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Abstract

We prove the following generalization of a result of Faudree and van den Heuvel. Let G be
a 2-connected graph with a 2-factor. If d(u)+d(v)=n —2 for all pairs of non-adjacent vertices
u,v contained in an induced K 3, in an induced K| 3 + e or as end-vertices in an induced P,
then G is Hamiltonian. © 1998 Published by Elsevier Science B.V. All rights reserved
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1. Terminology and notation

We use [2] for terminology and notation not defined here and consider finite simple
graphs only.

Let G be a graph on n vertices. We say that G is hamiltonian if G has a Hamilton
cycle, i.e. a cycle containing all vertices of G. If X is a graph, we say that G is X-free
if G does not contain an induced subgraph isomorphic to X. In this paper we use K| 3,
Zy~K, 3+ e and P, to denote the graphs of Fig. 1. According to the labeling of the
vertices we will write (a,b,c,d) >~ K 3, {a,b,c,d) ~Z, and {(a,b,c,d) ~ P4, respectively.

We will use w(G) to denote the number of components of G. A graph G is said to
be t-tough (cf. [3]) if - (G — 8) <|S] for every subset S of V(G) with (G —S)> L.
If v € V(G), then N(v) denotes the set of vertices adjacent to v (the neighborhood of v)
and d(v)=|N(v)| denotes the degree of v. If we restrict N(v) and d(v) to a subgraph
F C G, then we will use Np(v) and dr(v), respectively. We say that a subgraph H C G
is a 2-factor of G if H is a spanning subgraph of G and dy(v) =2 for every v & V(G).

Let C be a cycle of G. If an orientation of C is fixed and u,v € V(C), then by u E v
we denote the consecutive vertices on C from u to v in the orientation specified by
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Fig. 1.

the orientation of C. The same vertices, in reverse order, are given by vCu. If CC G
is a cycle with a fixed orientation and v € V(C), then v* and v~ denotes the successor
and predecessor of v on C, respectively.

2. Main result
Our research was motivated by the following famous conjecture by Chvatal.
Conjecture (Chvatal [3]). Every 2-tough graph is hamiltonian.

For the class of 2-tough graphs Enomoto, Jackson, Katerinis and Saito proved the
following result.

Theorem 1 (Enomoto et al. [S]). Every 2-tough graph has a 2-factor.

Obviously, having a 2-factor is a necessary condition for a graph to be hamiltonian.
Moreover, it can be decided in polynomial time whether a given graph G has a 2-factor
(see [1]).

The first result for hamiltonicity of graphs having a 2-factor is due to Hoede.

Theorem 2 (Hoede [7]). Let G be a connected graph with a 2-factor and
let Gy,...,Gy1 be the graphs shown in Fig. 2. If G is G\,...,Gy1-free, then G is
hamiltonian.

We now turn our attention to degree conditions. The following result by Faudree and
van den Heuvel shows that Ore’s [8] and Dirac’s [4] degree conditions for hamiltonicity
can be relaxed under the additional assumption that G has a 2-factor.

Theorem 3 (Faudree and van den Heuvel [6]). Let G be a 2-connected graph with a
2-factor. If d(u)+d(v)=n—2 for all pairs of non-adjacent vertices u,v € V(G), then
G is hamiltonian.

Motivated by Theorem 2, we got the impression that it might be sufficient to require
the condition d(u) + d(v)=n — 2 for all pairs of non-adjacent vertices u, v which are
contained in an induced P4 or Z; (cf. G; and G, in Fig. 2). However, examples can be
given showing that this is not the case even with the requirement d(u) + d(v)=n— 1.
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A class of such graphs can be obtained by joining two additional vertices u,v to two
prescribed vertices of an arbitrary clique on at least 5 vertices (notice that u and v
are contained in an induced K, ; and have d(u) + d(v) =4 <n — 3). Thus, the degree
condition required for the induced claw is necessary.

Next, consider the class of graphs G, ,  which consist of three complete graphs K,
K,, K, for p>q>r>3 and the additional edges uv;, u;w;, v,w; for i=1,2 and vertices
ur,uy € V(K,), v1,00 € V(K;) and wi,w; € V(K,). These graphs are 2-connected, claw-
free with a 2-factor, but the degree condition is not satisfied for all induced P, and
induced Z,.

Finally, the complete bipartite graph K, , with p={(n —1)/2] and g= [(n + 1)/2]
for n=5 is 2-connected, satisfies d(u) + d(v)=n — 2 for every pair of nonadjacent
vertices u, v, but it has no 2-factor.

