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ABSTRACT 

Let M, denote the set of points in the complex plane that are eigenvalues of 
n-dimensional stochastic matrices. The set M, is completely determined by the 
Karpelevich theorem, the statement of which, however, is lengthy and intricate. The 
paper shortens the presentation of the theorem. 0 1997 Elsevier Science Inc. 

1. THE KARPELEVICH THEOREM 

The following well-known theorem completely determines the set M,, 
the set of eigenvalues of n-dimensional stochastic matrices. 

THEOREM 1 (Karpelevich [l, 31). The region M, is symmetric relative to 
the real axis, is included in the unit disc (z( < 1, and intersects the circle 
1~21 = 1 at points ezaiajb, where a and b run over the relatively prime 
integers satisfying 0 < a < b < n. The boundary of M, consists of these 
points and of curvilinear arcs connecting them in circular order. Each of 
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these arcs is given by one of the following parametric equations: 

h9(hP - ty = (1 - ty, 

(P - tf = (1 - t)5v, 

(I) 

PJ) 

where the real parameter t runs over the interval 0 Q t G 1, and b, d, p, 4, 

r are nonnegative integers defined as follows. 

Let the endpoints of an arc be e2rria’/b’ and e2nin”/b” (a’/b’ < a”/b”). 

There are two cases: 

b”[;] h’[;], 

b”[$,] < b’[;]. 

(4 

(b) 

Zf an arc satisfies (a), then the complex conjugate, counterclockwise arc 

satisfies (b). Thus, due to the symmetry of M,, it will su.ce to describe arcs 

satisfying (a>. 

Let r1 = b”, r2 = a”, r-s,. , . , r,,, = 1, r,,,+l = 0 be the nonnegative 

remainder series of Euclid’s algorithm, by which the greatest common divisor 

of b” and d’ is obtained. Zf [n/b”] = 1 and m is even, then the counterclock- 

wise arc from e2?ria’/b’ to e2nia”/b” is given by the equation (I), where 

r = rm-1 and the integers p and q are defined by the relations: 

d’p = 1 (mod b”) (0 < p < b”), 

a”q E -r (mod b”) (0 Q q < b”). 

Otherwise the counterclockwise arc from ezaio /b’ to e2Tia”/b” is given by the 

equation (II), where d = 

a”q s 

2. MAIN RESULT 

[n/b”], b- = b”, and the integer q is defined by 

- 1 (mod b”) (0 < q < b”). 

The next is the shortened statement of the Karpeletich theorem. 

THEOREM 2. The region M, is symmetric relative to the real axis, is 

included in the unit disc 1 z 1 < 1, and intersects the circle I .z 1 = 1 at points 
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eerinlb, where a and b run over the relatively prime integers satisfying 
0 < a < b < n. The boundary of M, consists of these points and of curvilin- 

ear arcs connecting them in circular order. 
Let the endpoints of an arc be eeaiallbl and e2uiaz/bz (b, < b,). Each of 

these arcs is given by the following parametric equation: 

,Qz( ,@I _ s)[n/bll = (1 _ ,)[~/b~~~b,b/hl, 

where the real parameter s runs over the interoal 0 < s < 1. 

In order to prove the equivalence between the statements of Theorems 1 
and 2 we need the following two lemmas. 

LEMMA 1. The sequence of all reduced nonnegative fractions with de- 
nominators not exceeding n, listed in order of their size, is called the Farey 
sequence of order n. Two reduced nonnegative fractions al/b’ and a”/b” are 
consecutive in the Farey sequence of order n if and only if d’b’ - a’b” = 1 
and b’ + b” > n hold. 

The proof can be found, for instance, in [4]. 

LEMMA 2. Let a and b be relatively prime integers satisfying 0 < a < b, 
and rl = b, r2 = a, r3,. . . , r,,, = 1, r,,,+ 1 = 0 be the nonnegative remainder 
series of Euclid’s algorithm. Let c be the integer defined by the relation 
ac = 1 (mod b) (0 < c < b). Then 

r,,,_l(> 1) ifmiseven, 

1 if m is odd. 

Proof. Expand b/a into the continued fraction 

b 1 
-=ql+ 
a 1 

92 + 
. . . 

