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1. INTR~D~JCTI~N 

Throughout this paper, Z denoes the integers, Q the rational numbers, and 
D the collection of polynomials over Q having the property thatf(a) E Z for 
every a in Z. After first being studied by Polya [2 1 ] and Skolem [23], the 
domain D has been the subject of several more recent papers [2-14, 16, 17 ]. 
In particular, Brizolis established in [4] that D is a Priifer domain with each 
finitely generated ideal I determined by the values at integers of the 
polynomials in I. Specifically, he showed that if I= (f,(r),...,&(f))D, then 
g(t) E I if and only if g(u) E (f,(a),...,fJ(u))Z for every a E Z. In this paper 
we continue the study of the finitely generated ideals of D. While our initial 
efforts were directed toward answering a question of Brizolis [4] as to 
whether or not each finitely generated ideal of D can be gnerated by two 
elements, in time we became interested in giving a more explicit description 
of finite generating sets for ideals of D. Our methods are constructive, and 
we feel that we have had some success in accomplising this goal. 

Section 2 contains some basic results about the arithmetic of D. These 
results are more number-theoretic than algebraic in nature. In Sections 3 and 

*’ Partial support received from NSF Grant MCS 7903 123 during the writing of this paper. 
‘This work was done at Florida State University while on leave from the University of 

North Carolina at Chapel Hill. 

002 l-8693/83 $3.00 
Copyright ‘P 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82008649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTEGER-VALUED POLYNOMIALS 151 

4, finite generating sets for ideals of D are discussed and constructed. The 
main result is an affirmative answer to the question of Brizolis mentioned in 
the preceding paragraph. Section 5 contains an analysis of the sequences 
(a,}~=, which are given by an ideal I= (f,(t),...,fk(t)), in the sense that a, = 
gcd(f,(n),...,f,(n)} for each n. The characterization of the sequences leads to 
an alternate argument that each finitely generated ideal can be generated by 
two elements. 

2. BASIC RESULTS 

This section gives some basic properties of D which are used in later 
sections. If I is an ideal of D and a is an integer, then 
Z(a) = (f(a) If(t) E I). It follows that I(a) is an ideal of integers and if I is a 
finitely generated ideal generated by f,(t),...,fk(t). then 1(a) is generated by 
the greatest common divisor off,(a),...,f,(a). F or each positive integer IL let 

B,,(f) = 
t(t - 1) ... (t - (n - 1)) 

n. I 

and set B,(t) = 1. For a positive integer a. B,(a) is the familiar binomial 
coefficient (i). Polya established the following statement as the first basic 
result about D. 

THEOREM 2.1 1211. The poljwomials B,(t). for n > 0, form a basis for 
D as a free abelian group. 

Using the fact that B,,(k) = 0 for 0 < k < II and B,,(n) = 1. one obtains the 
following slightly more general property, which we occasionally use. 

THEOREM 2.2. Given qn, q ,..... q, in Q, there exist urzique r(,. r, ,.... r,, in 
Q such that f(k) = qk for 0 < k < n, where f(r) = r,,B,,(f) + . . . + r,,B,,(t). 
Moreoi~er. if qO,.... q, are in Z. then r,, ,..., rn are in Z. 

The ideal-theoretic properties of D are best summarized with the following 
theorem of Brizolis. 

THEOREM 2.3 [4]. D is a two-dimensional Priifer domain. 

Brizolis [4] also established, for finitely generated ideals I and J. that 
I=J if and only if r(a) =J(a) for every a E Z. We provide in 
Proposition 2.6 an alternate proof of this result (which also uses 
Theorem 2.3). We remark that Proposition 2.6 shows that I = J if I(a) = J(a) 
for all except a finite number of positive integers; this form of the criterion is 
often more convenient to apply. 
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PROPOSITION 2.4. Zf F(t) and G(t) are in D and F(a) E (G(u))Zfor all 
except a finite number of positive integers, then F(t) E (G(t))D. 

Proof: Let q(t) = F(t)/G(t) =f(t)/g(t), where f(t) and g(t) are in Z[t 1. 
Since g(t) has only finitely many zeros, the hypothesis translates to the 
property ~(a) =f(u)/g(u) is an integer for all except a finite number of 
positive integers a. If b is the leading coefficient of g, then the division 
algorithm in Z(t] can be applied to bkf(t), g(t) for k sufftciently large. 
Choose such a k and write bkf(t) =g(t) q(t) + r(t), where q(t), r(t) are in 

Zltl and where either r(t) = 0 or deg r(t) < deg g(t). Then 
bkv(t) = q(t) + v,(t), where q,(t) = r(t)/v(t). Since q,(u) = bkq(u) -q(u), we 
have q,(u) is an integer for all except a finite number of positive integers. 
Since either r(t) = 0 or deg r(t) < deg g(l). we know lim,_, q,(u) = 0. Since 
?~,(a) is an integer for all except a finite number of positive integers. we must 
have q,(u) = 0, and hence r(u) = 0 for all except a finite number of positive 
integers. Therefore r(t) = 0, giving bkf(t) = g(t) q(t) and q(t) is in Q[t]. Now 
~(a) & Z implies bk does not divide q(u). But q(x) in Z[X] implies 
q(u + rbk) = q(a)(Mod bk) for every integer r. Therefore if there exists one 
value of a for which bk does not divide q(u), then there are infinitely many. 
Since ~(a) is in Z for all except a finite number of a, we must have bL / q(u) 
for all a. Therefore q(t) is in D and F(f) is in (G(t))D. 

