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Abstract

In (Comm. Math. Phys. 188 (1997) 121-133) Herzlich proved a new positive mass theorem for Riemannian
3-manifolds(N, g) whose mean curvature of the boundary allows some positivity. In this paper we study what
happens to the limit case of the theorem when, at a point of the boundary, the smallest positive eigenvalue of the
Dirac operator of the boundary is strictly larger than one-half of the mean curvature (in this case the(g)ass
must be strictly positive). We prove that the mass is bounded from below by a positive ceiigiant(g) > c(g),
and the equalityz(g) = ¢(g) holds only if, outside a compact se¥, g) is conformally flat and the scalar curvature
vanishes. The constantg) is uniquely determined by the metrgcvia a Dirac-harmonic spinor.
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1. Introduction

Let (N,g) be a complete Riemannian 3-manifold with boundary which is diffeomorphic to

the Euclidean spac®® minus an open 3-ball centered at the origin. l¢y) = ,/Z?:lyl?, y =

(y1, y2, y3) € R3, be the standard distance function to the origin Bf. Then (N, g) is called
asymptotically flat of ordert > 1/2, if there is a diffeomorphisn® : N — R3\{an open 3-bajl such
that the coefficients of the metricin the induced rectangular coordinates satisfy

gij =38; +0O(r™), gijx=0("), gijx1=0O(r"7?)
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asr =r(®) — oo. Let S(r) C N denote theb-inverse image of a round 2-spherelR#A, centered at the
origin and of sufficiently large radius> 0. Throughout the paper we identify

N = U S(@r) for some fixed constant, > 0.

r>ro
Themassof (N, g) is usually defined by [1]

3
1 i
m(g) = = r"_[gq; 3 /(gij,j — g ds, (1.1)
BIEES )

wherev is the outward unit normal to spher§gr) C N anddS is the area form of sphere&r). We

remark here that one can express this definition in a coordinate-independent way, by considering a fla
metric onN as a reference metric. Let, be a metric onV which is the pullback of the Euclidean metric

on R3\{an open 3-bajlvia the diffeomorphism® : N — R3\{an open 3-bajl Then Eq. (1.1) is in fact

equal to

1 . .
m(g) = E rILngo / geu(dIVgeu(g) - gradgeu(Trgeu(g))’ Veu)MS(r)(geu) (1-2)
S(r)
1 . .
= E rll—>ngo / g(dlvgeu(g) - gradgeu(Trgeu(g))’ Vg)/’LS(V)(g)’ (13)
S(r)

where Ve, (respectivelyV,) is the outward unit normal to spheréS(r), gew) (respectively(S(r), g))

and s (gew (respectivelypg)(g)) is the area form of sphergs(r), geuw) (respectively(S(r), g)).

When one applies the Witten-type spinor method to prove positivity of the mass, one should use the
latter Eq. (1.3) [2,5,6,9,11]. Note that Egs. (1.2)—(1.3) are independent of deformation of the foliation
N =J,s,, S(r) via a diffeomorphism¥ : N — N, since Stokes’ theorem implies that

1 . .
m(g) = E r“_)”;Q / g(dlvgeu(g) - gradgeu(Trgeu(g))’ Vg)MS(r)(g)
S(r)

1 .
=16, / g(dIVgeu(g) - gracLeu(Trgeu(g)), Vg),uazv(g)
IN

1 . .
e / v (A, (9) — grad,,,(Tre.,(9)) } e (2)
N

whose right-hand side is independent of a choice of foliatiovdny 2-spheres.

The mass is a geometric invariant of Riemannian asymptotically flat manifolds and of importance in
Riemannian geometry as well as in general relativity. In [3,7] one finds an excellent exposition of the
positive mass conjecture as well as the Penrose conjecture and a full list of related papers. A fundamente
problem about the mass is to investigate the relation between the scalar cusatfréne manifold
(N, g), the mean curvature J¢®) of the inner boundarydN, glsx) and the massn(g) (here ©
indicates the second fundamental form of the boundary). The Riemannian positive mass theorem, prove
by Schoen and Yau [10], states that(M, g) is an asymptotically flat 3-manifold of non-negative scalar
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curvatureS, > 0 with minimal boundary T#(®) = 0, then the mass is non-negatimgg) > 0. In fact,

the limit case of zero mass can not be attained and so the mass must be strictly positive. The Penros
conjecture, recently proved by Huisken and limanen [7], improves the positive mass theorem and state:
that, if the boundary is not only minimal but also outermost (egontains no other compact minimal
hypersurfaces), then

m(g) > &/ A—rea(jN -8)

with equality if and only if(N, g) is isometric to the spatial Schwarzschild manifold.

