xk 2 Rnx and zk 2 Rnz represent the unmea-

surable state of the system and measurement at time instant
k, respectively. nx and nz denote the dimensions of state and
measurement, respectively. f ðRnxÞ ! Rnx and hðRnzÞ ! Rnx

are known vector mappings, and wk 2 Rnx ; vk 2 Rnz are the
state and measurement white noises respectively and are mutu-
ally independent.

The PDFs of the noises, p(wk) and p(vk) respectively are
supposed to be known. The PDF of the initial state x0, p(xk)
is supposed to be known as well, and the initial state is inde-
pendent from both noises.

The aim of the state estimation is to find the state esti-
mate in the form of the conditional PDF p(xk|z

k) in which
zk,[z0,z1,. . .,zk]. In some cases, it suffices to find the first two

conditional moments, i.e. the mean x̂k=k ¼ E½xkjzk� and covari-
ance matrix Pk/k = cov[xk|z

k], which can be understood as a
Gaussian approximation of conditional PDF, i.e. p½xkjzk� �
Nfxk : x̂k=k;Pk=kg.17

Before specifying a general SCKF algorithm, third-degree
spherical-radial rule will be introduced to facilitate transpar-

ency of the SCKF algorithm, which is the important theoreti-
cal basis of the proposed algorithm in this paper. Under
additive Gaussian noise assumption, the state prediction and
measurement prediction often require the integration of a

nonlinear function with respect to a normal density9, i.e.,
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x̂kþ1=k ¼ E xkþ1jzk
� �

¼
Z
Rnx

fðxkÞp xkþ1jzk
� �

dxk

�
Z
Rnx

fðxkÞN fxk : x̂k=k;Pk=kgdxk ð3Þ

ẑkþ1 ¼ E zkþ1jxkþ1½ � �
Z
Rnx

hðxkþ1ÞN fxkþ1 : x̂kþ1=k;Pkþ1=kgdxkþ1

ð4Þ

It is well-known that for an arbitrary function f(x), the
integral

IðfÞ ¼
ffiffiffiffiffiffi
2p
p
jRj�1=2 �

Z
Rnx

fðxÞexp � 1

2
ðx� lÞTR�1ðx� lÞ

� �
dx

ð5Þ

can be expressed in the spherical coordinate system as

IðfÞ ¼ ð2pÞ�nx=2 �
Z 1

r¼0

Z
Unx

fðCrzþ lÞdz
" #

rnx�1e�r
2=2dr ð6Þ

where x = Crz + l with kzk= 1, l and R is the mean and

covariance of x, respectively; C is the Cholesky decomposition
of R and Unx is the unit sphere.

9 This integral is further approx-
imated by the symmetric spherical cubature rule.

IðfÞ ¼ 1

2nx

X2nx
i¼1

f
ffiffiffiffiffi
nx
p ðCni þ lÞð Þ ð7Þ

where nx is the dimension of x and ni is the ith cubature point
located at the intersection of the unit sphere and its axes.9 The

cubature points can be obtained off-line using a third degree
centrally symmetric cubature rule.

Then, the resulting squared-root extension of cubature Kal-

man filter for state estimation problem contains the following
steps.9

(1) Initialization

Initialization the filter with initiate state x0/0, covariance
matrix P0/0, where P0=0 ¼ S0=0S

T
0=0.

Generate cubature points ni, i= 1, 2, . . ., 2nx for dimen-
sional state x0.

Generate weights wc
i ¼ wc ¼ 1=2nx.

(2) Time update (k = 1, 2, . . .)

Evaluate the cubature points

Xi;k�1=k�1 ¼ Sk�1=k�1ni þ x̂k�1=k�1 ð8Þ

Evaluate the propagated cubature points

X�i;k=k�1 ¼ fk Xi;k�1=k�1; uk�1
� �

ð9Þ

Evaluate the predicted state based on the weights

x̂k=k�1 ¼
X2nx
i¼1

wc
iX
�
i;k=k�1 ð10Þ

Evaluate the squared-root factor of the predicted error

Sk=k�1 ¼ Tria v�k=k�1;SQk�1

h i	 

ð11Þ

where SQk�1 denotes a square-root factor of Qk�1 such that
Qk�1 ¼ SQk�1S

T
Qk�1

. And the weighted, centered (prior mean is
subtracted off) matrix
v�kjk�1 ¼
1ffiffiffiffiffiffiffi
2nx
p

