

Discrete Mathematics 191 (1998) 171-177

DISCRETE MATHEMATICS

2-factors and hamiltonicity

Zdeněk Ryjáček^a, Ingo Schiermeyer^{b,*}

^a Department of Mathematics, University of West Bohemia, P.O. Box 314, 306 14 Plzeň, Czech Republic ^b Lehrstuhl für Diskrete Mathematik und Grundlagen der Informatik, Technische Univ. Cottbus, D-03013 Cottbus, Germany

Received 5 June 1996; revised 29 April 1997; accepted 23 December 1997

Abstract

We prove the following generalization of a result of Faudree and van den Heuvel. Let G be a 2-connected graph with a 2-factor. If $d(u) + d(v) \ge n - 2$ for all pairs of non-adjacent vertices u, v contained in an induced $K_{1,3}$, in an induced $K_{1,3} + e$ or as end-vertices in an induced P_4 , then G is Hamiltonian. © 1998 Published by Elsevier Science B.V. All rights reserved

Keywords: 2-factor; Hamilton cycle; Induced subgraph; Degree condition

1. Terminology and notation

We use [2] for terminology and notation not defined here and consider finite simple graphs only.

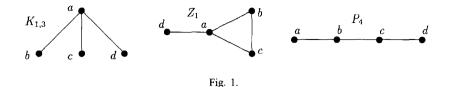
Let G be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton cycle, i.e. a cycle containing all vertices of G. If X is a graph, we say that G is X-free if G does not contain an induced subgraph isomorphic to X. In this paper we use $K_{1,3}$, $Z_1 \simeq K_{1,3} + e$ and P_4 to denote the graphs of Fig. 1. According to the labeling of the vertices we will write $\langle a, b, c, d \rangle \simeq K_{1,3}$, $\langle a, b, c, d \rangle \simeq Z_1$ and $\langle a, b, c, d \rangle \simeq P_4$, respectively.

We will use $\omega(G)$ to denote the number of components of G. A graph G is said to be *t*-tough (cf. [3]) if $t \cdot \omega(G-S) \leq |S|$ for every subset S of V(G) with $\omega(G-S) > 1$. If $v \in V(G)$, then N(v) denotes the set of vertices adjacent to v (the neighborhood of v) and d(v) = |N(v)| denotes the degree of v. If we restrict N(v) and d(v) to a subgraph $F \subset G$, then we will use $N_F(v)$ and $d_F(v)$, respectively. We say that a subgraph $H \subset G$ is a 2-factor of G if H is a spanning subgraph of G and $d_H(v) = 2$ for every $v \in V(G)$.

Let C be a cycle of G. If an orientation of C is fixed and $u, v \in V(C)$, then by u C vwe denote the consecutive vertices on C from u to v in the orientation specified by

^{*} Corresponding author. E-mail: schierme@math.tu-cottbus.de.

⁰⁰¹²⁻³⁶⁵X/98/\$19.00 Copyright © 1998 Published by Elsevier Science B.V. All rights reserved PII S0012-365X(98)00104-6



the orientation of C. The same vertices, in reverse order, are given by v C u. If $C \subset G$ is a cycle with a fixed orientation and $v \in V(C)$, then v^+ and v^- denotes the successor and predecessor of v on C, respectively.

2. Main result

Our research was motivated by the following famous conjecture by Chvátal.

Conjecture (Chvátal [3]). Every 2-tough graph is hamiltonian.

For the class of 2-tough graphs Enomoto, Jackson, Katerinis and Saito proved the following result.

Theorem 1 (Enomoto et al. [5]). Every 2-tough graph has a 2-factor.

Obviously, having a 2-factor is a necessary condition for a graph to be hamiltonian. Moreover, it can be decided in polynomial time whether a given graph G has a 2-factor (see [1]).

The first result for hamiltonicity of graphs having a 2-factor is due to Hoede.

