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Abstract

In quantum communication systems, quantum error-correcting codes (QECCs) are known to exhibit improved performance with the use of
error-free entanglement bits (ebits). In practical situations, ebits inevitably suffer from errors, and as a result, the error-correcting capability of the
code is diminished. Previous studies have proposed two different schemes as a solution. One study uses only one QECC to correct errors on the
receiver side (i.e., Bob) and sender side (i.e., Alice). The other uses different QECCs on each side. In this paper, we present a method to correct
errors on both sides by using single nonadditive entanglement-assisted codeword stabilized quantum error-correcting code (EACWS QECC). We
use the property that the number of effective error patterns decreases as much as the number of ebits. This property results in a greater number of
logical codewords using the same number of physical qubits.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Over the past two decades, there has been increased research
on quantum computing and communications systems. Quantum
error-correcting codes (QECCs) are required to implement
practical quantum computing and communication systems
because it is not feasible to maintain a quantum state, compute
with qubits, or experiment with quantum phenomena without
QECCs. Over the past two decades, there has also been rapid
developments in QECC research.

The stabilizer formalism [1,2] provides a general framework
to construct a QECC as well as a unified view of quantum and
classical-error correcting codes. A classical linear block code
with the dual-containing property [3] can be converted into a
QECC by using stabilizer formalism.

Furthermore, codeword stabilized (CWS) quantum codes [4]
have also been introduced. A CWS quantum code offers the
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first unified framework that includes both additive and non-
additive code. It is defined by both a graph [5,6] and classical
binary code. Word stabilizers for the CWS code are generated
according to the graph, and they change any Pauli errors
consisting of X , Y (=X Z), and Z operators into effective errors
consisting of only the Z operator. Using this feature, any Pauli
error can be transformed into a binary error, with bit 1 for the
Z operator and bit 0 for the I operator.

Entanglement-assisted quantum error-correcting codes
(EAQECCs) [7–9] are an extended version of standard QECC.
EAQECC uses maximally entangled qubits (ebits) that are
shared by the transmitter and receiver. By using these ebits, the
EAQECC is not subject to the dual-containing constraint, and
has a larger minimum distance.

Entanglement-assisted codeword stabilized (EACWS) quan-
tum codes [10] have been recently established. EACWS quan-
tum codes can be constructed as nonadditive codes of a higher
dimension than that of EAQECC with the same number of
physical qubits.

Most studies on entanglement-assisted quantum codes have
assumed that errors do not occur on the shared ebits from
the receiver’s side because ebits on the receiver’s side do
not pass through the transmit channel. However, in practice,
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receiver-side ebits also suffer from errors, and this reduces the
error-correcting capability of the code. The following works
have considered the imperfect ebits.

Shaw et al. [11] presented an EAQECC that corrects errors
on both the sender’s qubits and the receiver’s shared ebits. They
showed, for the first time, that a Steane code is equivalent to
a [[6, 1, 3; 1]] EAQEC code for correcting a single error on
the receiver’s (i.e., Bob’s) ebits. Wilde et al. [12] simulated
entanglement-assisted quantum turbo codes when the ebits on
Bob’s side are imperfect. Their aim was to analyze the effect
of ebit noise on entanglement-assisted quantum turbo-code
performance. Lai and Brun studied a practical case where errors
on the receiver’s side can be corrected. They presented two
different schemes [13] to correct errors on the receiver’s side,
and showed an equivalent relationship between [[n, k, d; c]]
EAQECC and [[n + c, k, d]] standard stabilizer code. Based on
this equivalence, EAQECCs can correct errors on the ebits of
the receiver’s side. However, when this equivalence does not
exist, the transmitter uses separate EAQECCs to protect the
information qubits, while the receiver uses a standard stabilizer
code to protect the ebits.

In this paper, we consider EACWS codes that correct errors
on both sides simultaneously. We use the property that the total
number of error patterns decreases through a transition from
Pauli errors to binary errors. The transition relation between
them is based on a simple ring graph. Using this property, we
can generate nonadditive quantum code that has more logical
codewords than additive quantum code with the same number
of physical qubits. In addition, we show that ((6, 4, 3; 1))
EACWS QECC can correct both side’s errors, even though the
[[6, 2, 3; 1]] EAQECC does not have equivalent [[7, 2, 3]] code.