In [5] Herzlich proved a new positive mass theorem for manifolds with inner boundary (see
Theorem 2.1), making use of Dirac-harmonic spinors with well-chosen spectral boundary condition (see
the PDE system (2.7) below). A remarkable feature of the theorem is that thent@sis non-negative
even if there is some positivity of the mean curvature of the boundary. The limit case of zero mass (the
flat space) occurs only if the smallest positive eigenvaleéthe Dirac operator of the boundary is equal
to one-half of the mean curvature, 7€), i.e.,

T 1
A=2 | ————— =ZTr,(O).
AreadN,g) 2 <(©)

The object of this paper is to study what happens to the limit case of the theorem when

T 1 T 1
2 [————>ZsupT 2 Areaan o T 5 (@),
\ Areaan g = 2 SAT@)) and 2 e T2 (@

in which case the zero mass(g) = 0 cannot be attained. We will prove (see Theorem 3.1) that there
exists a positive constamrig) > 0, uniquely determined by the metricvia a Dirac-harmonic spinor,

such thatm(g) > c(g) and the equalityn(g) = c(g) occurs only if, outside a compact s&ty, g)

is conformally flat and the scalar curvatusg = O vanishes. It will also be shown that the equality
m(g) = c(g) is indeed attained ifN, g) is conformally flat, the conformal factor being constant on the
inner boundan® N, and the scalar curvature is everywhere zero. The idea to prove the rigidity statement
is that, near infinity, one can conformally deform the considered metric as well as the connection, using
the length of a harmonic spinor without zeros as the conformal factor.

2. TheWitten—Herzlich method

In this section we recall some basic facts concerning the Witten-type spinor method used by Herzlich

to prove a positive mass theorem for manifolds with inner boundary [2,5,6,9,11]04.€l, 9,) be

a frame field on(N, g) determined by spherical coordinatés, ¢, r). Applying the Gram—-Schmidt
orthogonalization process 1@, 95, 9,), we obtain ag-orthonormal frameE1, E», —E3), defined on

an open dense subset 8f such thatV := —E3 is the outward unit normal to hypersurfacgsr), g),

r >r,, and eachE;, j =1, 2, is tangent taS(r), where(S(r), g) denotes hypersurfact(r) equipped

with the metric induced by. Let V and V? be the Levi-Civita connection ofN, g) and (dN, g),
respectively. LetD be the Dirac operator ofN, g) and D? the induced Dirac operator @b, g),
respectively. Le® := VV be the second fundamental form@fV, g). Then we have

1
Vxy =Vyy + 5O(X) - Es-y
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for all vectorsX ondN and so
2 1
Dl//—Eg-VESV/:ZEi-Vgiw—E(Trg@)Eg-l//. (2.1)
i=1

Let ¥ (N) and X (dN) be the spinor bundle ofN, g) and (aN, g), respectively. Recall that the
Clifford bundle ClaN) may be thought of as a subbundle of(&), the Clifford multiplication
CI(aN) x X (dN) — X (dN) being naturally related to the one(@1) x X (N) — X (N) via either

. (Ei - E3-Y)=E; - (m), =12, (2.2)
or

—74(E; - E3- ) = E; - (M), (2.3)
wherern, : ¥ (N) — X (dN) is the restriction map. Eq. (2.1) is then projected 1 as

2

1
T(Es: DY + V) =F ) D" (mdp) + 5 (Tr, O)(ma). (2.4)
i=1

RegardingvV?y, v € I'(X(dN)), as spinor fields oV, not projected to the boundasyV, one verifies
easily that the formula

Vi(Es-¥) = Es- Vi
makes sense. Therefo?’ anticommutes with the action of the unit nornigj, and hence the discrete

eigenvalue spectrum @? is symmetric with respect to zero. Moreover, we note that, since the smallest
absolute value of eigenvalues bf must satisfy

T
2\/ Area(dN., g)’ (2.5)

there is no non-trivial solutions to the equatidig = 0.