Proposition 2.4 is closely related to conditions considered by Gunji and 
McQuillan in (161. In particular, Propositidn 1 of [ 161 is the case of 
Proposition 2.4 where the hypothesis on F(t) and G(f) (taken to be in Z[f 1 in 
[ 161, but this is no restriction) is that F(a) E (G(u))Z for all but a finite 
number of integers. We note that the proof of Proposition 2.4 shows that its 
conclusion remains valid if the hypothesis is weakened to the assumption 
that F(u) E G(u)Z for infinitely many integers a. 

PROPOSITION 2.5. If I is an invertible ideal of D and f (t) in D has the 
propert? that f (a) E Z(u) for all except u finite number of positive integers. 
then f (t) E I. 

Proof: Choose G(t) to be a nonzero element of I and write (G(t))D = IJ, 
where J is also invertible. For each h(t) in J and for each a for which 
f(u) E Z(a), we have f(u) h(u) E I(u) J(u) & (G(a))Z. By Proposition 2.4, 
f(t) h(t) E (G(t))D. Since this is true for each h(t) in J, we have flt)JG IJ. 
Then J invertible implies that f (t) E Z. 

PROPOSITION 2.6. If I and J are finite!v generated ideals of D, then I = J 
fund only ifI = J(u) for all except a finite number of positive integers a. 

(It then follows that f(u) = J(u) for every integer a.) 

ProojI Since D is Priifer, Z and J are invertible and the result follows 
from Proposition 2.5. 
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In the sections that follow, we frequently consider the collection of integral 
values of a polynomial f(t) in D. As Proposition 2.4 indicates, it is often 
sufficient to consider the sequence {f(u)}:==,. On occasion we consider the 
residues of such a sequence module pm for some prime integer p. Here we 
establish some terminology and a basic result regarding B,(t). We note for a 
given positive integer m and for f(t) in D that the collection of integers 
J= (x jj”(a) =f(a +x) (Mod m) for every a in Z) is an ideal of Z. In 
Proposition 5.1 we show that J is nonzero; hence J is generated by its least 
positive integer s. We say in this case that f(t) is periodic modulo m with 
period s and we write n,,,(f) = s. In order to restrict our considerations to 
nonnegative integers, we need to know that the integer s is determined by the 
values off at positive integers. To wit, it is enough to observe that the set 
J, = (x. > 0 If(a) -f(a +.K) (Mod m) for every a > 0) is the set of 
nonnegative multiples of s; this is an easy exercise and its verification is 
omitted. The next two results establish the periodicity off(r) in D modulo 

Pm. where p is a prime number: periodicity modulo k for each k > 1 follows 
immediately from these two results. 

Throughout the proof of Proposition 2.7 and in subsequent discussions we 
make free use of the “Pascal’s Triangle” identity B,(u) = B,_ ,(a - 1) + 
B,(u - 1) for 11 > 1 and a > 1. We note that since B,(t) is a polynomial with 
rational coefficients, the preceding equality for infinitely many integers a 
implies. in fact. the polynomial identity B,,(t) = B,- ,(t - I) + B,(t - 1). 

PROPOSITION 2.7. Let n, m. and p be positive integers with p a prime. Let 
c be the integer sutisAWlg p” < n < p” + ‘. Then xpm(B,,) = pm +I’. 

Proof. The proof (by induction) is divided into the following steps. 

Step 1. B.(p”‘+“) = 0 (modp”). 

B,(p”+L‘) = ( P’Iz+l’ ) ( Pm+; - 1) ... (P”“ilT_(; - 1”). 

If l<d<rz-1 andpSI Id,thenpS<nsop’Ip”‘t“.Thereforep”I Idifand 
only if p” 1 / (pm+” -d). As a result, whether or not B,(P”‘~‘) is congruent 
to zero modulo p” is determined by the factor pmt”/n. But pr [ n implies 
r < 11. leaving the numerator with a factor of at least pm. Therefore 
B,(pm+l ) = 0 (modp”), completing Step 1. 

Step 2 (Induction setup). If n = 1, then LY = 0 the result holds, for it is 
clear that B,(t) = t has period p” modulo p”‘. Assume that B, . . . . . B,,_, 
satisfy the conclusion of the theorem. 