These examples show that all the assumptions of the following theorem are, in some
sense, best possible.

Theorem 4. Let G be a 2-connected graph with a 2-factor. If d(u)+d(v)=n—2 for
all pairs of non-adjacent vertices u,v contained in a K, s, in a Z, or as endvertices
in a Py, then G is hamiltonian.

Example. Let iy, iy, 5,13,i4 be integers such that ig,is =1, L 22, i) =i +is— 1, 3 =i+
i — 1. Let G be the graph obtained by taking vertex-disjoint graphs Hy, H, Hy, H3, Hy.
where H; ~K; for j=0,1,3,4 and H, ~K,,, and by adding all edges xy for x € V(H,).
y€V(Hi), i=0,1,2,3. Then the graph G satisfies the assumptions of Theorem 4,
but not of Theorem 3. Note that G has diameter diam(G)=4 while the assumptions
of Theorem 3 imply diam(G)<3.
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3. Proofs
We first prove some lemmas which will be useful for the proof of Theorem 4.

Lemma 1. Let C,,C, and C be three vertex-disjoint cycles with V(Cp)={uy,...,uy}
and V(Cy)={v1,...,v5}. If uyv, € E(G) and dc(uy) +dc(v1)=|V(C)| + 1, then there
is a cycle C' such that V(C')=V(C,)UV(C,)UV(C).

Proof. Since dc(u1) + dc(v1)=|V(C)| + 1, there exists a pair of consecutive vertices
wi,wy € ¥(C) such that u;w,,vywy € E(G) or uyws, v1w; € E(G) and we can easily
construct the desired cycle C'. O

Lemma 2. Let C, and C, be vertex-disjoint cycles with vertices labeled u, ..., u, and
U, ..., Vg Suppose u,v, € E(G); upvi,urvg, w101 ¢ E(G). If de, uc,(u1) +dc,uc,(v1)>
p+q—1, then there is a cycle C such that V(C)=V(C,)UV(C,).

Proof. Suppose there is no such cycle. Then viu,_,vy—1u) € E(G). Let
S={i|vu; € E(G), 2<i< p—2}, T={i|lmu €EG), 1<i<p-2}.

If there is some i€ T NS, then C=v, u; E'pul Uit Epup g ((,Tq v; would be the desired
cycle. Hence we can assume that SN T =0. Now dc,(v1)=|S| and dc,(u1)=|T| + 1,
from which dc,(u1)+dc,(v1) =S| +|T|+1=|SUT|+1< p—1. By the same argument
we obtain qu(ul) + qu(Ul)<q — 1 and thus dcpucq(ul) + dcpucq(vl)Qp +q -2,
a contradiction. (O

Let C', C? be two vertex-disjoint cycles. We say that a vertex ve V(C') is C3-
universal, if v is adjacent to all vertices of C2.

Assume now that there are two vertex-disjoint cycles C',C? and a C?-universal
vertex v€ V(C'). If v~ or v* has a neighbor on C2, then we can again easily construct
a cycle C such that V(C)=V(C"YUV(C?).

Lemma 3. Let G be a non-hamiltonian graph with a 2-factor consisting of k=2
cycles C',C?,...,C*, where k is minimal. Then for every pair of cycles C',C/,
1<i<j<k, and every C’-universal vertex v € V(C'), neither v~ nor v* has a neigh-
bor on C/.

Corollary 4. Let G be a non-hamiltonian graph with a 2-factor consisting of k=2
cycles C',C?,...,C*, where k is minimal. Then for every pair of cycles C',C/, 1<i
<j<k, all C/-universal vertices of V(C') are pairwise non-consecutive.

Corollary 5. Let G be a non-hamiltonian graph with a 2-factor consisting of k=2
cycles C',C?,...,C*, where k is minimal. Then there is no pair of cycles C',C/, 1<i
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<j<k, such that there is both a C/-universal vertex v; € V(C') and a C'-universal
vertex v; € V(C/).

We will also use the following simple lemma.

Lemma 6. Let C be a cycle in a graph G and let x,y € V(C) be such that there is
no x, y-path P with V(PY=V(C). Then x*y* ¢ E(G) and dc(x")+dc(yT) < V(O

Proof. If x~y* € E(G), then P=xC y* x* Cy is a x y-path with V(P)=V(C).
Hence x yt ¢ E(G). Put M ={zeV(C)|zx* € E(G)} and N={zex™* Ey+ |z=y~
€E(G)}U{z€ y** Cx|zty* € E(G)}. Then |M| =dc(x"), [N|=dc(y+)—1 and x* ¢
MUN. Thus, if dc(x+)+dc(y )>lV(C)| +1, there is a vertex zeMﬂN but then

thepatthy Cx sz(lszx Cv )oerA v sz Cy (ifze y™ Cr*)
yields a contradiction. Hence de(x") + de(yH)<|V(C). O

Proof of Theorem 4. Assume G is not hamiltonian and choose a 2-factor of G with
k=2 cycles C',C?,...,C* such that k is minimal. We distinguish the following cases.