Theorem 2 (Hoede [7]). Let G be a connected graph with a 2-factor and let G_1, \ldots, G_{11} be the graphs shown in Fig. 2. If G is G_1, \ldots, G_{11} -free, then G is hamiltonian.

We now turn our attention to degree conditions. The following result by Faudree and van den Heuvel shows that Ore's [8] and Dirac's [4] degree conditions for hamiltonicity can be relaxed under the additional assumption that G has a 2-factor.

Theorem 3 (Faudree and van den Heuvel [6]). Let G be a 2-connected graph with a 2-factor. If $d(u)+d(v) \ge n-2$ for all pairs of non-adjacent vertices $u, v \in V(G)$, then G is hamiltonian.

Motivated by Theorem 2, we got the impression that it might be sufficient to require the condition $d(u) + d(v) \ge n - 2$ for all pairs of non-adjacent vertices u, v which are contained in an induced P_4 or Z_1 (cf. G_1 and G_2 in Fig. 2). However, examples can be given showing that this is not the case even with the requirement $d(u) + d(v) \ge n - 1$.

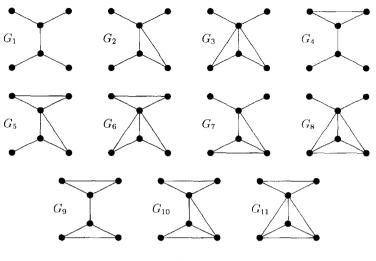


Fig. 2.

A class of such graphs can be obtained by joining two additional vertices u, v to two prescribed vertices of an arbitrary clique on at least 5 vertices (notice that u and v are contained in an induced $K_{1,3}$ and have $d(u) + d(v) = 4 \le n-3$). Thus, the degree condition required for the induced claw is necessary.

Next, consider the class of graphs $G_{p,q,r}$ which consist of three complete graphs K_p , K_q , K_r for $p \ge q \ge r \ge 3$ and the additional edges $u_i v_i$, $u_i w_i$, $v_i w_i$ for i = 1, 2 and vertices $u_1, u_2 \in V(K_p)$, $v_1, v_2 \in V(K_q)$ and $w_1, w_2 \in V(K_r)$. These graphs are 2-connected, claw-free with a 2-factor, but the degree condition is not satisfied for all induced P_4 and induced Z_1 .

Finally, the complete bipartite graph $K_{p,q}$ with $p = \lfloor (n-1)/2 \rfloor$ and $q = \lceil (n+1)/2 \rceil$ for $n \ge 5$ is 2-connected, satisfies $d(u) + d(v) \ge n - 2$ for every pair of nonadjacent vertices u, v, but it has no 2-factor.

These examples show that all the assumptions of the following theorem are, in some sense, best possible.

Theorem 4. Let G be a 2-connected graph with a 2-factor. If $d(u) + d(v) \ge n - 2$ for all pairs of non-adjacent vertices u, v contained in a $K_{1,3}$, in a Z_1 or as endvertices in a P_4 , then G is hamiltonian.

Example. Let i_0, i_1, i_2, i_3, i_4 be integers such that $i_0, i_4 \ge 1$, $i_2 \ge 2$, $i_1 \ge i_2 + i_4 - 1$, $i_3 \ge i_0 + i_2 - 1$. Let G be the graph obtained by taking vertex-disjoint graphs H_0, H_1, H_2, H_3, H_4 . where $H_j \simeq K_{i_j}$ for j = 0, 1, 3, 4 and $H_2 \simeq \overline{K_{i_2}}$, and by adding all edges xy for $x \in V(H_i)$. $y \in V(H_{i+1}), i = 0, 1, 2, 3$. Then the graph G satisfies the assumptions of Theorem 4, but not of Theorem 3. Note that G has diameter diam(G) = 4 while the assumptions of Theorem 3 imply diam $(G) \le 3$.

3. Proofs

We first prove some lemmas which will be useful for the proof of Theorem 4.