� X�1;k=k�1� x̂k=k�1; X�2;k=k�1� x̂k=k�1; . . . ;X
�
2nx ;k=k�1� x̂k=k�1

h i
ð12Þ

It should be noted that S=Tria(A) denotes a general tri-

angularization (e.g., the QR decomposition) algorithm, where
S is a lower triangular matrix. The matrices S and A are related
as follows: Let C be an upper triangular matrix obtained from

the QR decomposition on AT. Then, we can get an upper tri-
angular matrix S= CT.

(3) Measurement update (k= 1, 2, . . .)

Evaluate the cubature points

Xi;k=k�1 ¼ Sk=k�1ni þ x̂k=k�1 ð13Þ

Evaluate the propagated cubature points

Zi;k=k�1 ¼ h Xi;k=k�1; uk
� �

ð14Þ

Estimate the predicted measurement

ẑk=k�1 ¼
1

2nx

X2nx
i¼1

Zi;k=k�1 ð15Þ

Estimate the square-root of the innovation covariance
matrix

Szz;k=k�1 ¼ Tria Zk=k�1;SRk

� �� �
ð16Þ

where SRk
denotes the square-roots of Rk which is the covari-

ance matrix of measurement noise, and the weighted, centered
matrix

Zk=k�1¼
1ffiffiffiffiffiffiffi
2nx
p

� Z1;k=k�1� ẑk=k�1;Z2;k=k�1� ẑk=k�1; . . . ;Z2nx ;k=k�1� ẑk=k�1
� �

ð17Þ
Estimate the cross-covariance matrix

Pxz;k=k�1 ¼ vk=k�1Z
T
k=k�1 ð18Þ

where the weighted, centered matrix

vk=k�1¼
1ffiffiffiffiffiffiffi
2nx
p

� X1;k=k�1� x̂k=k�1;X2;k=k�1� x̂k=k�1; . . . ;X2nx ;k=k�1� x̂k=k�1
� �

ð19Þ
Estimate the filter gain of SCKF

Wk ¼ Pxz;k=k�1=S
T
zz;k=k�1

	 

=Szz;k=k�1 ð20Þ

Estimate the updated state based on the new measurement zk

x̂k=k ¼ x̂k=k�1 þWkðzk � ẑk=k�1Þ ð21Þ

Estimate the square-root factor of the corresponding error
covariance

Sk=k ¼ Tria vk=k�1 �WkZk=k�1;WkSRk

h i	 

ð22Þ
3. Adaptive Gaussian sum filter based on SCKF

SCKF is a new and powerful algorithmic addition to the kit of
tools for nonlinear filtering in Gaussian system, especially for
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high-dimensional nonlinear filtering problem.9,18 But an initial
Gaussian component will become non-Gaussian under nonlin-
ear transformation, increasing the uncertainty propagation

error.
To circumvent the state estimation problem in nonlinear

and non-Gaussian dynamic system, this paper presents a new

Gaussian sum filter (AGSSCKF) based on SCKF with adap-
tive split-merge scheme. In AGSSCKF, the decrease of the
uncertainty propagation error is achieved by splitting the

Gaussian component with the largest degree of propagation
nonlinearity into multiple ones. At the measurement update
stage, when a high degree of nonlinearity is observed for the
Gaussian density of a SCKF, it splits into several Gaussian

components adaptively. During the filtering step, while the
adaptation of the weights can provide us with more accurate
uncertainty propagation, this can be further enhanced by judi-

ciously refining or coarsening the Gaussian mixture during
propagation. In AGSSCKF, the process of refining Gaussian
mixture is triggered by the degree of nonlinearity (DON)

observed in each sub-filter because of the nonlinearity of mea-
surement function. At the end of the measurement update
stage, some Gaussian components with low weights are pruned

or merged for the computation constraints. To deal with the
case that there is a significant amount of process noise at the
prediction stage, the PDFs of the initial condition and process
noise are denoted as the form of Gaussian sum, while SCKF is

the sub-filter for each Gaussian component.
Denote Nmax as the max number of Gaussian components

used as sub-filters in AGSSCKF and Nk as the number at

the time instant k. Now, we can proceed and describe our pro-
posed method algorithmically in Table 1 (wthreshold denotes the
threshold for triggering component splitting).