The remainder of this paper is organized as follows. In
Section 2, we introduce the basics of entanglement-assisted
codeword-stabilized quantum codes. In Section 3, we provide
an overview of entanglement-assisted quantum error-correcting
codes with imperfect ebits. In Section 4, we describe the
proposed scheme for EACWS code with imperfect ebits. We
then provide some numerical examples. Finally, we summarize
the paper in Section 5.

2. Entanglement-assisted codeword-stabilized (EACWS)
quantum code

EACWS code is a class of quantum error-correcting code
that covers both additive and nonadditive code. The purpose of
this code is to increase the capacity of QECCs by using c ebits
as CWS quantum codes. An ((n, K , d; c)) EACWS quantum
code encodes K -dimensional code space into n physical qubits
with minimum distance d. In an EACWS code, it is assumed
that the receiver’s ebits are error free because the ebits on the
receiver’s side do not pass through the channel. We can think of
the encoding process for EACWS codes in the following way.

The initial base state of the EACWS code with n − c ancilla
qubits and c ebits can be represented byS′


= |0⟩

⊗n−c
|Φ+⟩

⊗c , (1)

where |Φ+⟩ =
1

√
2

(|00⟩ + |11⟩).
The c maximally entangled pairs |Φ+⟩ are shared between
Alice and Bob.

The set of word stabilizers S′ for the initial base state that
corresponds to the ancilla qubits of |0⟩

⊗n−c is generated by

Z1 I I . . . I |I ⊗c

I Z2 I . . . I |I ⊗c

...

I I . . . Zn−c I . . . I |I ⊗c

(2)

where the operators to the right and the left of “|” respectively
act on Alice’s and Bob’s qubits.

The set of word stabilizers S′

E A for the initial base state that
acts on the ebits is generated by

I I . . . I Zn−c+1 I . . . I |Z1 I . . . I
I I . . . I I Zn−c+2 I . . . I |I Z2 I . . . I

...

I I . . . I I Zn |I I Zc

(3)

I I . . . I Xn−c+1 I . . . I |X1 I . . . I
I I . . . I I Xn−c+2 I . . . I |I X2 I . . . I

...

I I . . . I I Xn |I . . . I Xc.

(4)

For CWS code in a standard form, the initial basis vectors span
the code space, and are formed by applying the word operators
w′

l to the initial base state. Hence, the number of word operators
is equal to the dimension of the code space. The initial word
operator


w′

l


of an EACWS code can be represented by

w′

l = X Xl ⊗ Z Vl XUl |I ⊗c, for l = 1, . . . , K , (5)

where Xl is a binary vector of length n − c, and Vl and Ul
are binary vectors of length c. The X Xl operators are applied
to n − c ancilla qubits, and the Z Vl XUl operators are applied
to the c ebits on Alice’s side. The identity operator I ⊗c on the
right side means that the word operators are not applied to Bob’s
ebits.

The initial basis vectors (i.e., the base states) are given by

w′

l

S′

≡

w′

l


= X Xl ⊗ Z Vl XUl |0⟩

⊗n−c
|Φ+⟩

⊗c . (6)

The base state does not involve any information qubits. There-
fore, we need to encode an information state |φ⟩ into state

ϕ′

.

In this case, the code space is spanned by a linear combination
of the states

w′

l


. We swap the state |φ⟩ into the codeword by

defining a unitary transformation Uw′ [9] as follows:

Uw′


|φ⟩ ⊗

S′


= |0⟩ ⊗

K−1
l=0

αl
w′

l


≡ |0⟩ ⊗

ϕ′

. (7)

One additional step is needed to enable the codewords to
correct errors. A unitary encoding operator UE is drawn from
the Clifford group, and maps the stabilizer generators for the
base state to those of the CWS code in the standard form. By
applying the operator UE , each stabilizer generator has an X
operator on one qubit in a different position, and Z operators
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on qubits that have relationships in the associated graph. In this
paper, we consider a simple ring graph.