Lemma 1. Let C_p , C_q and C be three vertex-disjoint cycles with $V(C_p) = \{u_1, \ldots, u_p\}$ and $V(C_q) = \{v_1, \ldots, v_q\}$. If $u_p v_q \in E(G)$ and $d_C(u_1) + d_C(v_1) \ge |V(C)| + 1$, then there is a cycle C' such that $V(C') = V(C_p) \cup V(C_q) \cup V(C)$.

Proof. Since $d_C(u_1) + d_C(v_1) \ge |V(C)| + 1$, there exists a pair of consecutive vertices $w_1, w_2 \in V(C)$ such that $u_1w_1, v_1w_2 \in E(G)$ or $u_1w_2, v_1w_1 \in E(G)$ and we can easily construct the desired cycle C'. \Box

Lemma 2. Let C_p and C_q be vertex-disjoint cycles with vertices labeled u_1, \ldots, u_p and v_1, \ldots, v_q . Suppose $u_p v_q \in E(G)$; $u_p v_1, u_1 v_q, u_1 v_1 \notin E(G)$. If $d_{C_p \cup C_q}(u_1) + d_{C_p \cup C_q}(v_1) \ge p + q - 1$, then there is a cycle C such that $V(C) = V(C_p) \cup V(C_q)$.

Proof. Suppose there is no such cycle. Then $v_1u_{p-1}, v_{q-1}u_1 \notin E(G)$. Let

$$S = \{i \mid v_1 u_i \in E(G), \ 2 \leq i \leq p - 2\}, \qquad T = \{i \mid u_1 u_{i+1} \in E(G), \ 1 \leq i \leq p - 2\}.$$

If there is some $i \in T \cap S$, then $C = v_1 u_i \stackrel{\leftarrow}{C_p} u_1 u_{i+1} \stackrel{\leftarrow}{C_p} u_p v_q \stackrel{\leftarrow}{C_q} v_1$ would be the desired cycle. Hence we can assume that $S \cap T = \emptyset$. Now $d_{C_p}(v_1) = |S|$ and $d_{C_p}(u_1) = |T| + 1$, from which $d_{C_p}(u_1) + d_{C_p}(v_1) = |S| + |T| + 1 = |S \cup T| + 1 \le p - 1$. By the same argument we obtain $d_{C_q}(u_1) + d_{C_q}(v_1) \le q - 1$ and thus $d_{C_p \cup C_q}(u_1) + d_{C_p \cup C_q}(v_1) \le p + q - 2$, a contradiction. \Box

Let C^1 , C^2 be two vertex-disjoint cycles. We say that a vertex $v \in V(C^1)$ is C^2 -universal, if v is adjacent to all vertices of C^2 .

Assume now that there are two vertex-disjoint cycles C^1, C^2 and a C^2 -universal vertex $v \in V(C^1)$. If v^- or v^+ has a neighbor on C^2 , then we can again easily construct a cycle C such that $V(C) = V(C^1) \cup V(C^2)$.

Lemma 3. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \ge 2$ cycles C^1, C^2, \ldots, C^k , where k is minimal. Then for every pair of cycles $C^i, C^j, 1 \le i < j \le k$, and every C^j -universal vertex $v \in V(C^i)$, neither v^- nor v^+ has a neighbor on C^j .

Corollary 4. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \ge 2$ cycles C^1, C^2, \ldots, C^k , where k is minimal. Then for every pair of cycles $C^i, C^j, 1 \le i < j \le k$, all C^j -universal vertices of $V(C^i)$ are pairwise non-consecutive.

Corollary 5. Let G be a non-hamiltonian graph with a 2-factor consisting of $k \ge 2$ cycles C^1, C^2, \ldots, C^k , where k is minimal. Then there is no pair of cycles $C^i, C^j, 1 \le i$

 $< j \leq k$, such that there is both a C^j -universal vertex $v_i \in V(C^i)$ and a C^i -universal vertex $v_i \in V(C^j)$.

We will also use the following simple lemma.