Case 1. There are two cycles C",C"?, 1<t <5 <k, which are connected by two
vertex-disjoint edges.

Subcase A: There is an edge xy such that x € V(C"), y€ V(C"?) and neither x is
C"-universal nor y is C"-universal.

Subcase B: Every vertex x € V(C") with N(x)NV(C"?)#® is C"-universal.

Case 2: No pair of cycles C',C/, 1<i<j<k, is connected by two vertex-disjoint
edges.

By Corollary 5, no other possibilities can occur.

Throughout the proof, we denote n; =|V(C")|, 1<i<k. For convenience we set
p=n and g =n,.

Case 1: We can, without loss of generality, suppose that C"=C'~C, with
vertices labeled u,...,u,, C" =C22Cq with vertices labeled vy,...,0,, u,v, € E(G)
and w;v; € E(G) for some i,j with 1<i<p—1, I<j<qg~ L

Subcase A: Suppose (without loss of generality) that u,v,,u,0,,u v, € E(G). Thus
(uy.uy, v,,v1) =~ Py, from which d(u,)+d(v,)=n—2. Since k is minimal, by Lemma |
and Lemma 2 we have dei(u) )+ dei(v))=p—1, de:(u)) +de(v)y=q — 1. If uyu;y,,

v, € E(G), then the cycle wujup C'uy vy C* vy vy C?v; u; C'uy contradicts the
minimality of k. Hence, we can, without loss of generality, assume that w1, ¢ E(G).
Since, equality holds in Lemma 2, this implies viu; € E(G) and thus 2<i<p — 2.
Moreover, since vju,_; ¢ E(G), there exists »>1i such that u,_ v\, 4, 11) € E(G) and
uiu,,v1u, ¢ E(G). Since there is no cycle C such that V(C)= V(C')UV(C?), we have
u.t2, Uty € E(G). By symmetry and since u,v, ¢ E(G), we conclude u,.v,—; ¢ E(G).
Now, C=vu,—1 C' uyu,11 Clu,v, C* oy is a cycle such that V(C)=V(C")UV(C?)\
{u,}. I w,uy, upu; ) € E(G) for some i with 2<i<r—2 or r+1<i< p—1, then u, can
be inserted into the cycle C by replacing the edge u;u; | by the path w;u,u;.;. Hence,
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we conclude that u,u,_), u,u, > ¢ E(G) and dpi(u, )< p/2. Likewise u, can be inserted
if w,v;, 4,0, € E(G) for some i with 2<i<q — 3. Hence dr2(u,)<(qg -4+ 1)/2=
(¢ —3)/2. For any other cycle C/, 3<j<k, if u,wi,u,w, € E(G) for two consecutive
vertices wy,w, on C/, then u, can be inserted into C/, contradicting the minimality
of k. Hence dci(u,)<n;/2 and thus d(u,)< p/2 + (g — 3)/2 + Y1y nj/2=(n — 3)/2.
Now (4,1, ur—2,u,,v1) and (U1, uy, u,12,4) are isomorphic to K, 3 or Z; implying
d(v))=(n—1)/2 and d(u;) = (n—1)/2. Altogether we obtain n— 1 <d(u;)+d(v1)< p+
q—2+ Zj; nj=n— 2, a contradiction.

Subcase B: Let M = {x € V(C') | Ne2(x)#0}. Then, by the assumptions of Case 1,
|M|>2, u,e M and (recall Corollary 5 and Corollary 4), no two vertices in M
are consecutive on C'. Suppose first that there are x,y € M, x# y, such that both

x"xT ¢ E(G) and y~ y* ¢ E(G). Then, since (by Lemma 3) both (x,x™,x",v,) ~Kj 3
and (y,y7, ¥y, vg) =Ky 3, we have d(x7) +d(xt) +d(y™) + d(y")=2(n — 2)>
Ap+qg—-2+n—p—q)=22(p+1)+2n— p— g). On the other hand, by the
minimality of %, there is no hamiltonian x, y-path in G[V(C')] and hence, by
Lemma 6, dei(xt)+doi (v ) +der(x™ ) +do (3~ ) < 2p. Together we obtain 2(p+1)+
2n— p— @)<dx*)+d(y*) +dx")+d(y )<2p + 2(n — p — q), which is a
contradiction.