Let (-,-), = Reg(-, -), be the real part of the standard Hermitian prodct), on the spinor bundle
X (N) over (N, g). Then, using the scalar produc¢t -) = (-,-),, one can describe the asymptotic
behaviour of spinor fields as

W=V, ¥)=0("%), |Vy|=0("1"), etc, x>0 (2.6)

Remark. Using the formulas in Propositions 2.1 and 2.3 of [8], one verifies that (2.6) is in fact equivalent
to the decay condition

|¢|geu = (W, w)geu = O(r_K)’ ‘VgEUW

described in terms of the flat metrgg,.

=0(r '), etc,

8eu

Let P. be the L?-orthogonal projection onto the subspace of positive (respectively negative)
eigenspinors of the induced Dirac operaft. Let W2 be the weighted Sobolev space defined in [2]. In
the rest of the paper, we fix a constant spiigmwith |, | = 1 (i.e., ¥, is a parallel spinor with respect to
the flat metricgey), all the components of which are constant with respect to a spinor frame field induced
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by rectangular coordinates, and we use the rule (2.2) for the Clifford multiplication. Now we consider
the PDE system:

Dy =0, with boundary condltloq M Ilmw(x) Y., P_y =0, 2.7)

wherey is a section ofZ (N) with v — v, € W-2, > 1/2. (If one uses the rule (2.3) for the Clifford
multiplication, then the spectral boundary conditiBrmy = 0 must be replaced bg, ¢ = 0 to guarantee
positivity of the boundary term in Eq. (2.8) below for the mass).

Proposition 2.1 (see [5]).Let (N, g) be a Riemannian asymptotically flat 3-manifold of order T > 1/2.
Let the scalar curvature S, of (N, g) be non-negative and the mean curvature Tr,(®) of the boundary
(ON, g) satisfy

Az }sup{Trg(@)},
2 N

where A isthe smallest absolute value of eigenval ues of the induced Dirac operator D?. Then there exists
a unique solution to the PDE system (2.7).

Lety be a solution to the system (2.7). Les (g), nan(g), un(g) denote the area form @8 (r), g),

(AN, g), (N, g), respectively. Then, applying Stokes’ theorem, the Schrédinger—Lichnerowicz formula
and the spectral boundary condition, we have

1
m(g) = —— ||m /g(gradg(‘ﬁ» W),V)MS(r)(g)

S(r)

1 , 1
= E /(Dd(ﬂ*w) — ETrg(@)(JT*W), ”*W)l/«dN(g)
N
L Vi,V L
+g/{< UL V) + 559 w>}uN<g>
N

1 1
> E/{k - ETrg(@)}(n*w, ) an(8), 2.8)
oN

which proves the following positive mass theorem.

Theorem 2.1 (see [5]).If (N, g) is asymptotically flat of order v > 1/2 with S, > 0 and the mean
curvature Tr, (©®) satisfies

T
2 /WN@ sup{Tr @},

then m(g) > 0, with equality if and only if (N, g) isflat.

Note that, if

T 1 T 1
2\/% sup{Trg(O)} and 2\/%35 Tr,(©) (2.9)
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on the boundary N, then the equalityz(g) = 0 of Theorem 2.1 cannot be attained, and hence one may
find a reasonable positive constarig) > 0 depending on the metrig with m(g) > c(g). In the next
section, we investigate situation (2.9) and improve the rigidity statement of Theorem 2.1.

3. Conformal change of metric using length of a spinor without zeros as the conformal factor

We consider a conformal metric= e/ g on N with f W_r , T > 1/2. The scalar curvatures; and
S, are related by

k

k(1
¢ 8, + (

— 4k)
—— < ldf 1, (3.1)
wherek € R is an arbitrary real number, and the mean curvatureg®gn and Tr, (®,) on the boundary

dN are related by

Ag(e) = —(divy ograd,) (e") = ge(k+l)ng —

Tr;(Oz) = e 12Tr,(0,) — e /12 df (Es), (3.2)

where E3 is the inward unit normal t@o N, g). Moreover, applying (3.1) to (1.3), one verifies that the
massesn(g) andm(g) are related as follows:

1
m@—m(@) =7 = | g(grad(e ), Eg)uon () + 7+ 5= Ag(e)un(g)
oN N
1 1-—
=8n/ kfdf(Es)mN<g>+—/ kf( IS5 — 8, +—|de )mg) (3.3)
oN