After the unitary encoding process, the word stabilizer is
represented as

X1 Z2 I . . . Zn|I ⊗c

Z1 X2 Z3 I . . . I |I ⊗c

...

I . . . I Zn−c−1 Xn−c Zn−c+1 I . . . I |I ⊗c.

(8)

In Eq. (8), the word stabilizers are generated by encoding them
for the initial base state corresponding to the ancilla qubits.

I . . . I Zn−c Xn−c+1 Zn−c+2 I . . . I |Z1 I I . . . I
...

Z1 I . . . I Zn−1 Xn| I . . . I Z c .

(9)

I . . . I Zn−c+1 I . . . I |X1 I I . . . I
...

I . . . I I Zn| I . . . I X c .

(10)

In Eqs. (9) and (10), the word stabilizers are generated
by encoding the word stabilizer of the initial base state that
corresponds to the ebits.

After applying the unitary encoding operator UE , the base
state

S′


is converted into a state |S⟩:

UE
S′


= |S⟩ . (11)

Likewise, the word operators are generated by

wl = UEw′

lU
Ď
E . (12)

3. Entanglement-assisted quantum error-correcting codes
with imperfect ebits

In practical settings, receiver-side ebits also suffer from
errors, and this reduces their error-correcting capability. In this
section, we review previous work [13] that considered two
schemes for error correction on the receiver’s imperfect ebits.

3.1. EAQECCs that are equivalent to standard stabilizer codes

Bowen’s [[3, 1, 3; 2]] EAQECC [14] is equivalent to [[5, 1, 3]]

stabilizer code, and it can correct an arbitrary single error on
both sides. The stabilizer generators of the [[5, 1, 3]] stabilizer
code are

XZZXI, IXZZX

XIXZZ, ZXIXZ. (13)

The check matrix for the [[5, 1, 3]] stabilizer code can be
expressed as follows:

1 0 0 1 0 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0

1 0 1 0 0 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1

 . (14)
After row exchange and Gaussian elimination, the check
matrix changes into

1 0 0 1 0 0 1 1 0 0

0 0 1 0 1 1 1 0 0 0

0 1 1 0 0 1 1 1 1 0

1 1 0 0 0 1 1 1 0 1

 . (15)

The stabilizer generators that correspond to the changed check
matrix are as follows:

XZZ|XI, ZZX|IX

ZYY|ZI, YYZ|IZ. (16)

Based on this result, Theorem 2 in Ref. [13] showed that the
[[n−c, k, d; c]] EAQECC is equivalent to the [[n, k, d]] standard

stabilizer code, and can correct qubit errors up to


d−1
2


from

both sides.
The process for finding the proof is as follows. Assume that

the [[n, k, d]] standard stabilizer code has the set of stabilizer
generators {g1, g2, . . . , gn−k}. Then, suppose the check matrix
of the stabilizer generators can be expressed by [HX |HZ ]. After
Gaussian elimination, the check matrix turns into the following
form: A IS×S D 0

C 0 B IS×S

E 0 F 0

 (17)

for 0 ≤ S ≤ n − k. Stabilizer generators can be represented
as g′

1 ⊗ Z1, . . . , g′
c ⊗ Zc, h′

1 ⊗ X1, . . . , h′
c ⊗ Xc, g′

c+1 ⊗

I, . . . , g′

n−k−c ⊗ I with simplified generators g′

j = U Z jU Ď,

h′

j = U X jU Ď ( j = 1, . . . , c) Therefore, the set of simplified

generators is

g′

1, . . . , g′

n−k−c, h′

1, . . . , h′
c


, which indicates

[[n − c, k, d; c]] EAQECC.
In addition, they found some optimal EAQECCs that satisfy

the linear programming bounds and the equivalent relation
between the [[n, k, d]] standard stabilizer code and [[n −

c, k, d; c]] EAQECC as follows:

