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A b s t r a c t - - A  new anisotropic diffusion model is proposed for image restoration and segmentation, 
which is closely related to the minimization problems for the unconstrained total variation E(u) = 
.f• (~(x)JVuJ + (jJ/2)Ju - 112. Existence, uniqueness, and stability of the viscosity solutions of the 
equation are proved. The experimental results are given and compared with the existing models in 
the framework of image restoration. The improvement on preserving sharp edges by using the new 
model is visible. @ 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I m a g e  restoration, Total variation, Heat flow method, Anisotropic diffusion. 

1. I N T R O D U C T I O N  

In recent years, the variational method has been effectively used in the recovery of object shape 

from noisy images. The general approach of this method is minimizing the total variation of the 

image, which incorporates constraints imposed by edge detection, object matching, and other 

objectives. One common way to solve the minimization problem is finding the steady-state 

solution of a heat equation corresponding to the Euler-Lagrange equation of the total variation 

(energy functional). We call this method the heat flow method. In this note, we shall show that  
the structure of the heat equation affects the quality of the reconstructed image. 

Let I be the intensity of an image obtained from a noiseless image by adding Gaussian noise 

with zero mean, defined on a rectangle ~ C R 2. Also, let u represent the reconstructed image. We 

have I = u + n, where n is the noise. Our problem is to reconstruct u from I. The total variation 

method proposed by Rudin, Osher and Fatemi [1] consists in solving the following constrained 
minimization problem: 

Minimize / a  IVuJ 

with £u=fai and 2 
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The first constrain indicates that the noise has zero mean, and the second one uses a priori 
information that the standard deviation of the noise n(x) is r]. This problem is naturally linked 
to the unconstrained problem 

/3 lu _ ii2. Minimize E(u) = IVul + 

The solution was obtained by finding a steady-state solution of a time dependent partial differ- 
ential equation, which is the evolution of the Euler-Lagrange equation for E(u). This means that 
they solved 

u t = d i v  / ~"\~V~-~)-/3(u-I), (1.1) 

u(x,O) = I(x), (1.2) 

On = O. (1.3) 
O~xR+ 

In [2,3], a spatially adaptive total variation scheme was proposed by minimizing the functional 

2 E(u) : c~(x)lVul + ~lu  - IJ 2. (1.4) 

The choice of a is dependent on the amount of detail we wish to preserve and the amount of the 
noise. Ideally, we wish a is a differentiable function having value zero on the edges and value one 
on the homogeneous regions. The Euler-Lagrange equation for (1.4) is 

V u  
d iv ( °~ (x ) (F~u i ) ) - tS (u - I )=O.  (1.5) 

It was suggested in [2,4] that the minimization problem (1.4) could be solved by finding the 
solution of (1.5) or by fnding the steady-state solution of the evolution of (1.5): 

Vu 
ut = div (ct(x) (l-~ul) ) - [3(u-I), (1.6) 

with the initial and boundary conditions (1.2) and (1.3). The numerical solution of (1.6) is readily 
obtained by explicit iteration scheme as opposed to implicit methods for solving a stationary 
equation. To solve this minimization problem, one may also consider the following heat equations 
rather than (1.6): 

o r  

ut = lVul div ( c ~ ( x ) ( V ~ @ u l ) ) - / 3 ] V u I ( u - I  ) 

-- ~ ( x ) l V = l  div \ l V u l J  + V s .  V** - Z l W I ( ~  - Z) 

(1.r) 

ut c~(m){c~(m)lVu]div ( V T ~  0 } = + v c ~ .  v u  - n l V u l ( u  - z )  . ( 1 . 7 ' )  

It is a natural question which evolution equation related to the minimization problem (1.4) does a 
better job in image recovery. Is it the evolution of the actual Euler-Lagrange equation (1.6) or the 
evolution of an elliptic equation obtained by multiplying some terms to the actual Euler-Lagrange 
equation, such as (1.7) or (1.7')? 