The steps of the adaptive process of AGSSCKF are
described in detail in the following subsections.

Step 1. Initialization

Initiate Nmax and wthreshold, set the time instant k = 0 and
define a priori initial condition p(x0|z

�1) = p(x0) as a sum of

Nk/k�1 Gaussian components.
Without loss of generality, suppose the initial condition

PDF p(x0) and state noise PDF p(wk) are given by a Gaussian
Table 1 Algorithm flow of AGSSCKF.

AGSSCKF (performed every time step)

Step 1. Initialization

For k= 1,2, . . .

Step 2. Filtering

while Nk < Nmax

Estimate DON of each SCKF and find the largest one.

If DON of the mth filter > wthreshold, then

Step 3. Split the Gaussian density of the mth filter.

else

end while;

end if

end while

Step 4. Measurement update for each SCKF.

Step 5. Global point estimate.

Step 6. Pruning and merging.

Step 7. Prediction.

End for
sum or are approximated by a Gaussian sum (using split-
merge incremental learning method, SMILE13,16) with N0

and qk terms respectively.

pðx0Þ ¼
XN0

m¼1
am
0N x0; x̂

m
0 ;P

m
0

� �
ð23Þ

pðwkÞ ¼
Xqk
m¼1

bm
kNfwk; ŵ

m
k ;Q

m
k g ð24Þ

where am
0 ; b

m
k are positive weights of particular Gaussian terms

with their sum being equal to 1.

am
0 > 0;

XN0

m¼1
am
0 ¼ 1

bm
0 > 0;

Xqk
m¼1

bm
0 ¼ 1

8>>>><>>>>: ð25Þ

All the parameters (i.e. the weights, means and covariance
matrices) in initialization step are supposed to be known using
SMILE model before performing AGSSCKF.

Step 2. Gaussian component identification

The problem that how to select the critical Gaussian com-
ponent should be split is discussed in this step.

At the measurement update step of the mth SCKF, we com-

pute the following cubature points to capture the prediction
density

Xm
i;k=k�1 ¼ Sm

k=k�1ni þ x̂m
k=k�1 ði ¼ 1; 2; . . . ; 2nxÞ ð26Þ

where x̂m
k=k�1 and Sm

k=k�1 are the predicted state and covariance,

respectively, of the mth filter. Using the spherical-radial rule,

the set of cubature points is given as ni ¼
ffiffiffiffiffi
nx
p

Inx
..
.
� Inx

� �
i

,

where [B]i denotes the ith column of matrix B; Inx is the identity

matrix of size nx and ..
.
denotes matrix concatenation. These

cubature points are then propagated through the measurement
function:

eXm
i;k=k�1 ¼ hðXm

i;k=k�1Þ ð27Þ

Considering the measurement function h(�) is nonlinear
generally, the DON observed in each filter is estimated as the

deviation of the propagated cubature points from a linear
fit13,19:

wm
,

1

nx

Xnx
t¼1

wm
t ð28Þ

where

wm
t ¼

1

2
k eXm

t;k=k�1 þ eXm
tþnx ;k=k�1 � 2hðx̂m

k=k�1Þk
2 ð29Þ

and 1 6 t 6 nx because the total number of points required in a
SCKF is 2nx.

The DON computed by Eq. (28) is used to select the com-
ponent with the largest possible error reduction after splitting.

Thus the mth Gaussian component to be split is selected
using Eq. (30).

wm > wthreshold ð30Þ
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Step 3. Splitting

Before splitting, the following split-decision model may be
used to decide how much sub-components should be split from

themost critical Gaussian componentmwhich is given in Step 2.

If wthresholdr
n�1
6 wm < wthresholdr

n; then

NF ¼ 2n ð31Þ

where NF denotes the number of sub-components after split-

ting, r is the common ratio of the geometrical progression
and r P 1, n is a natural number and n P 1. Obviously, NF

is decided by the relation between r and wthreshold, which can

be selected from empirical training. On the other hand, if
wm < wthreshold, the Gaussian density of the mth filter will
not be split, then NF = 1.