[[15, 10, 4, 5]], [[14, 11, 3, 3]], [[13, 9, 4, 4]],
[[13, 10, 3, 3]], [[12, 9, 3, 3]], [[11, 8, 3, 3]], [[10, 6, 4, 4]],
[[10, 7, 3, 3]], [[9, 6, 3, 3]], [[7, 4, 3, 3]], [[8, 4, 4, 4]],
[[6, 2, 4, 4]], [[7, 3, 3, 1]], [[6, 3, 3, 2]], [[6, 1, 5, 5]],
[[4, 1, 3, 1]], [[4, 1, 3, 3]], [[3, 1, 3, 2]].

3.2. EAQECCs using another quantum code to protect Bob’s
ebits

The equivalent relationship is not always satisfied for the
optimal [[n − c; k; d; c]] EAQECCs and [[n; k; d]] standard
stabilizer code. When there is no equivalence, it was proposed
that a separate QECC be used in order to protect the ebits.

Lai and Brun referred to this scheme as a combination
code, where the sender uses an [[n, k, dA; c]] EAQECC with
encoding operator UA to protect the information qubits, while
the receiver uses a separate [[m, c, dB]] standard stabilizer code
with encoding operator UB to protect the ebits. Thus, the entire
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encoding operator is represented by UA ⊗ UB , and the notation
of the combination code is [[n, k, dA; c]] + [[m, c, dB]].

They also found EAQECCs that are not satisfied by the
equivalent relationship between the [[n, k, d; c]] EAQECCs and
[[n + c, k, d]] standard stabilizer code [15,16], and these are as
follows:

[[n, 1, n, n − 1]] for n odd, [[n, 1, n − 1, n − 1]] for n even,
[[5, 1, 5, 4]], [[5, 1, 4, 3]], [[5, 1, 4, 2]], [[5, 2, 3, 2]],
[[6, 1, 5, 4]], [[6, 1, 4, 3]], [[6, 2, 4, 3]], [[6, 2, 3, 1]],
[[7, 1, 5, 2]], [[7, 1, 5, 3]], [[7, 1, 7, 6]], [[7, 2, 5, 5]],
[[7, 3, 4, 4]], [[7, 3, 4, 3]], [[7, 4, 3, 2]],
[[8, 1, 6, 6]], [[8, 2, 6, 6]], [[8, 1, 6, 5]], [[8, 3, 5, 5]],
[[8, 2, 5, 4]], [[8, 1, 4, 1]], [[8, 3, 4, 3]], [[8, 5, 3, 2]],
[[9, 1, 7, 4]], [[9, 1, 7, 5]], [[9, 1, 7, 6]], [[9, 1, 7, 7]],
[[9, 1, 9, 8]], [[9, 1, 7, 6]], [[9, 1, 7, 7]], [[9, 2, 6, 6]],
[[9, 1, 6, 5]], [[9, 1, 6, 6]], [[9, 2, 5, 4]], [[9, 5, 3, 1]],
[[10, 1, 8, 8]], [[10, 1, 7, 6]], [[10, 1, 6, 5]], [[10, 1, 6, 4]],
[[10, 2, 7, 7]], [[10, 2, 6, 5]], [[10, 2, 5, 3]], [[10, 2, 5, 2]],
[[10, 3, 6, 7]], [[10, 3, 6, 6]], [[10, 4, 5, 5]], [[10, 4, 5, 4]],
[[13, 3, 9, 10]], [[13, 1, 11, 10]], [[13, 1, 11, 11]],
[[13, 1, 9, 8]], [[13, 1, 9, 9]], [[15, 7, 6, 8]], [[15, 8, 6, 7]],
[[15, 9, 5, 6]].

A[[n + m, k, d]] standard stabilizer code can correct


d−1
2


arbitrary errors. Compared with the [[n + m, k, d]] standard
stabilizer code, the [[n, k, dA; c]] + [[m, c, dB]] quantum code
uses a smaller number of qubits going through the noisy
channel in order to correct the same number of errors on the
transmit channel.