Step 3. npm(Bn) =p’ for some t satisfying v + 1 < t < m + n. We first 
show that B,(u +p”‘+“) E B,(u) (Modpm) for every u. It then follows that 
TC~~(B,,) =p’ for some t, where pf I pm+“. Since B,(O) = B,( 1) = ... = 
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B,(p”) = . . . = B,(n - 1) = 0 and B,(n) = 1, it follows that the period p’ is 
greater than p”. This produces the desired inequality ~1 + 1 < t < m + n. The 
congruence B,(a + pm+“) E B,(a) (Mod pm) was established for a = 0 in 
Step 1; the general congruence is easily established by an inductive argument 
(on a) using B,(a +pmtL’) = B,-,((a - 1) +p”+l’) + B,((a - 1) +pm+l’). 
Note that the induction step uses the assumption on B, _, given in Step 2. 
This completes Step 3. 

Step 4. ~~,,,(B,,);(p”‘+l’-‘, and hence n,,(B,) =p”+“. To establish this 
we observe that n,,(B,) (pm+“- ’ implies each of B,,(P 

m + L‘ -. I 
), 

B,(P m+r’-’ + l),..., B,(p“‘+‘‘-’ + (n - 1)) is congruent to zero modulo p”’ 
since B,(O) = B,(l) = ... = B,(n - 1 j = 0. These, in turn, produce the 
following n congruences: 

Bn~,(pmf”-’ - 1) + Bn(p”+L’-’ - 1)s B,,(p”‘+‘‘-I)=0 (modp”‘). 

B,-,(pm+‘-‘) + Bn(pm+“-‘)E Bn(pmt”-’ + 1) E 0 (modp”). 

B,,--(pm+“-’ +(n-2))+B,(p”+“-‘+(n-2))sB,(p”‘+“-’+(n--I))=0 

(mod p”). 

It then follows that B,,-,(pm+“-‘), Bn-,(pm+“- + l)..... B,-,(p”‘+‘‘-’ + 
(n - 2)) are also all congruent to zero modulo p”. Continuing this argument 
after n -p” steps we get B,,.(p m+‘-‘)~ 0 (Modp”). But BJp”‘+‘‘-I) = 
(pmi:.m’), which is known to be exactly divisible by pm-’ [ 19. p. 78 1. This 
contradiction completes Step 4. 

THEOREM 2.8. Zf f(t) = a, + a, B,(t) + ... + a,,B,(t), where each ai is 
an integer (hence f (t) E D), then n,,,(f) =pk for some k < n + m. 

Proof: Since xpm(Bi) ( p”+” for all i < n by Proposition 2.7, this result 
easily follows; the congruence f(a + p nt “) = f (a) (Mod p”) holds for every 
integer a because it holds for each Bi. 

Giving two examples of these last two results, we have q(B,) = 2’ = 16. 
Starting with B,(O) the sequence of residues modulo 4 is 0. 0, 0, 0, 0. 0. 0. 1. 
0, 0, 0, 2, 0, 0, 0, 3 ,... with the given portion repeating. If f(t) = B,(t) + 
2B,(t) = t + [t(t - l)(t - 2)/3j, then n,(f) = 2’ = 4, with the sequence of 
residues being 0, 1, 2, 1, 0, I, 2, I,.... 

3. THE CASE fnZ#(O). 

A commutative unitary ring R is said to have the n-generator property if 
each invertible ideal of R admits a generating set of n elements. For a Priifer 
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domain R, the n-generator property is equivalent to the condition that each 
finitely generated ideal of R can be generated by n elements. For many years 
the question of whether each Pri.ifer domain has the two-generator property 
was open. In the positive direction, Heitmann in [ 181 proved that a d- 
dimensional Priifer domain has the (d + I)-generator property. but Schiilting 
in [ 221 gave an example of a two-dimensional Priifer domain that does not 
have the two-generator property. Brizolis in [4 ] raises the question of 
whether the domain D of integer-valued polynomials has the two-generator 
property. Since D is two-dimensional. Heitmann’s result implies that D has 
the three-generator property. In the next section we prove that D has the two- 
generator property. The argument involves a reduction to the case where 
In Z = nZ # (0). We treat this special case separately in this section. The 
sequence of arguments follows the progression of n being first a prime. then 
a power of a prime. and finally, an arbitrary n # 0. 

THEOREM 3.1. Each Jiniteljs generated ideal of D containing a prime 
integer p is generated bv two elements. one of which can be taken to be p. 
EquirTalenr!l: D/pD is a Bezout ring for each prime integer p. 

ProoJ It suffices to show that forf and g in D, the ideal I = (p,J g) is of 
the form (p, h) for some h in D. We consider two cases: 

Case 1: p = 2. We set J = (2,fz +fg + g’) and show that I = J by 
showing that Z(a) =J(a) for each a in Z. There are three subcases to 
consider. If 2 If(a) and 2 / g(a), then Z(a) = J(a) = (2). If 2 divides one of 
f(a) or g(a) and not the other, then Z(a) =J(a) = (1). If 2 divides neither 

f(a) nor g(a), then f(a) = g(a) = 1 (Mod 2) and hence f’(a) + 
f(a) g(a) + g’(a) = I (Mod 2). which yields Z(a) = J(a) = (1). Therefore. 
f' ffg + g’ is an acceptable choice for h when p = 2. 