• I m a g e  R e s t o r a t i o n  83 

Comparing (1.6) with (1.7) and (1.7'), (1.7) and (1.7') have the following advantages. First, 
they have a geometric interpretation. Both (1:7) and (1.W) can be viewed as a geometry- 
driven diffusion scheme, where the parameter function a(x) controls the speed of diffusion. 
Let us think that  the image u is formed by iso-intensity contours u = c. The diffusion term 
a(x) lVu I div (Vu/lVul) in (1.7) (or the diffusion term a2(x)l~ul div (~Yu/l~u[) in (1.7')), indi- 
cates that  each iso-intensity contour moves along its normal direction with a speed a(x)k (or a2k 
for (1.7')), where k -- div (Vu/IVu D is the local curvature of the iso-intensity contour. Secondly, 
instead of the term ~Ja • Vu/IVu I in (1.6), we have the term xYc~ • ~Yu in (1.7) (or c~V~ - ~Yu 
in (1.W)). This reduces the error in the numerical implementation caused by the presence of IVu] 
as a denominator. At last, mathematically, we are able to obtain the existence, uniqueness, and 
stability of the viscosity solution for (1.7) or (1.7') with (1.2),(1.3) (we shall give the proof for the 
mathematical validity of (1.7') in the Appendix), while it seems difficult to prove these for (1.6). 
Comparing (1.7) with (1.7')~ (1.7) is the evolution of the elliptic equation obtained from (1.5) 
by multiplying IVul and the evolution equation (1.7') comes from (1.5) by multiplying a(x) lVu I. 
The major difference between these two equation is that  the multiplier IXYul in (1.7) takes much 
larger value on the edges than in the homogeneous regions, while the multiplier a (x)lXJu I in (1.7') 
takes smaller value on the edges than in the homogeneous regions, for a suitable choice of a(x).  
Due to this difference, (1.7) diffuses more on the edges comparing the diffusion performed by (1.6). 
Contrary to (1.7), the edges get less smoothing than the homogeneous regions when the diffusion 
is applied by (1.7') instead of (1.6). In this note, we shall show this difference by experimental 
results with the choice of a(x) given by 

~ ( ~ )  = g ( V G ~  • u) = 
1 + K IVG~ • ul 2' 

(1.8) 

where Go(x) = (1/av/-47)exp (-Ixl/4G2), K > 0, and G > 0 are parameters. 
With the choice of a(x) as in (1.8), equation (1.7) is reduced to the form 

u, = g ( v G ~  • u ) I V u l  div V u  + V (g (VG~ • u ) ) .  W - 9 1 W I ( ~  - Z). (1.9) 

This equation was studied in [5] and might be viewed as a framework for image denoising via 
nonlinear diffusion, and a modification of the well-known A1varez-Lions-Morel [ALM] model: 

ut =g(VG~,.u)lVu[div ( Vl~u] ) . (1.9') 

As analyzed in [6], in (1.9), the smoothing is made by the degenerate diffusion term g(VGo * 
u)[Vu] div (Vu/[Vu[). This term diffuses u in the direction orthogonal to its gradient Vu and 
does not diffuse at all in the direction of Vu. Therefore, u is smoothed on both sides of an edge 
with a minimal smoothing of the edge itself. Moreover, the speed of the diffusion is controlled by 
g(V.Go * u), so that  the edges are less smoothed. However, comparing the diffusion performed by 
g(VG,~ • u) div (Vu/lVul) or by g2(VG~ * u)lVu I div (Vu/lVul) , (1.7) diffuses more on the edges 
than the latter two. 

