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a b s t r a c t

In this paper, the approximate solutions of themathematical model of a mass attached to a
stretched elastic wire are presented. At the beginning of the study, the equation of motion
is derived in a detailed way. He’s max–min approach, He’s frequency–amplitude method
and the parameter-expansion method are implemented to solve the established model.
The numerical results are further compared with the approximate analytical solutions for
both a small and large amplitude of oscillations, and a very good agreement is observed. The
relative errors are computed to illustrate the strength of agreement between the numerical
and approximate analytical results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Aconsiderable amount of studyhas focused onways to solve nonlinear problems. In general, the analytical approximation
of the solution of a given nonlinear problem is more difficult that the numerical solution approximation.

During the past few decades, several types of methods have been proposed for obtaining approximate solutions of
various types of nonlinear differential equations. Among them are the variational iteration method [1–5], the homotopy
perturbation method [6–14], the harmonic balance method [15], He’s frequency–amplitude formulation [16–23], He’s
max–min approach [24–28], and the parameter-expansion method [29–34].

The purpose of this paper is to determine the periodic solutions for a nonlinear oscillator of amass attached to a stretched
elastic wire using He’s max–min approach, He’s frequency–amplitude method, and the parameter-expansion method. In
engineering sciences, it is easy to find themaximal andminimal solution thresholds of nonlinear problems. Considering this,
the max–min approach was first proposed by He [24], based on ancient Chinese mathematics. After applying the max–min
approach, the approximate solution of the model is solved by the frequency–amplitude method, which is also based on
old Chinese techniques. Generally, ancient Chinese mathematics has been used to solve not only the oldest nonlinear
equations but also complex modern equations such as the Bethe Equation, which describes the behavior of an energetic
particle [35–37]. The last technique used to solve the established model belongs to the family of perturbation methods:
parameter expansion, also referred to as the bookkeeping parameter. All solutions resulting from the three techniques are
compared, and periodic solutions are plotted for various values of the parameters of the equation. The relative errors are
also computed to illustrate good agreement between the numerical and approximate analytical results.
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Fig. 1. Mass attached to a stretched elastic wire.

2. Equation of motion

The governing differential equation of motion and the associated initial conditions for a mass attached to a stretched
elastic wire [38], shown in Fig. 1, are:

mẍ = −2T sin θ (1a)
x(0) = X and (1b)
ẋ(0) = 0 (1c)

where T is the tension on the elastic wire after stretching and X is the initial amplitude.

T = T0 + EA

√
L2 + x2 − L2

L2
. (2)

With some geometric manipulations according to Fig. 1, Eq. (2) expresses the tension T in terms T0 and EA, which denote
the initial tension and the axial rigidity of the elastic wire, respectively.

Here, Eq. (1) is rewritten using Eq. (2) to yield Eq. (3)

mẍ + 2EA
x
L

+

x
L

1 +
 x
L

2 (2T0 − 2EA) = 0. (3)

The following dimensionless quantities (Eqs. (4a) and (4b)) are chosen and substituted into Eq. (3) to derive the
nondimensional form of the equation, which is given in Eq. (5)

u =
x
L
, (4a)

τ =
t
mL
2EA

(4b)

u′′
+ u −


1 −

T0
EA


u

√
1 + u2

= 0, 0 ≤ T0 ≤ EA (5)

where ( )′ is the derivative with respect to τ .
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The coefficient of the third term is introducedwith a new parameter λ, which characterizes the system of values between
0 and 1:

u′′
+ u −

λu
√
1 + u2

= 0, 0 ≤ λ ≤ 1 (6a)

u(0) =
X
L

= a and (6b)

u′(0) = 0. (6c)

Eq. (6a) is the equation of motion for a mass attached to the center of a stretched elastic wire in dimensionless form. It is,
indeed, an example of a conservative nonlinear oscillatory system having an irrational elastic force.

3. He’s max–min approach

Here, we apply the max–min approach based on He Chengtian’s inequality.
We can write Eq. (6a) in the following form

u′′
+ uf (u) = 0 (7)

where f (u) is a non-negative function of u.

f (u) = 1 −
λ

√
1 + u2

, 0 ≤ λ ≤ 1. (8)

According to the max–min approach, we use a trial function,

u(τ ) = a cos(ωτ), (9)

where ω is assumed to be the frequency to be further determined.
It can be observed that the square of frequency ω2 is never less than that in the solution of the governing differential

equation given by Eq. (6a) with the initial conditions

u′′
+ ufmin = 0 (10)

u(0) = a and (11a)

u′(0) = 0. (11b)