Case 2: p > 2. In this case we show for h =f O-’ + go- ’ and 
J = (p, 12) that Z(a) = J(a) for every a in Z. As in the first case, 
Z(a) = J(a) = ( p) if p divides both f (a) and g(a). If p does not divide at least 
one of the two, we have fPp’(a) + g”-‘(a) = 1 or 2 (Modp). Since p # 2. it 
follows that J(a) = (1) = Z(a). 

We remark that the two cases given in this argument can be combined by 
observing that for any prime p, GF(p)[X, Y] contains a polynomial h(X. Y) 
with only the origin as a zero in GF(p) x GF(p). The same result holds over 
any finite field GF(p”). For p = 2, the polynomial XF’F”m” + 
(XY)pnm’ + Yp’p”p “works. while XJ”-’ + YD”-’ works for p > 2. 

LEMMA 3.2. Assume that p is a prime integer and s is a positice integer. 
There exists an element H(t) in D such that H(b) E 0 (Modp) fpS 1 1 b. while 
H(b) f 0 (Modp) ifp*+’ 1 b. 
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Proof: First we consider B,,(t). If ps ) ) b and if b = psc, then 

B,,(b)= ($)( ‘SC; ’ ) . . . (““,‘“‘~ ‘I), 

and from this representation we see that the exact power of p that divides the 
denominator term d, for 1 < d <p” - 1, is the same as the exact power p that 
divides the numerator term p’c - d. Since p[c, it follows that B,,(b) f 0 
(Mod p) in this case. Similar reasoning shows that if ps+ ’ 1 b, then B,,(b) E 0 
(Modp). An H(r) satisfying the conclusion of Lemma 3.2 can be taken to be 
W) = [B&) - 1 I [Bps(f) - 2 1 . . . [Bps(~) - (P - 1) 1. 

THEOREM 3.3. If I is a finitely generated ideal of D such that 
In Z = pkZ, where p is a prime and k > 1. then I can be generated by two 
elements, one of which can be taken to be pk. 

ProoJ We use induction on k, the case k = 1 being covered in 
Theorem 3.1. Assume the result for k < s and let I be a finitely generated 
ideal such that If7 Z =psf ’ Z. Set B =pD + I. Since D is a Pri.ifer domain, 
we have I= B(I: B), where I: B = B-‘I = I: (p); thus, I: B is a finitely 
generated ideal and it contains p’, but not p”- ‘. Now B is a finitely 
generated ideal which contains p, so the induction hypothesis applied to I: B 
and B yields f and g in D such that B = (p, g) and I: B = (p’, f ). We choose 
an element H(t) of D as in Lemma 3.2 and observe that H(f (t)) is also in D. 
(In fact, the definition of D implies that D is closed under composition of 
functions.) We now set h(r) =pf (t) + g’(t)f (t) + p’g(t) H(f (t)) and 
c= (ps+‘, h). I = B(I: B) = (P, g)(p”. fl = ( pst ‘, p’g, g, pf,fg). We prove 
that Z = C by showing that Z(a) = C(a) for each a in Z. The following chart 
indicates the various cases to be considered. It is routine to verify, using the 
properties of H(t), that the indicated common value of I(a) and C(a) is 
obtained. 

Case I(a) and C(a) 

P 
P 
P 
P 
P 
P 
P 
P 
P 
P 

da) and plf (a) 
g(a) and@ I If(u), 0 < s 
s(a) and@ I If (a) 
da) and$+’ I If (a) 
g(a) and p” 1 f(a), L’ > s + 1 
g(a) and p/f (a) 
g(u) and pL’ I If (a), u < s 
da)andp*I If(a) 
g(a)andp"+'l If(a) 
g(a) andp“ If (a), L’ > s 

(1) 
(P”) 

E 
(PI) 
(P) 
(P”‘) 
(P”‘) 
(P”‘) 
(P”“> 
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It is helpful to keep in mind in computing Z(a) that Z(u) = B(a) . (I: B)(a) 
since the two terms in the factorization are more easily computed. Thus, Z is 
generated by two elements, one of which is p’+‘. 

To complete the general case Zn Z = nZ # (0), we need the following 
result, which is valid for any commutative ring. We include its brief proof for 
the sake of completeness. 

LEMMA 3.4. Assume that A = (u,f, ,..., f,) and B = (b, g, ,..., g,) are 
ideals of the commutative ring R with identity, where (a, b) = R. Then AB 
can be generated by n + 1 elements, one of which can be chosen to be ab. 

Proof: Choose r and s in R such that ur + bs = 1 and set C = (ab, arg, + 
bsf, ,..., arg, + bsfn). We shown that C = AB; the inclusion C GAB is clear. 
For the reverse inclusion, we note that for each i we have 

ag, = a(arg, + bsA) + (gi -fi) sub, 

bfi = b(arg, + bsfi) + (fi - gi) rub, 

fi gj = rfiag,i + SgjbA.. 

Now AB is generated by elements of the form ub, agj, b&,L gj. Those of the 
first three types are in C by the first two equations. Knowing that agj and bf, 
are in C implies that fi g,i is in C by the third equation. 