4. Entanglement-assisted codeword-stabilized quantum
codes with imperfect ebits

In this section, we show an EACWS code that simultane-
ously corrects qubit errors on the transmitter’s side and ebit

errors on the receiver’s side. Our scheme corrects


d−1
2


arbi-

trary errors on the receiver’s side as well as on the sender’s side.
According to the properties of the EACWS code, any Pauli er-
ror can be turned into a binary error, and we identified binary
codewords to correct the binary errors based on an exhaustive
search. The advantage of this scheme is that it uses only one
QECC to correct errors on both sides, regardless of whether the
equivalent relation is satisfied.

4.1. EACWS quantum code with imperfect ebits using the
property of stabilizer generators

Our scheme corrects errors on Bob’s side as well as on
Alice’s side by using only one QECC. To this end, we use
the property of the EACWS code in such a way that each
stabilizer generator gi (for i = 1, . . . , n) has a single X operator
and multiple Z operators on the qubits corresponding to the
neighboring vertices of the graph. To correct the ebit errors,
we need additional word stabilizers (h1, h2, . . . , hc) as well
as standard word stabilizers (g1, g2, . . . , gn). The stabilizer
Table 1
The case of ((n, K , 3; c)) EACWS quantum code, pairs of errors that have the
same effective error.

Nu.. Single X error on
Bob’s side

Stabilizer
generator
applies to two
equivalent
errors

Equivalent single
error on Alice’s side

1 I . . . In |X1 I . . . Ic h1 Z1 I . . . In |I⊗c

2 I . . . In |I X2 . . . Ic h2 I Z2 . . . In |I⊗c

. . . . . . . . . . . .
c − 1 I . . . In |I . . . Xc−1 Ic hc−1 I . . . Zc−1 . . . In |I⊗c

c I . . . In |I . . . I Ic hc I . . . Zc . . . In |I⊗c

generators for the standard form EACWS code that consists of
the following:

g1 = X1 Z2 I . . . I Zn|I ⊗c

g2 = Z1 X2 Z3 . . . I I |I ⊗c

g3 = I Z2 X3 Z4 . . . I I |I ⊗c

...

gn−c = I . . . I Zn−c−1 Xn−c Zn−c+1 I . . . I I |I ⊗c

gn−c+1 = I . . . I I Zn−c Xn−c+1 Zn−c+2 I . . . I I |Z1 I . . . I

(18)

...

gn = Z1 I . . . I Zn−1 Xn| I . . . I Z c
h1 = I . . . I Zn−c+1 I . . . I |X1 I . . . I

...

hc−1 = I . . . I Zn−1 I |I . . . I I Xc−1 I
hc = I . . . I I Zn|I . . . I I I X c

(19)

where Eq. (18) is derived from Eqs. (8) and (9). These stabilizer
generators correspond to a simple ring graph. Eq. (19) is
identical to Eq. (10).

The stabilizer generator can transform any single Pauli error
on both sides into one or more Z errors, and these Z only errors
are referred to as effective errors [4]. The effective errors are
represented as binary errors because of the property that turns
Z and I operators into 1 and 0. Thus, binary codewords can be
found to correct these binary errors. These binary codewords
are converted into word operators that formed the basis of
the code space. Because the encoding process needs only to
be applied to Alice’s side, the word operators cannot have
Z operators on the qubits in Bob’s side; thus, the stabilizer
generators are repeatedly applied to the word operators until
all of the Z operators on Bob’s side are removed.