Now let X' (N), and X' (N); denote the spinor bundle 0NV, g) and (N, g), respectively. Then there
are natural isomorphismg: T (N) — T(N) andj: X (N), — X (N); preserving the inner products of
vectors and spinors as well as the Clifford multiplication

8UX,jY)=¢g(X.Y), (j¥, j2)z = (Y1, V2)g,
GX) -G =j(X-¥), XY eI (TN)), ¥, ¥1,¥2€ I'(Z(N)y).
We fix the notationX := j (X) andy := j () to denote the corresponding vector fields and spinor fields

on (N, g), respectively. For shortness we also introduce the notatipn= e”/ v, p € R. Then, one
verifies that the connectiong, V and the Dirac operatorE, D are related as follows.

Proposition 3.1.

(i) grade’) =e" f/zgrad(ef )
(i) Vi, =e" {Vxy + Z2e ' g(grade’), X)¥ — 3¢~/ X - grade’) - ¥/},
(i) D, =el (e f/ZDer?"”z+l ~Igrade’) - ¥/}

Let ¢ = ¢, + @1 be a spinor field oN, g) with |¢,| = 1 andg, € W2 © > 1/2. Since|g| — 1 as
r — 00, there exists a positive constant> r, such thatp has no zeros iV (r,) := Ur% S(r). Define
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a conformal metri¢ on N (r,) by

g=(p,9)g, qeR.
Then the connectiong, V and the Dirac operator®, D are related by

= — q(p-1 _
Vx@, = (g, w)”q{wa + Q(pf‘f)(tp, 9)"'g(grade, ¢). X)¢

qg2p+1)
2

where ¢, = (¢, ¢)??p. On the other hand, we know (see [4]) thatgifis an eigenspinor o> on
(N(r*)v g)1 then

D@, = (¢, go)f’q{«o, @) 1?Dy + (p.9) 'grade, ¢) - @}, (3.5)

1 3
Vg =—3(p, Q) T, (X) -+ 2% @) 'g(grade, @), X)g

1
+2(0,9)7'X -gradg, ) - ¢, (3.6)
whereT,, is the energy-momentum tensor defined by
T,(X,Y)= (X -Vyp+7Y - -Vxop, ¢).
Making use of Eqgs. (3.4)—(3.6), we obtain the following proposition immediately.

Proposition 3.2. In the notations above, we have:

(i) If p=—1/2and Dy =0, then Dig; = 0.
(i) If Vxip; =0and Dy =0, then p=—1/2and g = 1.
(i) 1f Vy, = Owith p = —1/2and g = 1, then D¢ = 0.

We now find that, in order to improve the rigidity statement of Theorem 2.1, the optimal parameters
p,q,are

1
- —1 3.7
P > q (3.7)

For this choice of parameters, Eq. (3.4) gives

_ 1 3
(0. 9)?*(Ve,. Vo,) = (Vo, Vo) + >(@, @) (Do, grade, ¢) - ) — 3@ ) |grad, ¢)|*.

Applying the Schrédinger—Lichnerowicz formula

1
Ap, 9) =—2(Vp, Vo) +2(D?%p, ¢) — 559, ),

whereA = —divograd, one proves the following lemma.
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Lemma 3.1. For the choice (3.7) of parameters, we have

1. _ 1
> div{(¢. ¢)" gradg, ¢)} = (¢, w)’{(% 9)*(Vg,. Vo,) + 250 9) = (D?¢. )

1 3
-5, 9) (Do, gradg, ) - ¢) + 5@, ) *|grad, w)\z}

(. 9)”
2(P’§0

where r € R isan arbitrary real number.
Now we can prove the main result of the paper.

Theorem 3.1. Let (N, g) be a Riemannian asymptotically flat 3-manifold of order ¢ > 1/2. If the scalar
curvature S, of (N, g) is non-negative and the mean curvature Tr,(®) of (N, g) satisfies

T T
2 /Airea(aN 3 sup{Tr (@)}, 2 /7Area(aN 3 + Tr 2 (0), (3.8)

then there exists a positive constant ¢(g) > 0 uniquely determined by the metric ¢ (as well as a
beforehand fixed constant spinor ) such that

(i) m(g) > c(g), and
(i) the equality m(g) = c(g) occurs only if, outside a compact set, g is conformally flat and the scalar
curvature S, = 0 vanishes,

In case that (N, g = e~/ geu) is conformally flat, f € W2, ¢ > 1/2, and the conformal factor ¢~/ is
constant on the boundary a N, then the equality m(g) = ¢(g) holds.