THEOREM 3.5. If I is a finitely generated ideal of D such that In Z = 
nZ # (0), then n can be chosen as one of a set of two generators for I. 

Proof. Assume that n has r distinct prime factors. We use induction on r. 
The case r = 0 is trivial, and Theorem 3.3 established the case r = 1. We 
assume the result for 1 < r < t and consider n =&I ... p;;‘;. Let 
B = Z + (pF;/) and write Z = BC, where C = I: B = I: (pT:t;). It follows that 
cnz=p; -. . p:rZ and B n Z =p:?;Z. By the induction hypothesis, there 
exist f and g in D such that B = (pF;+/, f) and C = (p:’ ... p:f. g). 
Lemma 3.4 shows that I = BC = (n. h), where 

h = rp’f-1 I+ I g + SPY’ *.. PX 

with r and s being integers such that rpFl;/ + sp;’ ... p:f = 1. 
One comment on the results of this section is appropriate at this point. 

Theorem 3.1 establishes that D/pD is a Bezout domain. This fact follows 
immediately from the primary result stated in Theorem 3.1 since the finitely 
generated proper ideals of D/pD are of the form Z/pD, where Z is a finitely 
generated ideal of D for which In Z =pZ. Hence, by the argument given in 
Theorem 3.1, Z = (p, f) for some f in D. In the general case, however, for a 
proper ideal I/nD of D/nD. it only follows that Zn Z contains nZ. 
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Theorem 3.5 gives n to be one of two generators of I only for the case 
In Z = nZ. It is true, however, that D/nD is Bezout, a result which is 
established in Section 5 of this paper. To illustrate this remark with an 
example, consider the ideal Z = (2, f, t(t - 1)/2). We have shown that this 
ideal can be generated by two elements, one of which can be chosen to be 2. 
In fact. our arguments are constructive and yield I = (2, f’ + r’(t - 1)/2 + 
I’([- 1)‘/4). We note that I(a)= (2) if a- 0 (Mod 4) and I(a)= (1) if 
a = 1, 2, or 3 (Mod 4). In considering the ideal Z/40 in D/40. however, our 
techniques yield no element f such that I = (4.f). Results of Section 5 will 
show that, in fact, I= (4, [Bz(r)]’ + [B,(f + 1)12 + [Bz(f + 2)1’). 

4. THE CASE InZ= (0). 

In the first part of this section. we extend Theorem 3.5 to the case where I 
is a finitely generated ideal of D with In Z = (0). Following the primary 
result that such ideals are generated by two elements, we give some 
additional observations on ideals of this type. 

THEOREM 4.1. If I is a finitely genera fed ideal of D with I C’ Z = (0). 
then I can be generafed 61, two elements. 

Proof: Assume that I # (0). Then If7 Z = (0) implies that IQ[f] is a 
proper ideal of the principal ideal domain Q[t]. Therefore there exists a 
nonzero element f(r) of zn Z[t] such that ZQ[f] =f(f) Q[t]. Since D is a 
Priifer domain, (f(f))D = IB for some finitely generated ideal B of D. We 

have W))Q[fl = VQ[fl)tBQ[fl) = W)Q[flPQ[tl)3 so BQ[fl = Qlfl. 
which implies B n Z # (0). Therefore B, and B- ‘, can be generated by two 
elements by Theorem 3.5. It follows that I = (f(t)) B ’ can be generated by 
two elements. 

We now combine Theorems 3.5 and 4.1 for the general statement. 

THEOREM 4.2. The Priifer domain D has fhe two-generator property. 

The next result involves taking a closer look at the proof of Theorem 4. I. 
resulting in a more explicit description of the form the two generators take 
for various ideals. 

PROPOSITION 4.3. If I= (n,f (f)), where n # 0 and f (f) E D, then there 
exists g(t) E D such that I ’ = (1, g(t)/n). If J is a finitely generated ideal 
with J n Z = (0), then fhere exist f (t) and g(t) in D and n # 0 in Z such that 
J = (f(tLf (t) &>ln). 

Prooj The second statement follows from the argument given in 
Theorem 4.1 and the first statement since J = (flt))Z- ‘, where f (f) E D and I 
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is an ideal with In R # (0). To prove the first statement, let B be the ideal 
of D such that (n)D = IB. Then B is finitely generated with n E B; in fact, 
B = nI-‘. We know B = (n, g(f)) for some g(f) in D, from which it follows 
that I-’ = (1. g(r)/n). 

The remaining results of this section address several questions concerning 
the ideals of Z. D, and Q[t] and their various extensions and contractions. 
We first mention a simple example that illustrates some of the results. We 
know from elementary number theory that t((tpm’ - 1)/p) is in D. where p is 
a prime number. Observing that (t’-’ - 1)/p is in Q[t] but not in D, we see 
that fD 5 tQ[f] f’ D and that fD is not a prime ideal of D (invertible 
prime ideals of Priifer domains are maximal [ 15. p. 2891). Since 
(t, f(t”-’ - 1)/p) D c: tQ[t] n D. we see that tQ[t] n D properly contains an 
infinite set of distinct ideals, each of which exends to tQ[r 1. That this 
situation always occurs and that, in fact, the ideal tQ[t] n D is not finitely 
generated is given in the next result. 