As mentioned above, finding EA-CWS code with imperfect
ebits is very similar to the code with perfect ebits [10].
However, some pairs of Pauli errors on the receiver and
transmitter side have the same effective error. In the case of our
scheme with a minimum distance of three, the number of these
pairs is the same as the number of ebits, as shown in Table 1.
Therefore, the total number of effective errors is smaller than
the total number of correctable Pauli errors, and it results in a
higher number of codewords. This is the difference from EA-
CWS code with perfect ebits.
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For instance, consider the code with n = 7, d = 3, and c =

2. Assume that the error that occurs on Bob’s side is IIIIIII|XI.
We can get an equivalent Pauli error IIIIIZI|II on Alice’s side
using the stabilizer generator h1 = IIIIIZI|XI. Therefore,
two equivalent errors, IIIIIII|XI and IIIIIZI|II, correspond to
the same effective error IIIIIZI|II. For this reason, the total
number of effective errors is smaller by the number of ebits
than the total number of correctable Pauli errors, resulting in a
larger number of codewords. In ((7, 9, 3; 2)) EACWS code, we
consider 27 single Pauli errors that consist of 21 errors on the
transmitter’s side and 6 errors on the receiver’s side. Then, all
Pauli errors are converted into effective errors, including Z and
I operators. In this process, two errors with a single X operator
on the receiver’s side have the same effective error as a single
Pauli error on the sender’s side. Because of the presence of
two equivalent error patterns, the total number of effective error
patterns is 25.

In the following section, we consider examples of our
scheme with a minimum distance of three.

4.2. Examples of EACWS quantum code with imperfect ebits

In this section, we provide some examples of the EACWS
codes based on our construction. All of the example codes use a
base state on a simple ring graph that is identical to a CWS code
in standard form. We consider a classical binary-error set, and
then find classical codes that can correct it through a numerical
search. Then, we construct the word operators from the set of
binary codewords.

4.2.1. ((7, 9, 3; 2)) EACWS code
We can construct a ((7, 9, 3; 2)) code from a simple

ring graph having seven vertices using two ebits with a
minimum distance of three. This nonadditive code has one more
dimension of code space than does the additive [[9, 3, 3]] code.

The initial base state isS′

= |00000⟩ |Φ+Φ+⟩ . (20)

The stabilizer generators are generated based on the ring graph
as follows:

g1 = XZIIIIZ|II,

g2 = ZXZIIII|II,

g3 = IZXZIII|II,

g4 = IIZXZII|II,

g5 = IIIZXZI|II,

g6 = IIIIZXZ|ZI,

g7 = ZIIIIZX|IZ,

h1 = IIIIIZI|XI,

h2 = IIIIIIZ|IX.

All single errors can be corrected on both sides. Based on
the effective errors, nine codewords can be found as follows:

0000000|00, 1110101|01, 1111000|01, 0001001|11,

0010010|11, 0011111|10, 0101100|10, 0111110|01,

1100010|00.
We can discover the word operators from these binary
codewords. The word operators w′

l for the base state
S′


(before

applying UE ) are

IIIIIII|II, XXXIXIY|II, XXXXIIZ|II, IIIXIZY|II,
IIXIIYZ|II, IIXXXYX|II, IXIXXZI|II, IXXXXXZ|II,

XXIIIXI|II.

and the word operators wl for this code (after applying UE ) are

IIIIIII|II, IZZIZZY|II, IZZZIZX|II, ZIIZZYX|II,
ZIZIZXY|II, IIZZIYI|II, IZIZIXZ|II, ZZZZZIX|II,

ZZIIIZI|II.

4.2.2. ((9, 20, 3; 1)) EACWS code
The ((9, 20, 3; 1)) code can also be constructed from a

simple ring graph with nine vertices. This code has two more
dimensions of code space than ((10, 18, 3)) CWS quantum
code with a simple ring graph and the same number of physical
qubits.

The initial base state for this code isS′

= |00000000⟩ |Φ+⟩ . (21)

After the encoding operation UE , the stabilizer generators for
this code are as follows:

g1 = XZIIIIIIZ|I,

g2 = ZXZIIIIII|I,

g3 = IZXZIIIII|I,

g4 = IIZXZIIII|I,

g5 = IIIZXZIII|I,

g6 = IIIIZXZII|I,

g7 = IIIIIZXZI|I,

g8 = IIIIIIZXZ|I,

g9 = ZIIIIIIZX|Z,

h1 = IIIIIIIIZ|X.