Similarly, the flow used in [7] for solving a minimization problem was not the evolution of the 
actual Euler-Lagrange equation. In [7], Shah proposed to perform simultaneous image denoising 
and segmentation by 

L v2 
minimizing E(u,v) = a(1 - v)21Vu[ + 3lu - I[ + P[Vvl 2 + ~pp, (1.10) 

where v is considered as an edge strength function, which is smooth and takes value one on the 
edges and decays away from the edges to value zero in homogeneous regions. This minimization 
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problem was solved in [7] by solving the system 

Otu = ( 1 -  v),~Tu, div (V~uu~) - 2 ~ v .  ~Tu 

2a 
O,v = A v  - ~-~ + -7-(1 - v)lVul, 

with the boundary and initial conditions 

u - I  
o~(1 - v ) I V u l  - I I '  ( 1 . 1 1 )  

(1.12) 

~n OnxR+ Ov a~ = 0, (1.13) Ou = O, -~n x R+ 

u(x, o) -- I(x), v(x, o) = 2o, plVul 
1 + 2o~plVu I" (1.14) 

We can see that  equation (1.11) is the evolution of the elliptic equation obtained from the Euler- 
Lagrange equation of E(u, v) (the first variation with respect to u) by multiplying ]~Tul/c~(1 - v) 
rather than the flow of the actual Euler-Lagrange equation. Compared with the evolution of 
the actual Euler-Lagrange equation, equation (1.11) has some good properties. First, the diffu- 
sion term (1 - v)[~Tu I div (Vu/IVul) has the same geometric interpretation as the diffusion term 
in (1.9). Second, the term Vv • Vu/IVu I in the flow of the actual Euler-Lagrange equation is 
replaced by Uv. ~Tu in (1.11), this reduces the error in the numerical implementation. Moreover, 
due to the presence of the term ~Tv. Vu, equation (1.11) is parabolic only along the level curves 
of u and it is hyperbolic in the direction normal to the level curves. This allows the solution u 
to develop shocks on the edges. 

From the models mentioned above, we can see that  heat equations with different structures 
are often used to solve the same minimization problem. In this note, we shall propose a new 
diffusion equation, which consists of (1.7') with c~(x) as in (1.8) and with the initial and boundary 
conditions (1.2),(1.3). In the next section, we will describe this model more precisely. In the third 
section, we shall state the theorem for the existence, uniqueness, and stability of our proposed 
model. The theorem can be proved by a similar argument developed in [6], but due to the presence 
of two extra nonlinear terms, more careful estimates are needed. We shall give a modified proof 
in the Appendix. In the fourth section, we will give the numerical results which indicate the new 
model is able to preserve edges and corners better than the existing methods. 

2. D E S C R I P T I O N  OF T H E  P R O P O S E D  M O D E L  

In this note, we propose the following model: 

ut=g21Vuldiv ~ Vl-~u])÷gVg. V u - ~ g l V u l ( u - I  ~ \ x E a ,  t > O ,  (2.1) 

u(x, 0) = ±(x), ~ e ~,  (2.2) 

0U O~x R+ 
0---~ = 0 ,  x E O ~ ,  t > 0 ,  (2.3) 

where g = g(VGa * u) is determined in (1.8) and/3 > 0 is a parameter. 
Note that  the diffusion term in equation (1.6) with a(x) determined in (1.8) is given by 

g(VGo*u)  div ( Vl-~uU~). (2.4) 

As mentioned in the first section, the diffusion term in (1.9) is the product of (2.4) and ]Vul, while 
the diffusion term in (2.1) is the product of (2.4) and g(VGo * u)I~Tu I. The term IVul has larger 
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(a) Noiseless image. 

(c) Reconstructed image by proposed model. 

i! i  
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(b) Noisy version (SNR -- 0 db). 

C) 
(d) Segmentation of the reconstructed image (c). 

(e) The reconstructed image obtained by (1.9). 
Figure 1. 