Proof. Lety be a unique solution to the PDE system (2.7). We choose the parametei3/4 in the
formula of Lemma 3.1 so as to remove the terms involvigcad v, v)|2. Then we have

1 .
() =g lm [ g (grad ). Vs @

S(r)

1 —3/4( 1o 1
T an /(”*'/””*w) D’ () = 5 T (@) (r), s ) 115 (8)

S(rs)
+ L /w wrs/“{(w VAT V) + =S, w)} (9)
- ) ) P> p 27\ MN@o(8
N(ry)

for all sufficiently large constants. > r,. On the other hand, we know that

1
m(g) = o— ||m /g(graow, W)»V)Msm(g)

S(r)
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1 1
= E/(Da(”*‘ﬂ) - Qng(@)(ﬂ*W),n*w)uaN(g)

oN

1 1
+ E/{(vw, V) + 28 w)}uw(g)
N

1 T 1
g E/{z\/%l\kg)_ ETW@)}(W, T ) an(g) > O,

oN

since v(V¥, Vi) > O is strictly positive. Therefore, there exists a positive constant r, satisfying
the following two conditionsys has no zeros iV (ry,) = Ur%o S(r) and

1 . 1
y / <n*w,n*w)—3/“(D"<n*w)—ETrg@)(n*w),n*w)usum)(g)

S(reo)

1 / T 1
> E {2 WN,g) — ETrg(@)}(ﬂ*‘//: ) uan(g) > 0.
oN

Let rgi, be the greatest lower bound of the set of all the constaptsatisfying these two conditions and
define

_1 ~3/a( 1
c(g)= o (T, ) D (m.¥) 2Trg(@)(n*w),n*w IS(rgin) (8)-
S(rglb)

Then it is clear that the statements (i) and (ii) of the theorem are true. Now it remains to prove the last
statement of the theorem. Let= e//?y,. Then Proposition 3.1(iii) implie®¢ = 0. Furthermore,

T E
O= VEin = V%l‘wo + E@gEU(Ei) . E3' Wo = V%iwl? + 2_'_0Ei : E3 : Wo» 1= 1a 2a
gives

2
) 1, 3 1
Vi (rup) = =5 —¢/PEi - () + Zdf (B () + ZEi - | )_df (EDE; | - (mu9)
o le
1
= —;oef/ZEi (7)),

since the functionf is constant ord N. Consequentlyy = e//?y, is the unique solution to the system
(2.7) and the equality:(g) = ¢(g) holds indeed. O

Remark. Let (N, g = ¢~/ ge) be conformally flatf € W2, r > 1/2, and let the functiory be constant
on the boundary N. Assume thafS, > 0 and the boundary condition (3.8) is satisfied. Then the scalar
curvaturesS, is given by (see (3.1))

Ag(ef/4) = —%ef/‘ng
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and so the mass by (see (3.3))

1 1
mig) = / I df (Euan(®) + 1 [ ¢/ Serin ().
oN N

Substituting Eqg. (3.2) into (3.8), one verifies easily thatf (E3) > 0, df (E3)# 0, and the constantg)
in Theorem 3.1 is in fact equal to

1
@)= / /A df (B sy ()
7T
IN

1 1
== /(n*lﬁ, n*lﬁ)—sm(m(n*w) — ETrg(@)(n*;p), H*W>M3N(g),
IN

wherey = e//2y, is a unique solution to system (2.7). In particularg i the spacelike Schwarzschild
metric with

4
e_f=(1+%> , m>0,

then a direct computation, on the minimal boundan = S(r = m/2), shows that(g) = m.

Remark. It might be possible to compare the constaqg) in Theorem 3.1 with the lower bound
4./Area(dN, g)/n of the Penrose inequality [3,7], in case that the boundaty, g) is minimal. It
seems that

4,/A7rea(§N 8 > (o),

since the boundary condition (outermost minimal surface) for the cons{éhte®(0 N, g)/ is stronger
than that (minimal surface) far(g).
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