PROPOSITION 4.4. Zff(t) E D Gth (flf))D n Z = (0) (that is,f(t) is not 
a constanf polynomial), then (f (t))D is properljl contained in the ideal 
I = f (t)Q [ t 1 f? D. Moreover. I is not finitely generated. 

Proof Obviously, the result is established if we show that I is not finitely 
generated. If I is finitely generated, there exist n # 0 such that nl G (f(f))D 
(see, for example, the proof of Theorem 4.1). In particular, this says that if 
R(f) E Q[t] is such that f(t)R(t) is in D, then nf(t)R(t) =f(f)h(f) for some 
h(t) in D. It then follows that nR(f) = h(t) is in D. We exhibit an R(t) which 
contradicts this. We know that the congruence f(t) = 0 (Modp) has a 
solution for infinitely many primes p. Choose a prime p such that p > n and 
p If(a) for some a in Z. Consider B,(f(t)), which is in D since D is closed 
under composition. Then B,(f(f)) =f(f)[(flt) - 1) *.* (f(t) -p + 1)/p!]. so 
if R(t) is the second factor in this product. we have B,(f(f)) =f(f)R(t) is in 
J(t)Q[f 1 n D = 1. On the other hand, nR(f) is not in D since nR(a) is not in 
Z becausep;(n andp;((f(a)-d) for any d, I<d<p- 1. 

In the same spirit we note that for any prime integer p. we have 
t(F’ - 1) is in pD since f(F’ - 1)/p is in D. Neither t nor tP--’ - 1 is in 
pD so pD is not a prime ideal. Of course, we already knew this since it is not 
maximal in the Priifer domain D. However. pD is a radical ideal of D. a fact 
we observe in the more general context of Proposition 4.5. 

PROPOSITION 4.5. [f I is a finitely generared ideal of D and if I(a) is a 
radical ideal of Z for each a in Z, then I is a radical ideal of D. 

ProoJ: Suppose f (t) is in D with f"(f) in I for some positive integer k. 
Then f “(a) is in I(a) for each a in Z. Since I(a) is assumed to be a radical 
ideal of Z. we havef(a) E Z(a) for each a in Z. This implies that f (t) E I. 

481 RI I II 
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PROPOSITION 4.6. If I is a finitely generated ideal of D such that I CT Z 
is a nonzero radical ideal of Z, then I is a radical ideal of D. 

Proof: We know by the assumption In Z is a nonzero radical ideal of Z 
that I contains a square-free positive integer n. Therefore n E I(a) for every 
a, and hence Z(a) is a radical ideal for each a. By Proposition 4.5, I is a 
radical ideal of D. 

THEOREM 4.7. For an integer n > 1, D/nD is von Neumann regular if 
and only tf n is square-free. 

Proof If n is not square-free, then nD n Z = nZ is not a radical ideal of 
Z. It follows that D/nD is not reduced, and hence D/nD is not von Neumann 
regular. If n is square-free, then In Z is a radical ideal of Z for each finitely 
generated ideal I containing nD. Thus each finitely generated ideal of D/nD 
is a radical ideal, and D/nD is von Neumann regular [ 1, p. 46: 15, p. 1111. 

5. THE IDEALS I(a) 

In this section we study the sequence of ideals I(a), a = 0. 1, 2,.... obtained 
from a finitely generated ideal I of D for which In Z # (0). In the course of 
characterizing these sequences, we obtain a proof, different from the one 
given in Section 3, that each ideal of this type is generated by two elements. 
The stronger result mentioned earlier, that D/nD is Bezout, is obtained in 
Theorem 5.6. 

Section 2 contains some results concerning the periodicity of the 
sequences f (a) modulo a power of a prime. Our first results in this section 
continue that development. 

PROPOSITION 5.1. Assume that n is a positive integer with prime 
factorization p;’ . . . pp. Zf f (t) E D, then f is periodic modulo n and r,(f) is 
a positive integer of the form p:l ‘a. p:k, where hi > 0 for each i. 

Proof Theorem 2.8 states that there exists hi > O.such that x07(f) =p:f 
for each i. Since f (a + pfl . . . ptk) = f (a) (Modpr’) for each i. it follows that 
f(a +P? ... ptk) = f (a) (Mod n). On the other hand. if x,(f) = m, then 
f (a + m) =f (a) (Mod n) for each a, which implies that f (a + m) -f(a) 
(Mod&‘) for each i. Since 
Therefore x,(f) = p:l . . . pi&. 

Icpri(f) =p:i, it follows that p:l/ m for each i. 
Specifically, the above argument shows that 

x,,(f) = q(f) zq(f) whenever (r, s) = 1. 