Lemma 6. Let C be a cycle in a graph G and let $x, y \in V(C)$ be such that there is no x, y-path P with V(P) = V(C). Then $x^+y^+ \notin E(G)$ and $d_C(x^+) + d_C(y^+) \leq |V(C)|$.

Proof. If $x^+ y^+ \in E(G)$, then $P = x \overrightarrow{C} y^+ x^+ \overrightarrow{C} y$ is a *x*, *y*-path with V(P) = V(C). Hence $x^+ y^+ \notin E(G)$. Put $M = \{z \in V(C) \mid zx^+ \in E(G)\}$ and $N = \{z \in x^{++} \overrightarrow{C} y^+ \mid z^- y^+ \in E(G)\} \cup \{z \in y^{++} \overrightarrow{C} x \mid z^+ y^+ \in E(G)\}$. Then $|M| = d_C(x^+)$, $|N| = d_C(y^+) - 1$ and $x^+ \notin M \cup N$. Thus, if $d_C(x^+) + d_C(y^+) \ge |V(C)| + 1$, there is a vertex $z \in M \cap N$, but then the path $x \overrightarrow{C} y^+ z^- \overrightarrow{C} x^+ z \overrightarrow{C} y$ (if $z \in x^+ \overrightarrow{C} y^+$) or $x \overleftarrow{C} z^+ y^+ \overrightarrow{C} z x^+ \overrightarrow{C} y$ (if $z \in y^+ \overrightarrow{C} x^+)$ yields a contradiction. Hence $d_C(x^+) + d_C(y^+) \le |V(C)|$. \Box

Proof of Theorem 4. Assume G is not hamiltonian and choose a 2-factor of G with $k \ge 2$ cycles C^1, C^2, \ldots, C^k such that k is minimal. We distinguish the following cases. Case 1: There are two cycles $C^{t_1}, C^{t_2}, 1 \le t_1 < t_2 \le k$, which are connected by two vertex-disjoint edges.

Subcase A: There is an edge xy such that $x \in V(C^{t_1})$, $y \in V(C^{t_2})$ and neither x is C^{t_2} -universal nor y is C^{t_1} -universal.

Subcase B: Every vertex $x \in V(C^{t_1})$ with $N(x) \cap V(C^{t_2}) \neq \emptyset$ is C^{t_2} -universal.

Case 2: No pair of cycles $C^i, C^j, 1 \le i < j \le k$, is connected by two vertex-disjoint edges.

By Corollary 5, no other possibilities can occur.

Throughout the proof, we denote $n_i = |V(C^i)|$, $1 \le i \le k$. For convenience we set $p = n_1$ and $q = n_2$.

Case 1: We can, without loss of generality, suppose that $C^{t_1} = C^1 \simeq C_p$ with vertices labeled $u_1, \ldots, u_p, C^{t_2} = C^2 \simeq C_q$ with vertices labeled $v_1, \ldots, v_q, u_p v_q \in E(G)$ and $u_i v_j \in E(G)$ for some i, j with $1 \le i \le p - 1, 1 \le j \le q - 1$.