Thirty Pauli error patterns can be corrected with this code.
In this case, one error pair has the same effective error, and
thus, 30 single Pauli errors can be changed into 29 effective
errors (or binary errors). Then, the classical code correcting
these effective errors is

110000100|1, 110001000|0, 110010111|0, 110011011|1,
111000010|1, 111011101|1, 111100001|0, 111111110|0,
000011111|0, 000100011|1, 000111100|1, 001100101|1,
001101001|0, 001110110|0, 001111010|1, 010101100|0,
010110011|0, 101001101|0, 101010010|0, 000000000|0.

The word operators w′

l for the base state
S′


(before applying

UE ) are

XXIIIIXIZ|I, XXIIIXIII|I, XXIIXIXXX|I, XXIIXXIXY|I,
XXXIIIIXZ|I, XXXIXXXIY|I, XXXXIIIIX|I,
XXXXXXXXI|I, IIIIXXXXX|I, IIIXIIIXY|I,

IIIXXXXIZ|I, IIXXIIXIY|I, IIXXIXIIX|I,
IIXXXIXXI|I, IIXXXXIXZ|I, IXIXIXXII|I,

IXIXXIIXX|I, XIXIIXXIX|I, XIXIXIIXI|I, IIIIIIIII|I



52 B. Ahn et al. / ICT Express 2 (2016) 47–52
and the word operators wl for this code (after applying UE ) are

IZIIIIZZX|I, ZZIIIZIII|I, ZZIIZIZZZ|I, IZIIZZIIY|I,
IZZIIIIIX|I, IZZIZZZZY|I, ZZZZIIIIZ|I, ZZZZZZZZI|I,
IIIIZZZZZ|I, ZIIZIIIIY|I, ZIIZZZZZX|I, ZIZZIIZZY|I,
IIZZIZIIZ|I, IIZZZIZZI|I, ZIZZZZIIX|I, IZIZIZZII|I,

IZIZZIIZZ|I, ZIZIIZZIZ|I, ZIZIZIIZI|I, IIIIIIIII|I.

4.2.3. ((6, 4, 3; 1)) EACWS code
According to Ref. [13], a [[6, 2, 3; 1]] EAQECC is not

equivalent to standard [[7, 2, 3]] code. Therefore, when the
sender uses a [[6, 2, 3; 1]] code to protect the information qubits,
the receiver has to use a separate standard stabilizer code to
protect the ebits. On the other hand, our ((6, 4, 3; 1)) EACWS
code can simultaneously protect qubits and ebits on both sides.
Based on the simple ring graph, a ((6, 4, 3; 1)) EACWS code
can be generated with six vertices using one ebit.

The initial base state of this code isS′

= |00000⟩ |Φ+⟩ . (22)

After the encoding operation UE , the stabilizer generators of
this code are as follows:

g1 = XZIIIZ|I,

g2 = ZXZIII|I,

g3 = IZXZII|I,

g4 = IIZXZI|I,

g5 = IIIZXZ|I,

g6 = ZIIIZX|Z,

h1 = IIIIIZ|X.

The total number of single qubit Pauli errors for Alice’s and
Bob’s qubits is 21. In this case, the total number of binary errors
is 20 because two Pauli errors, IIIIIZ|I and IIIIII|X, have the
same binary error 000001|0.

The codewords are

000000|0, 001100|1, 110111|0, 111011|1.

The word operators before encoding, which is constructed
from classical code, are

IIIIII|I, IIXXIZ|I, XXIXXX|I, XXXIXY|I,

and the word operators of this code (after applying) are

IIIIII|I, ZIZZZX|I, ZZIZZZ|I, IZZIIY|I.

5. Conclusion

In this paper, we presented EACWS codes with imperfect
ebits. Based on the simple ring graph, the proposed scheme
uses only one QECC to correct errors on both sides. Because
of the property whereby two different Pauli errors correspond
to the same effective error, we can construct two example
codes, a ((7, 9, 3; 2)) and a ((9, 20, 3; 1)) code, which have
larger codewords than their additive counterparts with the same
number of physical qubits. We also presented a ((6, 4, 3; 1))

EACWS code to protect qubits and ebits on both sides. In the
future, we will attempt to find a new code that has a better
parameter K by applying a different form of graph. We will
also find another nonadditive EACWS quantum code that has a
higher minimum distance.