PROPOSITION 5.2. If I is a finitely generated ideal of D and n > 1, then 
the sequence (I(a) + nZ }zEO of ideals of Z is periodic with period of the form 

hl . . . PI ptk. where n = p;’ . . . pp is the prime factorization of n. 
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Proof: Let I = dfi ,..., f,). By Proposition 5.1, each jJ is periodic modulo 
n and rc,,u[) is of the form pf’ ... pgkk. But jJa) =fi(b) (Mod n) implies 
(n&(a)) = (n&(6)). Taking u to be the least common multiple of the 7c,(fj), 
1 <j < m, we have u is of the form pi’ .a. p;;X. Moreover, for any x, 

fi(a + ux) -fi(a) (Mod n), for 1 < i < m, implies (f,(a) ,..., f,(a), n) = 
(f,(a + ux) ,..., f,(a + ux), n). Since Z(a) + nZ = (f,(a) ,..., f,(a), n) for every 
a, we have I(a) + nZ = [(a + ux) + nZ for every a and every X. Thus 
{f(u) + ~Z)~L, is periodic with period a divisor of U. Any divisor of u must 
be of the form required in the statement of the result. 

We observe at this point that n E I in the above gives Z(a) + nZ = Z(a). 
Looking at the same example given at the end of Section 3. 
I= (4, f, I([- 1)/2), we have Z(a)= (2) if a=0 (Mod4) and I(a)= (1) if 
a E 1. 2, or 3 (Mod 4). The problem of producing a singlef(t) E D such that 
I= (4,f(f)) reduces to that of producing a polynomial f(f) in D such that 
f(i) = ai (Mod 4), where (ai} re p resents the sequence 2, 1, 1. 1, 2, 1, 1, I.... . 
Such an f will yield the desired result since. as in the above argument, 
(4.!(i)) = (4. ai) = (ai) for every i. Hence (4,f(t))(a) = I(a) for every a > 0 
and it follows that (4,f(t)) = 1. The polynomial 4 + B:(t) + 
B:(f + 1) + B<(t + 2) is such an element of D. The next two results show for 
sequences of the form (I(a) + nZ)F==, how to construct such a function. We 
first consider the case n =p”‘. 

PROPOSITION 5.3. Let ( ai}?=” be a sequence whose residues module p”’ 
are periodic with period pk. There exisfs f(f) in D such that f(i) = a, 
(Mod p’“) for ecery i > 0. 

Proof We let ej = {sji}T=O denote the unique periodic sequence with 
period pk which has all of its first pk values zero except for the jth value, 
which is 1. For example, 

E” = ([ 1. 0, 0 ,...) 01, [ 1, 0. 0 ,..., O],... }, 

E, = ([O. 1, 0 ,*.., 01, 10. 1. 0 . . . . . O] )... }. 

e pk-, = (10, 0 ,.... l],[O, 0 ,..., II.... }. 

The [ ] are used to emphasize the repeating blocks of pk numbers. If we 
construct F,(t) in D such that Fj(i) = cji (Modp”) for each i and j, then it is 
clear that f(f) = a,F,(f) + . . . + a+, F,,- ,(f) will satisfy the conclusion of 
Proposition 5.3. Moreover, if Fpk- ,(t) has been constructed, then we can take 
F,,-,(t) to be Fpkp,(t + a - 1). S’ mce D is closed under composition, Fpkma is 
in D. We have thus reduced the problem to constructing F(f) in D such that 
F(i) E 0 (Modp”) for O< i <pk - 1, F(pk - I)= 1 (Modp”), and F(a) 
periodic modulo pm with period pk. We claim that F(f) = [BP,- ,(f)]pm-“p-” 
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is such a function. The significance of the exponent L’ =p”- ‘(p - 1) is that 
IV’ = 1 for each unit W in Z/(p”) and IV = 0 for each nonunit W in 
Z/(p”). By Proposition 2.7. xJB,,-,) =p’ so B,,-,(a) E B,,- ,(b) (Modp) 
whenever a = b (Mod$). Since B,,-,(i) = 0 for 0 <i <ph - 1 and since 
B pAm,(p’ - l)= 1, it follows that B,,-,(a) is a nonunit of Z/(p”‘) for 
a=o, 1 . . . . . ph - 2 (Modp”) and B+, (a) is a unit of Z/(p”) for a = ph ~ 1 
(Modpk). Therefore, F(a) = 0 (Modp”‘) if a = 0, I...., ph - 2 (Modp”) and 
F(a) = 1 (Modp”) if a -pk - 1 (Modp”). Thus, F has the properties needed 
to construct the desired f as outlined at the beginning of the proof. 

In reviewing the example initially given at the end of Section 3 and 
mentioned again immediately before Proposition 5.3, one can see an example 
of the construction technique used in the proof of Proposition 5.3. 

PROPOSITION 5.4. Assume n > 1 is an integer IcYth prime fuc!orizution 
I1 = PC;1 . . ’ p’;“. Let (a, if=, be a sequence of integers such that modulo p)‘~. the 
sequence (a, )y:“=o is periodic bcith period a power of pi for each j between 1 
and k. Then there exists an f(t) in D such that f (i) = ai (Mod n) for each 
i > 0. 