Hence we can suppose that x~x* € E(G) for every x € M, x # u,. But then, for any

x €M, x # u,, we have uyx ¢ E(G) and ux** ¢ E(G) (otherwise the cycles uyxv, C? vy
u, C'x*x~ C'uy and uyx* Clu, v, C? vyxxt x~ C'uy contradict the minimality of k).

Now, x*+ ¢ M, since x** C! x~x*x is a hamiltonian path in G[V'(C")]. Since also (by
Lemma 6) u;x™ ¢ E(G) and, by Lemma 3, d2(u;) =0, we have doi | c2(u)) < p—1—
3(|M|—1). Since every vertex in M is C*-universal, we have dc1 |, c2(v,) <g— 1+ |M]|.
If there is a cycle C', 3<i<k, such that u, and v, have consecutive neighbors on
C', then we easily construct a cycle C’ with V(C')=V(C)UV(C*)UV(C’), contra-
dicting the minimality of &; hence, des ...y (u1) + des .y ee(vg) SV (CPHU -+ U
V(C¥) =n— p—gq. Since (u,, vy, v1,ur) ~ Z;, we have d(u;)+d(v,) =n—2. Altogether
we obtain n —2<d(u)) +d(v))<p—1-3(M|—1)+g—1+[M|+n— p—gq, from
which |M|<3/2, a contradiction.

Case 2: Since G is 2-connected, there are m cycles, 3<m<Kk, say, chL,c?....cnr,
with vertices labeled v},..., v} ., and pairs of vertices v} € ¥(C") such that v’ v‘+1 €

424 S Yit1

E(G) (modulo m). If s;=v; :l: 1 for all 1<i<m, then there is a cycle C such that
V(C)y= U, V(C), eg. C=v) v} Cro2ed . v Cl Lifs;=ri+1 for 1<i<m,

which contradicts the mlnlmahty of k. o 1

Now suppose, without loss of generality, that s; #r £ 1. Thus, ny 24. If v} 0!, €
E(G) or dcl(Url+1)+dcl(vs 4l )>n1 + 1, then, by Lemma 6, there is a hamiltonian path
in G[¥(C")] with endvertices v}, v{ .

Suppose such a path does not exist. With a repeat of previous arguments we will
show that v}, v}, are both universal vertices and that n, =4. Suppose first that v} is not

universal. Then there is a vertex x € ¥(C?) such that v} x € E(G), but vl x" ¢ E(G).
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As in Subcase A we obtain this time d(v} .| )+d(x")<(n —2)+(n — | )+Z¢:3 n; <
n — 2, a contradiction. The same argument holds for v, . Thus, both v} and v
arc universal vertices. Suppose next that #n; =5. By Lemma 6 we have d¢i( v“lw )t
dei(v), ) <ni. Hence we may assume that dei(v} ) <n /2. But then (v} .x.x",v} )
~ 7, for any pair of consecutive vertices x,x™ € V(C?) and di C:(v_:l+l Y+de e (x )
<m/2+((m— 1+ 1)+Zf:3 np<(nm—2)+n; +Zf:3 n;<n—2, a contradiction. Hence
n =4,

Let {s1,r1} ={2,4}. Then dc1(v})=dc1(v})=2 and both v} and v} are contained in
an induced Z;, say, (v3,0},v,0]") and (v}, v}, 05, v). Since New(v}) =0, New(v)) =0,
Nea(v})=0, Nea2(v))=0, we have devyerye(v)) + devyeroes(vl) =4, where
n +ny +n324 + 3 +3=10. Since d(v}) + d(v})=n — 2, we have k=4 and
Z»fﬂ dei(v))+Hdedv)) = Z‘fjﬂ n;+4. Hence there exists a cycle C/ and two consecutive
vertices wy,w> on C/ such that (without loss of generality) vjwy,viw, € E(G). Then

C'=vip; C*uj vy and C"=vlviviw, C/wiv] are two cycles such that V(C“)L
V(ChY=V(C"YUV(C*)UV(C/), which contradicts the minimality of k.

This shows that, for each cycle C’, the vertices v;, and v} are connected by a hamil-
tonian path in G[V(C')], 1<i<m. But then there is a cycle C such that V'(C)= {7

. j=t
V(C/), contradicting again the minimality of k. This contradiction completes the proof

of Theorem 4. O
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