Acknowledgment

“This research was supported by the MSIP (Ministry
of Science, ICT and Future Planning), Korea, under the
ITRC (Information Technology Research Center) support
program (IITP-2016-R0992-16-1017) supervised by the IITP
(Institute for Information & communications Technology
Promotion)”.

References

[1] A.R. Calderbank, E.M. Rains, P. Shor, N.J. Sloane, Quantum error
correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998)
1369–1387.

[2] D. Gottesman, (Ph.D. thesis), Caltech, 1997.
[3] A.R. Calderbank, P. Shor, Good quantum error-correcting codes exist,

Phys. Rev. A 54 (1996) 1098–1105.
[4] A. Cross, G. Smith, J.A. Smolin, B. Zeng, Codeword stabilized quantum

codes, IEEE Trans. Inform. Theory 55 (2009) 433.
[5] D. Schlingemann, R.F. Werner, Quantum error-correcting codes

associated with graphs, Phys. Rev. A 65 (2001) 012308.
[6] M. Van den Nest, J. Dehaene, B. De Moor, Graphical description. of the

action of local Clifford transformations on graph states, Phys. Rev. A 69
(2004) 022316.

[7] T.A. Brun, I. Devetak, M.-H. Hsieh, Correcting quantum errors with
entanglement, Science 314 (2006) 436–439.

[8] C.H. Bennett, D.P. DeVincenzo, J.A. Smolin, W.K. Wootters, Mixed-
state entanglement and quantum error correction, Phys. Rev. A 54 (1996)
3824–3851.

[9] M.-H. Hsieh, I. Devetak, T.A. Brun, General entanglement-assisted
quantum error-correcting codes, Phys. Rev. A 76 (2007) 062313.

[10] J. Shin, J. Heo, T.A. Brun, Entanglement-assisted codeword stabilized
quantum codes, Phys. Rev. A 84 (2011) 062321.

[11] B. Shaw, M.M. Wilde, O. Oreshkov, I. Kremsky, D.A. Lidar, Encoding
one logical qubit into six physical qubits, Phys. Rev. A 78 (2008)
012337.

[12] M.M. Wilde, M.-H. Hsieh, Entanglement-assisted quantum turbo codes,
2013. arXiv:1010.1256.

[13] C.-Y. Lai, T.A. Brun, Entanglement-assisted quantum error-correcting
codes with imperfect ebits, Phys. Rev. A 86 (2012) 032319.

[14] G. Bowen, Entanglement required in achieving entanglement-assisted
channel capacities, Phys. Rev. A 66 (2002) 052313.

[15] M. Grassl, http://www.codetables.de/.
[16] C.-Y. Lai, T.A. Brun, Entanglement increases the error-correcting ability

of quantum error-correcting codes, Phys. Rev. A 88 (2013) 012320.

http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref1
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref2
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref3
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref4
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref5
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref6
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref7
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref8
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref9
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref10
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref11
http://arxiv.org/1010.1256
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref13
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref14
http://www.codetables.de/
http://refhub.elsevier.com/S2405-9595(16)30060-1/sbref16

	Entanglement-assisted codeword-stabilized quantum codes with imperfect ebits
	Introduction
	Entanglement-assisted codeword-stabilized (EACWS) quantum code
	Entanglement-assisted quantum error-correcting codes with imperfect ebits
	EAQECCs that are equivalent to standard stabilizer codes
	EAQECCs using another quantum code to protect Bob's ebits

	Entanglement-assisted codeword-stabilized quantum codes with imperfect ebits
	EACWS quantum code with imperfect ebits using the property of stabilizer generators
	Examples of EACWS quantum code with imperfect ebits
	 ((7, 9, 3; 2))  EACWS code
	 ((9, 20, 3; 1))  EACWS code
	 ((6, 4, 3; 1))  EACWS code


	Conclusion
	Acknowledgment
	References