Subcase A: Suppose (without loss of generality) that $u_pv_1, u_1v_q, u_1v_1 \notin E(G)$. Thus $\langle u_1, u_p, v_q, v_1 \rangle \simeq P_4$, from which $d(u_1) + d(v_1) \ge n-2$. Since k is minimal, by Lemma 1 and Lemma 2 we have $d_{C^1}(u_1) + d_{C^1}(v_1) = p-1$, $d_{C^2}(u_1) + d_{C^2}(v_1) = q-1$. If u_1u_{i+1} , $v_1v_{j+1} \in E(G)$, then the cycle $u_1u_{i+1} \overrightarrow{C^1}u_p v_q \overrightarrow{C^2}v_{j+1} v_1 \overrightarrow{C^2}v_j u_i \overrightarrow{C^1}u_1$ contradicts the minimality of k. Hence, we can, without loss of generality, assume that $u_1u_{i+1} \notin E(G)$. Since, equality holds in Lemma 2, this implies $v_1u_i \in E(G)$ and thus $2 \le i \le p-2$. Moreover, since $v_1u_{p-1} \notin E(G)$, there exists r > i such that $u_{r-1}v_1, u_{r+1}u_1 \in E(G)$ and $u_1u_r, v_1u_r \notin E(G)$. Since there is no cycle C such that $V(C) = V(C^1) \cup V(C^2)$, we have $u_rv_2, u_rv_q \notin E(G)$. By symmetry and since $u_rv_1 \notin E(G)$, we conclude $u_rv_{q-1} \notin E(G)$. Now, $C = v_1u_{r-1}\overrightarrow{C^1}u_1u_{r+1}\overrightarrow{C^1}u_pv_q\overrightarrow{C^2}v_1$ is a cycle such that $V(C) = V(C^1) \cup V(C^2) \setminus \{u_r\}$. If $u_ru_i, u_ru_{i+1} \in E(G)$ for some i with $2 \le i \le r-2$ or $r+1 \le i \le p-1$, then u_r can be *inserted* into the cycle C by replacing the edge u_iu_{i+1} by the path $u_iu_ru_{i+1}$. Hence,

we conclude that $u_r u_{r-2}, u_r u_{r+2} \notin E(G)$ and $d_{C^1}(u_r) \leqslant p/2$. Likewise u_r can be inserted if $u_r v_i, u_r v_{i+1} \in E(G)$ for some *i* with $2 \leqslant i \leqslant q - 3$. Hence $d_{C^2}(u_r) \leqslant (q - 4 + 1)/2 =$ (q - 3)/2. For any other cycle C^j , $3 \leqslant j \leqslant k$, if $u_r w_1, u_r w_2 \in E(G)$ for two consecutive vertices w_1, w_2 on C^j , then u_r can be inserted into C^j , contradicting the minimality of *k*. Hence $d_{C^j}(u_r) \leqslant n_j/2$ and thus $d(u_r) \leqslant p/2 + (q - 3)/2 + \sum_{j=3}^k n_j/2 = (n - 3)/2$. Now $\langle u_{r-1}, u_{r-2}, u_r, v_1 \rangle$ and $\langle u_{r+1}, u_r, u_{r+2}, u_1 \rangle$ are isomorphic to $K_{1,3}$ or Z_1 implying $d(v_1) \geqslant (n-1)/2$ and $d(u_1) \geqslant (n-1)/2$. Altogether we obtain $n-1 \leqslant d(u_1)+d(v_1) \leqslant p+$ $q-2 + \sum_{j=3}^k n_j = n-2$, a contradiction.

Subcase B: Let $M = \{x \in V(C^1) | N_{C^2}(x) \neq \emptyset\}$. Then, by the assumptions of Case 1, $|M| \ge 2$, $u_p \in M$ and (recall Corollary 5 and Corollary 4), no two vertices in M are consecutive on C^1 . Suppose first that there are $x, y \in M, x \neq y$, such that both $x^-x^+ \notin E(G)$ and $y^-y^+ \notin E(G)$. Then, since (by Lemma 3) both $\langle x, x^-, x^+, v_q \rangle \simeq K_{1,3}$ and $\langle y, y^-, y^+, v_q \rangle \simeq K_{1,3}$, we have $d(x^-) + d(x^+) + d(y^-) + d(y^+) \ge 2(n-2) \ge 2(p+q-2+n-p-q) \ge 2(p+1)+2(n-p-q)$. On the other hand, by the minimality of k, there is no hamiltonian x, y-path in $G[V(C^1)]$ and hence, by Lemma 6, $d_{C^1}(x^+) + d_{C^1}(y^+) + d_{C^1}(y^-) + d_{C^1}(y^-) \le 2p + 2(n-p-q)$, which is a contradiction.