1 
4m-2 + - 

4m- 1 

and denote b/a =/ql, q2,. . . , qme2, q,,-J, where q,, q2,. . . , qmpl = 
r ,,I - 1 are the positive quotient series of Euclid’s algorithm. It is known in 
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general that if m is even, then the continued fraction arranged in reverse, 

/qm-l,qm-2,...,q2rql/, is equal to the reduced fraction b/c, where c 
satisfies UC = 1 (mod b) and 0 < c < b (see, for example, 121). This means 
that [b/c] = rm_ I > 1 if m is even. Similarly, using the identity 

/%~%7’.‘, 4m-21qm-1/=/41~92,.‘.‘qm-2~4m-1 - lYl/ 

in the case m is odd, we obtain 

b 
- =/Lqm-1 - Lq,-g>.'.>q2,qJ. 
C 

Thus [b/c] = 1. 

Proof of the equivalence between the two statements. Let a’/b’ and 
a”/b” be consecutive fractions in the Farey sequence of order n. By using 
Lemma 1, [n/b’] or [n/b”] is equal to 1. Since M,, is symmetric and all 
coefficients of the polynomials appearing in Theorems 1 and 2 are real, it will 
suffice to consider the case b”[n/b” 1 > b’[ n/b’] and to prove coincidence of 
the equations given by use of the theorems. 

Case 1. Suppose further [n/b”] > [n/b’]. Then [n/b’] = 1 and b’ > 

n/2 2 b” hold. Th e parametric equation given by use of Theorem 2 is 

Ab’pb” _ S)[n/b”] = (1 _ 

Since [n/b”] # 1, the parametric equation 
of the type (II). Using Lemma 1 we have 

u”(b”[%] -b’) = -1 (mod b”) (0 

S> h’b”]Ab’r[n/b”] 

obtained by use of Theorem 1 is 

< b” 2 - b’ < n 
[ 1 b” 

This shows that the parametric equation is 

(*b” _ tl[n/b”] = cl _ t)[“/b”]hb”[n/b’]-b’. 

Case 2. Suppose [n/b”] < [n/b’]. Then [n/b”] = 1 and b” > n/2 > b’ 

hold. The parametric equation given by use of Theorem 2 is 

Ab”( Ab’ _ sj[“/b’] = cl _ S)[n/b’]~b’[n/b’]o 
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Since d’ and b” (0 < a” < b”) are relatively prime and b” > 1, we have 
0 < a” < b”. From Lemma 1 we have 

u”b’ = 1 (mod b”) (0 < b’ < b”). 

Let r1 = b”, r2 = a”, rs, . . . , t-, = 1, r,, i = 0 be the nonnegative remain- 
der series of Euclid’s algorithm. Lemma 2 tells us that 

r,_ i ( > 1) if m is even, 

1 if m is odd. 

Since 

n b” 
-a--_ 
b’ b’ 

we have 

[;I=[+. 

This means m is even and [n/b’] = r,_ 1. Thus, the parametric equation is 
of the type (I) and T = [n/b’]. Using Lemma 1 we have 

a”(b”-b’[t]) = -[i](modb”) (O<b”-b’[%] <b”). 

Thus we obtain the parametric equation 

hb”-b’[n/b’]( Ab’ _ t)[“/b’] = (1 _ t)Wb’l. 

Case 3. Suppose [n/b”] = [n/b’] (= 1). In this case b” B b’ holds. If 
b” = b’, then using Lemma 1 we have a” = b” = b’ = 1, a’ = 0, and n = 1. 
This case is trivial Hence, assume b” > b’. The parametric equation by use 
of Theorem 2 is 

Ab”( /lb’ - s) = (1 - s)hb’. 

From Lemma 1, 

d’b’ = 1 (mod b”) (0 < b’ < b”) 
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holds. Let r1 = b”, rz = a”, r3, . . . , T, = 1, TV+ 1 = 0 be the nonnegative 
remainder series of Euclid’s algorithm. Since 

n b” n 
->---_ b’ b’ F = 1 

[ 1 
holds. we have 

[;I=[;]=‘. 

This means that m is odd and the parametric equation obtained by use of 
Theorem 1 is of the type (II). It is easy to see 

fz” ( b” - b’) = - 1 (mod b”) (0 < b” - b’ < b”). 

This means that the parametric equation is 

hhU - 1 = (I - t) hb”-b’* 
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