The split-decision model given by Eq. (31) means that a
critical Gaussian component can be split into 2, 4, 8 or more
components according to the degree of nonlinear propagation.
This is done by successively splitting the given Gaussian den-

sity into 2 components with necessary times in the direction
of the eigenvector corresponding to the largest eigenvalue of
the covariance matrix. Now, the following splitting scheme

may be used to approximate a Gaussian density Nðl;RÞ with
a mixture of two symmetrical Gaussian functions N 1ðl1;R1Þ
and N 2ðl2;R2Þ.
Nðl;RÞ � xN 1ðl1;R1Þ þ ð1� xÞN 2ðl2;R2Þ
l1 ¼ lþ l

ffiffiffi
k
p

ev

l1 ¼ l� l
ffiffiffi
k
p

ev

R1 ¼ R2 ¼ R� l2kevðevÞT

x > 0

8>>>>>><>>>>>>:
ð32Þ

where k is the largest eigenvalue of R and ev is the correspond-
ing eigenvector, l is a displacement parameter that determines
the distance between the means of the new Gaussian compo-

nents and l= 0.5 is a good choice suggested in Ref.20. The
weight x is set to be 0.5 in most algorithms like GSCKF in
Ref.13 and the split-merge scheme in Ref.21.

At the end of the splitting procedure, the number of Gauss-
ian components increases by NF�1.

Step 4. Distributed filtering

After the splitting and optimization stage, the measurement
update stage will be performed on each of the Gaussian com-

ponent for all the sub-filters. Suppose that there are Nf filters
for the distributed filtering. Now, new squared-root cubature
points are generated to approximate the fth Gaussian compo-

nents in the prediction density of the mth filter, where f = 1, 2,
. . ., NF.

Xm;f
i;k=k�1 ¼ Sm;f

k=k�1ni þ x̂m;f
k=k�1 ði ¼ 1; 2; . . . ; 2nxÞ ð33Þ

Then, the particular estimated state x̂m;f
kjk and the square-root

factor of the corresponding error covariance Sm;f
kjk of the fth

Gaussian component of the mth filter are computed by the
SCKF relations presented as Eqs. (14)–(22).

Since the weight of the mth component in the Gaussian

mixture before splitting is

am
k ¼

pðzkjxk;mÞam
k�1PNk

i¼1pðzkjxk; iÞai
k�1

ð34Þ
where p(zk|xk, m) is the likelihood of measurement for the mth

filter. Then the updated weight of the fth Gaussian component
of the mth filter can be computed by

am;f
k ¼

pðzkjxk;m; fÞam
k�1a

m;f
k�1PNk

i¼1
PNf

j¼1pðzkjxk; i; jÞai
k�1a

j
k�1

ð35Þ

where p(zk|xk, m, f) is the likelihood of measurement for the fth
Gaussian component of the mth filter.

Step 5. Global point estimate

After distributed filtering, the global point estimated state

and covariance matrix are, respectively, computed as

x̂k=k ¼
XNk

m¼1

XNf

f¼1
am;f
k x̂m;f

k=k ð36Þ

Pk=k ¼
XNk

m¼1

XNf

f¼1
am;f
k Pm;f

k=k þ bbT
h in o

b ¼ xm;f
k=k � x̂m;f

k=k

8>><>>: ð37Þ

where Pm;f
k=k ¼ Sm;f

k=kðS
m;f
k=kÞ

T
, then the square-root factor of the

corresponding error covariance can be obtained from

Pk=k ¼ Sk=kðSk=kÞT ð38Þ
Step 6. Merging

The iterative splitting process in the above steps yields a

reduction in the uncertainty propagation error by judiciously
increasing the order of the Gaussian components. Due to com-
putation constraints, the important procedure continues by

judiciously pruning and merging for the reduction of the over-
all number of Gaussian components.

There are three cases that some components should be

merged for the sake of computation spending.

(1) All Gaussian components that maintain low weights

before and after a time step integration will be merged
gradually.