Hence we can suppose that $x^{-}x^{+} \in E(G)$ for every $x \in M$, $x \neq u_{p}$. But then, for any $x \in M$, $x \neq u_{p}$, we have $u_{1}x \notin E(G)$ and $u_{1}x^{++} \notin E(G)$ (otherwise the cycles $u_{1}xv_{1} \overrightarrow{C^{2}}v_{q}$ $u_{p} \overrightarrow{C^{1}}x^{+}x^{-}\overrightarrow{C^{1}}u_{1}$ and $u_{1}x^{++}\overrightarrow{C^{1}}u_{p}v_{q}\overrightarrow{C^{2}}v_{1}xx^{+}x^{-}\overrightarrow{C^{1}}u_{1}$ contradict the minimality of k). Now, $x^{++} \notin M$, since $x^{++}\overrightarrow{C^{1}}x^{-}x^{+}x$ is a hamiltonian path in $G[V(C^{1})]$. Since also (by Lemma 6) $u_{1}x^{+} \notin E(G)$ and, by Lemma 3, $d_{C^{2}}(u_{1}) = 0$, we have $d_{C^{1} \cup C^{2}}(u_{1}) \leqslant p - 1 - 3(|M| - 1)$. Since every vertex in M is C^{2} -universal, we have $d_{C^{1} \cup C^{2}}(v_{q}) \leqslant q - 1 + |M|$. If there is a cycle C^{i} , $3 \leqslant i \leqslant k$, such that u_{1} and v_{q} have consecutive neighbors on C^{i} , then we easily construct a cycle C' with $V(C') = V(C^{1}) \cup V(C^{2}) \cup V(C^{i})$, contradicting the minimality of k; hence, $d_{C^{3} \cup \cdots \cup C^{k}}(u_{1}) + d_{C^{3} \cup \cdots \cup C^{k}}(v_{q}) \leqslant |V(C^{3}) \cup \cdots \cup V(C^{k})| = n - p - q$. Since $\langle u_{p}, v_{q}, v_{1}, u_{1} \rangle \simeq Z_{1}$, we have $d(u_{1}) + d(v_{q}) \geqslant n - 2$. Altogether we obtain $n - 2 \leqslant d(u_{1}) + d(v_{q}) \leqslant p - 1 - 3(|M| - 1) + q - 1 + |M| + n - p - q$, from which $|M| \leqslant 3/2$, a contradiction.

Case 2: Since G is 2-connected, there are m cycles, $3 \le m \le k$, say, C^1, C^2, \ldots, C^m , with vertices labeled $v_1^i, \ldots, v_{n_i}^i$, and pairs of vertices $v_{r_i}^i, v_{s_i}^i \in V(C^i)$ such that $v_{s_i}^i v_{r_{i+1}}^{i+1} \in E(G)$ (modulo m). If $s_i = r_i \pm 1$ for all $1 \le i \le m$, then there is a cycle C such that $V(C) = \bigcup_{i=1}^m V(C^i)$, e.g. $C = v_{s_1}^1 v_{r_2}^2 C^2 v_{s_2}^2 v_{r_3}^3 \ldots v_{s_m}^m v_{r_1}^1 C^1 v_{s_1}^1$, if $s_i = r_i + 1$ for $1 \le i \le m$, which contradicts the minimality of k.

Now suppose, without loss of generality, that $s_1 \neq r_1 \pm 1$. Thus, $n_1 \geq 4$. If $v_{r_1+1}^l v_{s_1+1}^l \in E(G)$ or $d_{C^1}(v_{r_1+1}^l) + d_{C^1}(v_{s_1+1}^l) \geq n_1 + 1$, then, by Lemma 6, there is a hamiltonian path in $G[V(C^1)]$ with endvertices $v_{r_1}^l$, $v_{s_1}^l$.

Suppose such a path does not exist. With a repeat of previous arguments we will show that $v_{s_1}^1, v_{r_1}^1$ are both universal vertices and that $n_1 = 4$. Suppose first that $v_{s_1}^1$ is not universal. Then there is a vertex $x \in V(C^2)$ such that $v_{s_1}^1 x \in E(G)$, but $v_{s_1}^1 x^+ \notin E(G)$.