Proof: For 1 <j Q k, let s,~ = n/p;‘. Thin (s, ,..., sk) = I and there exist 
integers u, ,..., uk so that u,s, + ... + uksk = 1. By Proposition 5.3, there exist 
f, ,....fk in D such that fj(i) = a, (Modp;!) for each i > 0 and 1 $ j < ii. Let 
f = xl=, ujsj&. We show that f satisfies the required conditions. For a given 
r between 1 and k, p’;r divides each sj except s,. Hence for each r between 1 
and k, f (i) = XT=, ujs.ifj(i) = u,s,f,(i) = u,s,ui (Mod per). Thus, f (i) -a, = 
u,(u,s, - 1) E a,(- zier uisj) = 0 (Modpzr). It follows that f(i) - ui = 0 
(Mod n) for each i > 0, which completes the proof. 

Before summarizing the results of this section with a theorem charac- 
terizing ideal sequences (I(u)},“=-~ we introduce some terminology. If (C’;}t- ,, 
is a sequence of ideals of Z, then we say the sequence is periodic modulo m 
of period k if the sequence of ideals {@(C;)}{t, is periodic of period k in 
Z/mZ, where $ denotes the canonical homomorphism from Z to Z,/mZ. An 
equivalent form of the definition is to say that the sequence ( Ci + rnZ},L” is 
a periodic sequence of ideals in Z of period k. One must be careful in 
considering the period of a sequence of ideals module m not to confuse the 
periodicity with that of the original generators before passing to Z/mZ. We 
give the following example, pointing out its relationship to the problem being 
considered here. Let (Ai} be the sequence of ideals in Z given by 62, Z, 22, 
32, 22, z )..., periodic with the indicated period six. This sequence is also 
periodic modulo 3 and module 2 as follows: 

Module 3: looking at Ai + 32, we have the sequence 32, Z, Z. 32, Z. 
Z,... of period 3. Notice that the original generators of the Ai, when reduced 
modulo 3, produce a periodic sequence, but not of period 3. 
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Modulo 2: looking at Ai + 22 we have the sequence 22. Z, 22, Z.... 
of period 2. We note that the original sequence Ai is given by Ai = I(i). 
where I = (6, f2). A characterization of the sequences (1(a))&,, for I a 
finitely generated ideal of D for which In Z # (0), is contained in the next 
result. 

THEOREM 5.5. Assume that n is a positive integer Gth prime 
factorization n = p’;’ . e - pzh. 

( 1) If (Ai } T= 0 is a sequence of ideals of Z such that 0 ,T: 0 A i 3 nZ and 
iffor each j betlveen 1 and k, the sequence ( Ai }FL, is periodic module p;l of 
period a polver of pi, then (Ai},?,, is of the form {I(i)}zO for some finitely 
generated ideal I of D containing n. Moreover, I is of the form (n. h(t)) for 
some h(t) in D. 

(2) Comet-se&, if J is a finitely generated ideal of D such that 
J n Z 2 nZ, then the sequence (J(i) } 7: ,, is periodic module p.y Gth period a 
ponler of p,i for each j betbveen 1 and k. 

Proof: For each j. let Bji = Ai +p?Z and let Bji = bjiZ with bji > 0. 
Then for each j, our assumption is that the sequence (bji)z”=, is periodic 
modulo p? with period a power of P,~. By Proposition 5.3, there existfi(t) in 
D such that h(i) = bji (Modp?). This implies that (p?&(i)) = b,ii for each i. 
In other words, the ideal Ij = (py’,fi(t)) produces the sequence of ideals Bii. 
Letting I = I, ... I,, we first observe that I(i) = I,(i) I:(i) ... I,(i) = 

BliB2i .. . Bki = Ai since the pi are distinct primes and since n =p:’ . . . pi” is 
in Ai. On the other hand, by Lemma 3.4 in Section 3. I= (n, h(t) for a 
suitably chosen h(t) E D. This last comment verifies the last statement of (1). 
(2) is simply a restatement of Proposition 5.2. with the added assumption 
H E J implying /I E I(a) for each a, and hence I(a) + rtZ = I(a). 

THEOREM 5.6. For each positive integer n. D/nD is a Bezout ring. 

Proof We observe that in Theorem 5.5, if I is a finitely generated ideal 
of D containing 11, then I(i) contains n for each i, so n can be chosen to be 
one of two generators for I. Therefore I/nD is principal. 

We conclude with some remarks concerning the restriction in this paper to 
finitely generated ideals of D. While this restriction is unnecessary in a few 
of the paper’s results. the more substantial theorems all use Proposition 2.7. 
and that result is false without the hypothesis of finite generation. In fact, 
Brizolis in 12, 41 determines the maximal ideals of D lying over a given 
prime pZ of Z as follows. Let 2, be the p-adic completion of Z. For a E 2,. 
the ideal M,., = (f E D /f(a) E pp,} is maximal in D and lies over pZ: 
moreover, (M,., 1 a E i,} is the set of all maximal ideals of D lying over pZ. 
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and M,,, and IV,,, are distinct for a # /3. Finally, Brizolis in [4] shows that 
if a & Z, then M,.,(a) = Z for each integer a. Hence 1 E M,,,(a) for each a, 
but 1 & M,,D. 
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