(2) Two Gaussian components that closely approximate a
Gaussian function both before and after a time step inte-

gration will be merged.
(3) Two Gaussian components will be merged if their

degrees of nonlinear propagation are under a tolerable

threshold (i.e. 0.2 wthreshold) both before and after a time
step integration

Suppose that the jth and j0th components should be merged,
the merging for the mean, covariance and weight of the newly
introduced component is given by equation as follows:

x̂jj0

k=k ¼
P

aq
kx̂

q
k=k

Pjj0

k=k ¼
P

aq
k Pq

k=k þ x̂q
k=k � x̂jj0

k=k

	 

x̂q
k=k � x̂jj0

k=k

	 
T� �
ajj0

k ¼ aj
k þ aj0

k

8>>>><>>>>: ð39Þ

where q = {j, j0}.
Step 7. Prediction

To deal with the case that there is a significant amount of

process noise, the predictive PDF is approximated by the fol-
lowing equation.
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pðxkþ1jzkÞ �
XNkþ1=k

j¼1
auj
kþ1=kNfxkþ1; x̂

j
kþ1=k;P

j
kþ1=kg

Nkþ1=k ¼ Nk=kqk

aj
kþ1=k ¼ aj

k=kb
j
k

8>>>>><>>>>>:
ð40Þ

where Nk/k is the total number of Gaussian components after

pruning and merging, qk and bj
k are defined in Eq.(24). Given

the filtering estimate mean x̂j0

k=k, covariance matrix Pj0

k=k, the

process noise mean ŵl
k and covariance matrix Ql

k, the predic-

tive mean x̂j
kþ1jk and squared-root of covariance matrix

Sj
kþ1=k are computed by the SCKF relations presented as

Eqs.(8)–(12). And the indices j0 and l are given by equation

as follows:

j0 ¼ j� j� 1

Nk=k


 �
Nk=k

l ¼ 1þ j� 1

Nk=k


 �
8>>><>>>: ð41Þ

where j= 1, 2,. . ., Nk+1/k, l = 1, 2,. . ., qk. The symbol bac
denotes the floor function, i.e. the largest integer less than or
equal to a. The variable j0 and l denote the changed indices

because of the inconstant Gaussian components in each filter-
ing step.

Until now, the filtering and prediction of AGSSCKF at
time instant k are done. Let k= k+ 1 and the algorithm con-

tinues by Step 2.

4. Numerical illustration

In this section, we report the experimental results obtained by
applying the AGSSCKF when applied to two nonlinear state
estimation problems: nonlinear non-Gaussian system15 with

one-dimensional state (Example 1) and bearings-only tracking
problem with two-dimensional state (Example 2).13

Performance of the following state estimation methods was

compared in the two numerical examples: Standard global fil-
ters, such as GSUKF, GSCKF, PF, AGSSCKF. Local filters,
such as SCKF, UKF.

The PF used is the regularized sequential importance resam-
pling filter and 1000 particles are used, while the scaling param-
eter j in the UKF and GSUKF is selected such that j + nx = 3,
as suggested in Ref.7. Nmax = 15 independent SCKFs are used

in the AGSSCKF and The independent SCKFs are given equal
and normalized weights during filter initialization. The threshold
of nonlinearity wthreshold in Eq. (30) is set to be 0.02 and the com-

mon ratio in Eq. (31) is defined as r = 1.5.
Several standard performance metrics are used in the per-

formance analysis of our numerical illustration to compare

the accuracy and consistency of the different state estimation
algorithms discussed. The different performance metrics used
are described as follows:

(1) RMSE

RMSEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

x̂k=kðiÞ � xkðiÞ
� �2vuut ð42Þ
where xk(i), x̂kjkðiÞ are the true position and estimated position

respectively at time k of the ith Monte Carlo run, and M is the
total number of Monte Carlo runs.

(2) Normalized estimation error squared(NESS)

NEES is a measure to check for filter consistency and is
defined as follows.22,23

1 ¼ ðxk � x̂k=kÞTP�1k=kðxk � x̂k=kÞ ð43Þ

where xk, x̂kjk are the true position and estimated position
respectively and Pk|k is the updated state covariance at time
step k.

The consistency of a filter is the ability of the filter to accu-
rately estimate uncertainty. An ‘‘inconsistent’’ filter produces
estimation errors that are larger than those predicted by the

model on which the estimator is based.

(3) Computational complexity

The complexities of the state estimate algorithms investi-
gated are compared in terms of the relative computational run-
ning time required for the simulations.