As in Subcase A we obtain this time $d(v_{s_1+1}^1) + d(x^+) \leq (n_1-2) + (n_2-1) + \sum_{j=3}^k n_j < n-2$, a contradiction. The same argument holds for $v_{r_1}^1$. Thus, both $v_{s_1}^1$ and $v_{r_1}^1$ are universal vertices. Suppose next that $n_1 \geq 5$. By Lemma 6 we have $d_{C^1}(v_{s_1+1}^1) + d_{C^1}(v_{s_1+1}^1) \leq n_1$. Hence we may assume that $d_{C^1}(v_{s_1+1}^1) \leq n_1/2$. But then $\langle v_{s_1}^1, x, x^+, v_{s_1+1}^1 \rangle \simeq Z_1$ for any pair of consecutive vertices $x, x^+ \in V(C^2)$ and $d_{C^1 \cup C^2}(v_{s_1+1}^1) + d_{C^1 \cup C^2}(x^+) \leq n_1/2 + (n_2 - 1 + 1) + \sum_{j=3}^k n_j < (n_1 - 2) + n_2 + \sum_{j=3}^k n_j \leq n-2$, a contradiction. Hence $n_1 = 4$.

Let $\{s_1, r_1\} = \{2, 4\}$. Then $d_{C^1}(v_1^1) = d_{C^1}(v_3^1) = 2$ and both v_2^1 and v_4^1 are contained in an induced Z_1 , say, $\langle v_2^1, v_1^1, v_{n_m}^m, v_1^m \rangle$ and $\langle v_4^1, v_3^1, v_{n_2}^2, v_1^2 \rangle$. Since $N_{C^m}(v_3^1) = \emptyset$, $N_{C^m}(v_1^1) = \emptyset$, $N_{C^2}(v_3^1) = \emptyset$, $N_{C^2}(v_1^1) = \emptyset$, we have $d_{C^1 \cup C^2 \cup C^3}(v_1^1) + d_{C^1 \cup C^2 \cup C^3}(v_3^1) = 4$, where $n_1 + n_2 + n_3 \ge 4 + 3 + 3 = 10$. Since $d(v_1^1) + d(v_3^1) \ge n - 2$, we have $k \ge 4$ and $\sum_{j=4}^k d_{C^i}(v_1^1) + d_{C^i}(v_3^1) \ge \sum_{j=4}^k n_j + 4$. Hence there exists a cycle C^j and two consecutive vertices w_1, w_2 on C^j such that (without loss of generality) $v_1^1 w_1, v_3^1 w_2 \in E(G)$. Then $C^a = v_4^1 v_1^2 C^2 v_{n_2}^2 v_4^1$ and $C^b = v_1^1 v_2^1 v_3^1 w_2 C^j w_1 v_1^1$ are two cycles such that $V(C^a) \cup$ $V(C^b) = V(C^1) \cup V(C^2) \cup V(C^j)$, which contradicts the minimality of k.

This shows that, for each cycle C^i , the vertices $v_{r_i}^i$ and $v_{s_i}^i$ are connected by a hamiltonian path in $G[V(C^i)]$, $1 \le i \le m$. But then there is a cycle C such that $V(C) = \bigcup_{j=1}^m V(C^j)$, contradicting again the minimality of k. This contradiction completes the proof of Theorem 4. \Box

References

- [1] R.P. Anstee, An algorithmic proof of Tutte's f-factor theorem, J. Algorithms 6 (1985) 112-131.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
- [3] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
- [4] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69~81.
- [5] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87–95.
- [6] R. Faudree, J. van den Heuvel, Degree sums, k-factors and Hamilton cycles in graphs, Graphs and Combin. 11 (1995) 21–28.
- [7] C. Hoede, A comparison of some conditions for non-hamiltonicity of graphs, Ars Combin., to appear.
- [8] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.