Similarly ω2 never exceeds the solution of Eq. (6a)

u′′
+ ufmax = 0 (12)

u(0) = a and (13a)

u′(0) = 0. (13b)

Here fmin and fmax are the minimum and maximum values of the function f (u).
Using Eqs. (10) and (12), we can write

fmin

1
< ω2 <

fmax

1
. (14)

Using the trial function given in Eq. (9), Eq. (14) is rearranged as follows:

1 − λ < ω2 < 1 −
λ

√
1 + a2

. (15)

He Chengtian actually used the inequality a
b < x < d

c , where a, b, c and d are real numbers; thus, a
b < ma+nd

mb+nc < d
c , and x is

approximated by

x =
ma + nd
mb + nc

. (16)

Introducing k =
n

m+n and using Eqs. (15)–(16), we have

ω2
= 1 + λ(k − 1) −

λk
√
1 + a2

. (17)
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Therefore, the solution of Eq. (6a) can be written

u(τ ) = A cos


1 + λ(k − 1) −

λk
√
1 + a2

τ


. (18)

We can write Eq. (6a) in the following form by using the approximate solution of Eq. (18):

u′′
+


1 + λ(k − 1) −

λk
√
1 + a2


  

ω2

u = λ(k − 1)u −
λk

√
1 + a2

u +
λ

√
1 + u2

u. (19)

If Eq. (18) is the exact solution of Eq. (6a), then the right side of Eq. (19) vanishes. On the other hand, if it is only an
approximation of the exact solution, the right hand side of Eq. (19) expands into the Fourier series:

λ(k − 1)u −
λk

√
1 + a2

u +
λ

√
1 + u2

u =

∞−
j=0

b2j+1 cos[(2j + 1)ωτ ]

= b1 cos(ωτ) +

∞−
j=1

b2j+1 cos[(2j + 1)ωτ ]. (20)

We set b1 using Eq. (9):

b1 =
2aλ
T

∫ T/2

0


(k − 1) −

k
√
1 + a2

+
1

1 + a2 cos2(ωτ)


cos2(ωτ)dτ = 0, T =

2π
ω

(21a)

∫ π/2

0

(k − 1)
√
1 + a2 − k

√
1 + a2

cos2(θ)dθ +

∫ π/2

0

cos2(θ)
1 + a2 cos2(θ)

dθ = 0. (21b)

Applying a simple transformation to the last term in Eq. (21b), the integral is evaluated in terms of E(−a2) and K(−a2),
which are the first and second kinds of complete integrals [39].∫ 1

0

x2
(1 − x2)(1 + k2x2)

dx =
E(−a2) − K(−a2)

a2
. (22)

Next, k is identified in the following:

k =

√
1 + a2

√
1 + a2 − 1

[
1 −

4E(−a2) − 4K(−a2)
πa2

]
. (23)

Thus, the solution u(t) is identical to the result obtained by Belendez et al. [7].

u(τ ) = a cos


1 −

4λ
πa2

[E(−a2) − K(−a2)]τ


. (24)

4. He’s frequency–amplitude method

The main purpose of this section is to present how to apply the frequency–amplitude formulation, proposed recently by
He [16].

The method is based on determining the amplitude–frequency relation. To do so, the trial functions u1(τ ) = a cos(τ )
and u2(τ ) = a cos(ωτ), which are the solutions of the following linear equations, are substituted into Eq. (6a) to obtain the
residuals.

u′′
+ ω2

1u = 0, ω2
1 = 1 (25)

u′′
+ ω2

2u = 0, ω2
2 = ω2. (26)

The residuals are

R1(τ ) = −
λa cos(τ )

1 + a2 cos2(τ )
(27)

R2(τ ) = −aω2 cos(ωτ) + a cos(ωτ) −
λa cos(ωτ)

1 + a2 cos2(ωτ)
. (28)
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R̂1 and R̂2 are introduced as follows:

R̂1 =
4
T1

∫ T1/4

0
R1(τ ) cos(τ )dτ = −

2λ
πa

[E(−a2) − K(−a2)] (29)

R̂2 =
4
T2

∫ T2/4

0
R2(τ ) cos(ωτ)dt =

a
2
(1 − ω2) −

2λ
πa

[E(−a2) − K(−a2)]. (30)

Applying He’s amplitude frequency method,

ω2
=

ω2
1R̂2 − ω2

2R̂1

R̂2 − R̂1
= 1 −

4λ
πa2

[E(−a2) − K(−a2)]. (31)

Therefore, the solution is given in the following equation:

u(τ ) = a cos


1 −

4λ
πa2

[E(−a2) − K(−a2)]τ


. (32)

5. The parameter-expansion method

The parameter-expansion method which was first developed in Ref. [29] is based on perturbation techniques. Eq. (6a) is
rewritten to be solved via the parameter-expansion method

u′′
+ 1 · u − λ ·

u
√
1 + u2

= 0. (33)

The solution can be expressed as a power series in p such that,

u = u0 + pu1 + p2u2 + · · · (34)

where p is a bookkeeping parameter, p = 1. The coefficient of u and u√
1+u2

are expanded respectively into a power series

in p.