4.1. One-dimensional state estimation

(1) Simulation scenario and filter initialization

Consider the nonlinear non-Gaussian system with one-
dimensional state

xkþ1 ¼ /1xk þ sinðxpkÞ þ wk ð44Þ

where the process noise wk is described by Gamma PDF
Ga(3, 2) and "k, /1 = 0.5, x = 0.04. The state is observed
by the scalar measurement described by the equation

zk ¼
/2x

2
k þ vk ðk 6 30Þ

/3xk � 2þ vk ðk > 30Þ

�
ð45Þ

where the measurement noise vk is described by Gaussian PDF

N {vk:0, 10
�5} and "k, /2 = 0.2, /3 = 0.5. The initial state

condition is given by a sum of five Gaussian PDFs

pðx0Þ ¼
X5
j¼1

0:2�Nfx0 : j� 3; 10g ð46Þ

and the predictive PDF p(x0|z
�1) = p(x0).

On the other hand, "k, a three-term Gaussian sum approx-
imation of the Ga(3, 2) distribution by means of the SMILE
model is calculated as

~pðwkÞ ¼ 0:29Nfwk : 2:14; 0:72g þ 0:18Nfwk

: 7:45; 8:05g þ 0:53Nfwk : 4:31; 2:29g ð47Þ

which means b1
k ¼ 0:29; b2

k ¼ 0:18; b3
k ¼ 0:53 in the Eq. (25).

(2) Performance analysis

Time progresses of the RMSE and average NEES for a few
selected filtering methods in one MC run are illustrated in

Fig. 1. After a number of 100 MC runs, the average RMSE
(ARMSE), average NEES (ANEES) and computational costs
for all k 6 30 are given in Table 2 and the dimension of com-
putational costs in a time step is megasecond (ms).

When k 6 30, the simulation results demonstrate a substan-
tial increase of the estimate quality (comparable to PF) of
Gaussian sum filter with an adaptive split-merge scheme to

the standard global filtering methods like GSUKF and



Fig. 1 Time development of the RMSE and NEES of several

methods in Example 1.

Table 2 Performance comparison in Example 1.

Method ARMSE ANEES Time (ms)

UKF 33.25 433.34 0.85

SCKF 30.12 390.52 0.78

GSUKF 23.22 20.22 8.96

GSCKF 18.86 15.38 8.93

AGSSCKF 18.05 13.56 11.62

PF 16.32 10.67 96.64
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GSCKF. In terms of NEES, AGSSCKF and PF show a bal-
anced behavior as opposed to GSUKF and GSCKF which

are overly optimistic. However, the NEES curves of UKF
and CKF are not analyzed in the Fig. 1 because they line
too much higher than that of other methods.

When 30 < k 6 60, the RMSE has a rapid decrease from
the time instant 30 on Fig. 1, which is due to the change in
the measurement Eq. (45) which becomes linear.

As far as the computational costs are concerned, utilizing
the splitting procedure in AGSSCKF leads to an increase of
the costs. However, if an effective simplified procedure (prun-
ing and merging) is used, the increase is approximately 20%

only compared to GSUKF and GSCKF. On the other side,
the split-decision model has a negligible effect on computa-
tional costs.
4.2. Bearings-only tracking

Next we review a classical filtering application in which we
track a moving object with sensors, which measure only the
bearings (or angles) of the object with respect to positions of

the sensors. There is a one moving target in the scene and
two angular sensors for tracking it. Solving this problem is
important, because often more general multiple target tracking
problems can be partitioned into sub-problems, in which single

targets are tracked separately at a time.

(1) Simulation scenario and filter initialization

The state vector in two-dimensional target tracking system
can be expressed as

xk ¼ xk; yk; _xk; _yk½ �T ð48Þ

where xk, yk denote the position of target in two-dimensional

cartesian coordinates and the velocity toward those coordinate
axes is denoted as _xk; _yk.