1 i 

(f) The segmentation of image (e). 

value on the edges than in the homogeneous region, while g(~TG~*u)IVul = 1~7ul/(I+KIVGa.ul 2) 
is just the opposite. Therefore, the diffusion applied by (1.9) may cause over smoothing near 
the edges, while this problem can be solved by using the proposed model (2.1). Figures le, 2e, 
and 6e show the reconstructed images by using model (1.9). One can see that  in order to clean 
up the background, some of the edges, in particular, the corners are lost and the originally 
connected squares and triangles are becoming separated. To solve this problem, that  means to 
regularize the homogeneous region with the least smoothing on the edges, we propose to use (2.1). 
Equation (2.1) not only keeps the good features that  (1.9) has (as mentioned in Section 1), but  also 
performs less smoothing on the edges compared with (1.9). The numerical results indicate that  
when the number of iterations reaches certain levels, then there is very little effect to the edges by 
running more iterations to smooth the homogeneous regions. We can see that  the reconstructed 
image in Figures lc, 2f, and 6c are better  than that  in Figures le, 2e, and 6e, respectively. For 
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), 

(a) Noiseless image. (b) Noisy version (SNR = 0 db). 

100 110 120 130 140 1 ~  100 110 120 l~tO 1410 150 

(c) Noiseless detail d. (d) Noisy detail d. 

lOO 11o 12o 130 140 150 

(e) Detail d of the reconstructed image by 
(1.9). 

Figure 2. 

loo ~10 12o 13o v~o t ~  

(f) Detail d of the reconstructed image by 
proposed model. 

instance, in Figure lc, the homogeneous regions of the image are more smoothed, the boundaries 
of the squares are bet ter  preserved, and the squares are still linked. 

3. EXISTENCE, UNIQUENESS,  AND STABILITY 

Since equation (2.1) is highly nonlinear and degenerate, we need the notion of so-called viscosity 
solution (see [8]). In this section, we will prove the existence, uniqueness, and stability for the 
viscosity solution to equation (2.1). 

Our model equation is in two dimensions, mathematical ly we can s tudy this problem for 
n-dimensional cases, a,  /3, and K are constants in (2.1), and they do not affect the proof of 
well-posedness. To simplify the presentation, we shall consider a = j3 = K = 1 and work with 
periodic boundary conditions. Then, by periodic extension, we consider the following Cauchy 
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(a) Noiseless image. 
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(c) Reconstructed image obtained by (2.1). 
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(b) Noisy image. 
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(d) Reconstructed image obtained by (1.9). 

Figure 3. Plots of the lines y = 188. 

problem[ 

Ou Og 
0-7 = 92a~J(~u)~x~ + g ~  [(VG~, • u). ~ ]  - g t ~ l ( u  - I), 

~(~, 0) = I(x),  x • R ~, 

x E R  ~, t E R + ,  (3.1) 

where g = g(s) = 1 / ( 1  + Is12), s = (~i,...  ,Sn)  -~ V G  * ~t, ~ : ~sl (8), G = (1 /4r )exp{- (x  2 + 

y2)/4} ,  aij (p) = ~ij -PiPj/ [p[2,  and the summation convention is used. 
First, let us recall the definition of viscosity subsolution of (3.1). A function u e C ( R  n x [0, T]) 

for some T > 0 is said to be a viscosity subsolution of (3.1), if for all ¢ c C2(R 2 x R), the 
following condition holds at any point (xo, to) c R n x (0, T], at which (u - ¢) attains a local 

maximum: 

o¢ 
0--~ (Xo, to) - g ( (VG * u) (Xo, to)) 2 aij (V¢  (xo, to)) Cx~zj (xo, to) 

og ( ( v v  • ~) (zo, to)) [(~ax, * u) (xo, to).  v ¢  (zo, to)] +g ( ( v a  • u) (xo, to)) 

- g  ( (VG * u) (xo, to)) IV¢ (zo, to)l (u - I) (xo, to)] <_ 0, if ~7¢ (zo, to) ~ 0, 

(3.2) 

o¢ 0--t (xo, to) - (g ((VG * u) (xo, to)))2 lim sup aij (P)g)x~xj (xo, to) <_ O, if ~7¢ (xo, to) -- 0. (3.3) 
p---*0 

A viscosity supersolution is similarly defined by substituting "local maximum" for "local min- 
imum", "< 0" for "_> 0", and "limsup" for "liminf" in equations (3.2) and (3.3), respectively. A 
viscosity solution is a continuous function which is both a subsolution and a supersolution. We 
now state the theorem. 
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(a) Noiseless image. 