1 = ω2
+ pb1 + p2b2 + · · · (35)

λ = pe1 + p2e2 + · · · . (36)

Substituting Eqs. (34)–(36) into (33) yields the following form:

(u′′

0 + pu′′

1 + p2u′′

2 + · · ·) + (ω2
+ pb1 + p2b2 + · · ·) · (u0 + pu1 + p2u2 + · · ·)

−(pe1 + p2e2 + · · ·) ·
(u0 + pu1 + p2u2 + · · ·)

1 + (u0 + pu1 + p2u2 + · · ·)2
= 0. (37)

The terms of the same power are collected in the following form:

u′′

0 + ω2u = 0 (38)

u′′

1 + ω2u1 + b1u0 − e1
u0

1 + u2
0

= 0. (39)

The solution of Eq. (38) can be written as follows:

u0(τ ) = a cos(ωτ). (40)

Inserting u0 into Eq. (39) results in

u′′

1 + ω2u1 + b1a cos(ωτ) − e1
a cos(ωτ)

1 + a2 cos2(ωτ)
= 0. (41)

The following Fourier series expansion is valid for the last term of Eq. (41):

a cos(ωτ)
1 + a2 cos2(ωτ)

=

∞−
n=0

c2n+1 cos[(2n + 1)ωτ ]

= c1 cos(ωτ) + c3 cos(3ωτ) + · · · (42)
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(a) λ = 0.3 and a = 10. (b) λ = 0.9 and a = 10.

(c) λ = 0.6 and a = 10. (d) λ = 0.6 and a = 100.

Fig. 2. The comparison of the approximate analytical results [14]with approximate results.⃝: Approximate analytical solution;I: Approximate solutions.

where c1 can be determined by Fourier series,

c1 =
4
π

∫ π/2

0

a cos(θ)
1 + a2 cos2(θ)

cos(θ)dθ. (43)

By means of Eqs. (41) and (42), we find that

u′′

1 + ω2u1 + cos(ωτ)


b1a −

4e1
π

∫ π/4

0

a cos(θ)
1 + a2 cos2(θ)

cos(θ)dθ


− e1

∞−
n=1

c2n+1 cos[(2n + 1)ωτ ] = 0. (44)

The absence of secular terms in u1 requires that

b1 −
4e1
π

∫ π/4

0

cos(θ)
1 + a2 cos2(θ)

cos(θ)dθ = 0. (45)

If a first order approximation solution is sufficient, then from Eqs. (35) and (36), we have

b1 = 1 − ω2 (46)
e1 = λ. (47)

Solving equations from (45)–(47), we obtain

ω2
= 1 −

4λ
πa2

[E(−a2) − K(−a2)]. (48)

Therefore, the solution is given in the following equation:

u(τ ) = a cos


1 −

4λ
πa2

[E(−a2) − K(−a2)]τ


. (49)

6. Results and discussion

It can be clearly observed that the approximate methods presented here yield a solution of the same form, which is
given by Eqs. (24), (32) and (49). All calculations and drawings were carried out using MATHEMATICA r⃝. The approximate
solutions obtained here and the approximate analytical solutions are given in Fig. 2.

Because the results are indistinguishable from analytical ones, the difference between the approximate and approximate
analytical [15] results is plotted in Fig. 3. The difference is sufficiently small, even for large values of amplitude a and
parameter λ.
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(a) λ = 0.3 and a = 10. (b) λ = 0.9 and a = 10.

(c) λ = 0.6 and a = 10. (d) λ = 0.6 and a = 100.

Fig. 3. The difference between the approximate and approximate analytical results.

7. Conclusion

The mathematical model of a nonlinear oscillator described as a mass attached to a stretched elastic wire is established.
The solution of the nonlinear oscillator model is efficiently handled by He’s max–min approach, He’s frequency–amplitude
formulation, and the parameter-expansion method. The periodic solutions obtained by the methods presented here have
been compared to the approximate analytical results for both small and large amplitude values of oscillation and are found
to agree well with both.
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