The dynamics of the target is modeled as a linear, discret-

ized Wiener velocity model:

xk ¼

1 0 Dt 0

0 1 0 Dt

0 0 1 0

0 0 0 1

26664
37775

xk�1

yk�1

_xk�1

_yk�1

26664
37775þ qk�1 ð49Þ

where Dt denotes sampling interval and qk is the process noise.
"k, a three-term Gaussian sum approximation of the distribu-
tion of qk by means of the SMILE model is calculated as

~pðqkÞ ¼ 0:55Nfqk; 1:23; 7:56g þ 0:33Nfqk; 0:26; 5:32g
þ 0:12Nfqk; 0:18; 2:02g ð50Þ

The measurement model for sensor i is defined as

hi
k ¼ arctan

yk � siy
xk � six

þ rik ð51Þ

where ðsix; siyÞ is the position of sensor i and ðs1x; s1yÞ ¼
ð�1;�2Þ; ðs2x; s2yÞ ¼ ð1; 1Þ, the measurement noise is described

by Gaussian PDF as rik � Nð0; d
2Þ, with d = 0.1 radians.

The target starts with state x0 = [0,0,1,0]T, and in the esti-
mation we set the prior distribution for the state to

x0 � Nð0;P0Þ, where

P0 ¼

0:1 0 0 0

0 0:1 0 0

0 0 10 0

0 0 0 10

26664
37775 ð52Þ

Fig. 2 shows the bearings-only tracking scenario in this
simulation.

(2) Performance analysis

The RMSE and NEES results of the different algorithms

for bearing only tracking scenarios in one MC run are shown
in Fig. 3. After a number of 100 MC runs, the ARMSE,
ANEES and Computational costs of a time step (500 time step
in all) are given in Table 3.



Fig. 3 Time development of RMSE and NEES of several

methods in Example 2.

Fig. 2 Bearings only tracking scenario.

Table 3 Performance comparison in Example 2.

Method ARMSE ANEES Time (ms)

UKF 0.1532 246.47 0.92

SCKF 0.1530 215.35 0.83

GSUKF 0.1203 18.33 9.92

GSCKF 0.1056 8.91 11.23

AGSSCKF 0.9234 6.96 13.22

PF 0.8021 4.82 120.64
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From the above simulation results, the RMSE of the CKF
is similar to that of the UKF. The RMSE curves of the

GSCKF and GSUKF overlap the AGSSCKF RMSE curve,
which nearly matches the curve of PF. What’s more, the
AGSSCKF successfully brings the performance gap closer to

PF, especially when the target has a curved trajectory.
For the same reason, the NEES curves of UKF and CKF

do not appear in Fig. 3, which means that these two algorithms
have poor consistency. On the other side, PF shows excellent
consistency in this simulation. The three Gaussian sum-based
filters have improved NEES performance compared with their
original version. With the adaptive split-merge scheme, the

NEES of AGSSCKF is slightly lower than other two algo-
rithms, which shows an effective enhancement in the aspect
of filter consistency.

In terms of computational cost, the PF runs much slower
than other existing algorithms as it requires a large number
of particles in its implementation to get good filtering perfor-

mance. CKF runs faster than UKF because it requires only
2nx cubature points compared with 2nx + 1 sigma points in
UKF. The three Gaussian sum-based algorithms introduce dif-
ferent extra computational times, but they still show a major

computational advantage over PF.
However, the optimal selection of threshold value wthreshold

to perform splitting is scenario dependent and will be investi-

gated in future work.

5. Conclusions

(1) An efficient new algorithm called AGSSCKF is devel-
oped in this paper for state estimation in nonlinear
non-Gaussian discrete dynamic systems. The simulation
results exhibit that the estimate quality of AGSSCKF is

comparable to the particle filter with significantly
reduced computational cost.

(2) The initial conditions and the process noise are denoted

in the form of Gaussian sum in AGSSCKF and a bank
of Squared-root cubature Kalman filter is used as the
sub-filters to estimate state of system with the corre-

sponding adaptively updated weights respectively.
(3) AGSSCKF consists of an adaptive splitting and merging

scheme to handle difficult highly nonlinear cases and a
split-decision model is proposed based on the nonlinear-

ity degree of measurement for the improvement of split-
ting performance.

(4) The same criteria and adaptation procedures can be

used for any Gaussian sum-based global estimation
method dependent on local filters.

Our future work in this topic will include development of a
systematic procedure to determine the optimum scheme for
splitting and merging and the weights optimization of Gauss-

ian components after splitting and merging procedure.
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