(e) Reconstructed image obtained by (2.1). 
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(b) Noisy image. 
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(d) Reconstructed image obtained by (1.9). 

Figure 4. Plots of the lines y -- 69. 
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(a) Noiseless image (-), model (1.9) (--), 
proposed model ( . -  .). 

IL 

! , !  , 
! ! !  , 

'i i 
(b) Noiseless image (-) and noisy image 
( .- . ) .  

Figure 5. Cross-section for the.lines y -- 220. 

THEOREM 3.1. The Cauchy problem (3.1) has a unique viscosity solution u E C(R  n x [0, T]) n 
L°°(0, T; WI'°°(Rn))  for any T E [0, c~), and infR. I <_ u(x, t) <_ suPR,~ I,  provided that I is 

Lipschitz continuous in R n. 
Moreover, i f  v C C(R  n x R+) is a viscosity solution of (3.1) with I replaced by a Lipschitz 

continuous function I1, then for all T E [0, +oc) ,  there exists a constant C > O, depending only 
on I,  I1, and T, such that 

sup l lu(~,t )  - V(x, t ) I IL~(R, , )  _< C I I Z -  Z~IIL--(R,~). 
0<t<T 

The proof  of  this theorem follows the argument developed in [6] for equation (1.9~). However, 
since our model  has two more nonlinear terms than model  (1.9'), more careful est imates  are 
required, especially in getting the uniform L°°-norm estimate for the gradient of  the approximate 
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(a) Noiseless image. 

(c) Reconstructed image obtained by (2.1). 

m 
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(b) Noisy version (SNR --- -6.02 db). 

(d) Segmentation of image in (c). 

(e) The reconstructed image obtained by (1.9). 
Figure 6. 

, : 

(f) The segmentation of image (e). 

solutions and in establishing the est imate supfl x [0,Tl [ u -  v I < C supfl x {t=0} ]u - vl, where u and v 
are two viscosity solutions of (3.1). For the  convenience of the reader, we shall give the proof  in 

the Appendix.  

4 .  N U M E R I C A L  I M P L E M E N T A T I O N  A N D  
E X P E R I M E N T A L  RESULTS 

In  this section, we present the results of applying the model in (1.9) and the  proposed model  
in (2.1) on three images of varying difficulty. Numerical  solutions of equat ions (1.9) and (2.1) are 
obta ined  by applying appropr ia te  finite-difference methods  as developed in [1,7,9,11], which are 

briefly described below. 

Our  images are represented by 256 x 256 matrices of intensity values. We let u~j denote  the  
value of  the  intensi ty of the  image u at the  pixel (x = iAt ,  y = j A t )  We denote  u(i, j, tn) by un. • ~ , , j  • 
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The time derivative ut at (i, j ,  tn) is approximated by the forward difference (~i,j" ~+1 _ u~,j)/At. 
The diffusion term 

[Vu I div Vu = UxUyy "~ UyUxx 
+ 

in (1.9) and (2.1) is approximated using central differences. 
The term V g .  Vu permits the development of discontinuities which indicate the presence 

of object boundaries. Here, the main idea is to use forward or backward finite differences in 
computing the spatial derivatives of u in a manner that  is consistent with the development of the 
shock, and it does not reflect the smoothness that  may occur near the shock region. This feature 
is achieved by the following scheme developed by Osher and Sethian [9] (also used in [7]). Let 

A+x Ui, j ~ Ui+l,  j --  Ui , j ,  
+ 

A y  Ui, j  : U i , j+ l  --  Ui , j ,  

A x U i , j  -~ U i+l , j  - - U i - l , j  
2 

A~ ui,j = u~,j - ui_ 1,j, 

Ui , j+I  --  U i , j -  1 
A Y U i ' J  = 2 

Then we have 

(Vg.  Vu)i,j  = max ( Axg~,j, 0) A;u{,j  + min ( /kxgi,j, O) A +x ui, j 

+ max (Ayg~,j, O) Ayui , j  +'min (Aygi,j, O) A+ui,j .  

A complete discussion on this scheme is found i n  [9,10]. 
Using Neumann boundary conditions, we compute u '~+1 ij , n = l , 2 , . . . , N ,  by 

= + A t e  

with ui ° = I(xi ,  Yi) and 

£(u) = g21Vu[div ~ + g V g .  V u -  /3g lVu l (u -  I). 

The following results are presented for two-dimensional images. We chose the parameters which 
give the best result in these models. We considered an image to be a "good" enhancement if the 
background was reasonably clear of structures attributable to noise, and if the edges were clearly 
defined. Our test images were of size 256 × 256 pixels. The noiseless images were gray-level 
piecewise-constant objects. The noise version I was obtained from the noiseless synthetic image 
by adding Gaussian noise with zero mean. Although the noiseless image only contains intensities 
between 0 and 255, the addition of noise results in pixel values which are outside of this range. 
In this paper, we do not truncate the noisy pixel values, so our noisy images contain intensities 
well outside the 0-255 range. For instance, the noisy image in Figure 5 contains intensities as low 
as -530  and as high as 641. This presents a greater challenge to algorithms than the truncated 
versions. We use Matlab to display the images. 

Our first example is an image containing one circle and three squares. It is a grey-scale image 
with standard deviation equaling 38.1 and mean equaling 112.5. Figure l a  presents the synthetic 
original noiseless image, and Figure lb  shows the noisy version. The signal-to-noise ratio (i.e., the 
ratio between the standard deviation of noise-free image and the standard deviation of the noise) 
is 0.0 db. The discretization of the model equation (1.9) was run with/3 = 0.005, K = 0.0001 
for 200 iterations and produced the segmentation in Figure If  (right) and the denoised image in 
Figure le (left). The proposed model (2.1) was run for 150 iterations with/3 = 0.1, K = 0.0003. 
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This produced the segmentation in Figure ld  (right) and the denoised image in Figure lc (left). 

We get a = 0.5 for each model. 
Similar tests for the original image in Figure 2 were performed. The SNR is also 0.0 db and 

the standard deviation of the noiseless image is 42.7 and the mean is 104.5. Figures 2a and 2b 
show the original noiseless image and its noisy version, respectively. In the second test, we use 
the same parameters as in our first test. 

To bet ter  illustrate the reconstruction, we presented in Figures 2c-f only the images on the 
subregion d = {(x,y)  e f t ,  s.t. x C [100,156] and y E [100,156]}. Figures 2c and 2d show 
the noiseless image and its noisy version detailed on d. In Figure 2e, we show the detail of the 
reconstructed image on d obtained by using model (1.9) af ter  150 iterations. Figure 2f shows the 
reconstructed image on d obtained by applying the proposed model after 150 iterations. We also 
present in Figure 3 and Figure 4 the profiles on lines for the images corresponding to Figure 2. 
In Figure 3, we use the 188 th r o w .  In the original image, this row contains two single pixels of 
high intensity which sit at the bottom of the triangles. In Figure 4, we use the 69 TM row. In 
the original image, this row contains a single pixel of high intensity which sits on the top of 
the triangle on the right side of the image. These plots illustrate that  model (1.9) is unable to 
resolve small detail, which is clearly resolved by the proposed model. We can see that  the edges 
are bet ter  preserved by using the proposed model, while the jumps have been completely lost by 

using (1.9). 
In the last experiment, an application of our model in denoising and segmentation of the noisy 

image is presented in Figure 6b. Here the SNR is -6 .0  db. The noiseless image containing 
two circles and two squares has standard deviation 63.3; mean is 29.8. The discretization of 
model equation (1.9) was run with ~ = 0.0005, K = 0.00005, At = 0.1 for 300 iterations, and 
it produced the segmentation in Figure 6f (right) and the denoised image in Figure 6e (left). 
The proposed model was run for 150 iterations with f~ = 0.1, K = 0.00002, and At = 0.2. This 
produced the segmentation in Figure 6d (right) and the denoised image in Figure 6c (left). In 
order to see the improvement of the proposed model clearly, line plots of the images are presented 
in Figure 5" Here, we use the 220 th row from column 1 to 80. These illustrate that  the edges 
have been over smoothed using model (1.9), while the location of the edges are better  preserved 
with the proposed model. 

A P P E N D I X  

PROOF OF THEOREM 3.1. We shall outline the proof in several stages. 

STEP 1. We first show that  if u is a viscosity solution of (3.1) on R '~ × R+, then 

i n f I  < u < sup / ,  on R n × [0, cx~). (5.1) 
R~ R" 

Let ¢ = suPR~ I -t- 5t (where 5 > 0) in (3.2) and assume that  u - ¢ attains a local maximum 
at (xo,to) with to > 0, then V¢(x0,t0) = 0, and from equation (3.2), ~ ( x o , t o )  <_ O. This 

contradicts ~t  - 5 > 0 on R n x [0, oc). Therefore, u - ¢ must attain its maximum at to = 0. So, 

u < s u p I  + St. 

Similarly, we have (from the definition of supersolution) 

u _> inf I - St. 

Letting 5 --* 0 proves (5.1). 
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STEP 2. Next we prove the gradient estimate for the approximate solution. Consider the following 
Cauchy problem: 

O~t e 

Ot 

e Og e 
_ (ge)2 ",5 ( rue)  "i ,~,  + g -OT ( v v . ,  • ,~ ) .  Vu e - b e (Vu e) ge (u e _ .re), 

x E R n, t E R+, 

ue(x,O) = Ie(x), x E R n, 

(5.2) 

where 
O < e ' <  1, 

ge = g ( V a ,  u e) +e ,  

P~Pj 
a~j(p) = (~ + 1)5~j iple + ~2, 

b e(p) = 14~ + ~, 

I e E CO°(R n) (periodic) such that  I e --+ I uniformly and 

IIV/ellL~(w,) _< IIv-rIIL~(R,,), II-rellL~(w ,) < IIIllL~(w,). 

By the theory of quasi-linear uniformly parabolic equations [11, Section 6, Theorem 4.4], prob- 
lem (5.2) admits a smooth solution u e E C ~ ( R  '~ x R+). Since any smooth solution is a viscosity 
solution, by an argument similar to that  in Step 1, we know that  

luel < M, for (x,t) e /?~  x [0, oo), (5.3) 

where M > 0 is a constant depending only on I. Now we shall show a uniform estimate for 
]~Ue]Loc(Rn). 

Differentiating (5.2) with respect to Xk, then multiplying the resulting equation by 2u~ ,  and 
taking a summation with respect to k, we get 

0{Vuq 2 , e,2 ~ 02[Vuq 2 Oa~Ju~xx 01Vuel ~ 
Ot tg ~ a~j - 5 ~  (g~)2 0l ~ J Ox~ 

e Obe 0 IVu e I 2 

" ~ age ( a ~ , ~  • ~,e) ~%~x,~,,4~ - 2 (ge)~ < / , ~ , , 4 ~ , , 4 ~ ,  + F _= a.g - - ~  

=: I + I I  + I I I ,  

where 
/ 02 g ~ Og ~ ) (a~,,,x~ • ~°) [ (va~,  • ue) .  v u q  u ~  F = 2 (ge 0- / -~  + 0--~ 0---/- \ 

e Og e 
+ 2g ~ [(Vgx,~ * ue). W q  u L  (5.5) 

, e  [ g e O g e ~  a Ue)ge], 
- 2 b  e ( u ~ -  x ~ ) ~  - o . ~ '  ..... ~ *  

ge = 9 e ( v a ,  ue), a~ 5 = < ~ ( w ~ ) ,  be = be(rUe), 

and ~ stands for the partial derivative of ge with respect to its / th component evaluated at 
VG * u e. From the definitions of a~ej, b e, and ge  we can verify that  

2-e  U¢ aijUxix~ 2, aij  xkxj  ~ e ¢ 

ge Og ~ - ~  < 2(g~)~, 
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and for any multi-index a with Ic~l < 2, 

ID;b~(p)] _< C, 

ID 9( )I _< C, 

ID~G * u I < C, 

Vp • R n, 

Vs • R ~, 

Vx • R ~. 
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(5.6) 

= = ( r e )  (5.11) < % • V u  s~' V ¢ ,  U ~t k Ct, aij , j _ 

Therefore, (5.2) implies that  at (xk,tk), 

0 ¢  ~ 2 ~ O g ~  Ix-7~ 
Ot (g ) a ~ j ( V ¢ ) ¢ ~ , ~ j - g ~  O1 ~ - ~ '  * u ~  " V ¢ l - b ~ ( V ¢ ) g ~ ( u ~  - I ~ ) ]  < 0 ,  (5.12) 

where g~ = g~k (VG * u~k), @ = °o~koz (VG * u ~) .  
If V¢(xo, t0)  ¢ 0, from (5.10), for sufficiently large k, V¢(xk, tk)  ¢ 0. One may apply limits 

in (5.12) to obtain (recalling the definitions of a~, g~, b e, and (5.9),(5.10)), 

0¢ Og 
Ot g2a.ij(V¢)¢x,<~ - g - ~  [(VG~, . u )  .V¢] + b ( V ¢ ) g ( u - I )  <_ O, at (xo,to),  

where g ~- g ( V a  * u), ~ = ~ / (VG * u). This gives (3.2). 

and at (xk , t k ) ,  

Combining (5.4)-(5.6) and using the Cauchy inequality, we have 

+ I I  + / I I  < C ( ]W° l  2) , (5.7) I 

where C > 0 is a constant depending only on M in (5.3), hence, C depends only on I. Applying 
the maximum principle [12] to (5.4) yields for all t E [0, T] (for any T < oc), 

ILW%,t)IIL (R, ) < e ct LtV/ iiL (R,,) (5.S) 

<_ e ct HVIHL~(R, ) <_ CT, 

where CT > 0 depends 0nly on T and I. This implies that  

lug(x, t) - u~(y,t) l  <- CTI x -  Yl, for Vx ,  y e R n and Vt • [0, T]. 

By the same argument used in [6], we have 

l u ~ ( x , s ) - u ~ ( x , t ) l  <_CTtt--sl 1/2, for Vx • R n and Vs, t • [0, T]. 

Then, by the Ascoli-Arzela Theorem, there exists a subsequence u ~k of u ~ and a function u • 
C ( R  n × [0, T]) N L ° ° ( O , T ; W I ' ° ° ( R n ) )  such that  as sk --* 0, 

u ~k --* u, locally uniformly in R n x R+. (5.9) 

STEP 3. Existence of viscosity solution. We assert now that  u obtained in (5.9) is a viscosity 
solution of (3.1) in the sense of (3.2) and (3.3). 

Let ¢ • C 2 ( R  n × R)  and assume u - ¢  has a strict local maximum at a point (x0, to) • R 7' x R+. 
As u ~ --* u uniformly near (xo,t0), u ~ - ¢ has a local maximum at a point (xk , t k )  with 

(xk , t k )  ~ (Xo,to), as k ~ oc (5.10) 
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If V¢(zo,  to) = 0, let 

then (5.12) reduces to 

h k = 
v¢ (xk, t~) 

V/[~7¢ (zk, tk)l 2 + c~' 

o¢ 
- hi h j  ) ¢z~xj - y - - ~  Ot (gek)2 ((~k + l)5iJ k k ~k Og~k [(VG~, * u ~ k ) . V ¢ ]  

- b  ~k(v¢)g s~ (u ~k - I ~ )  < 0, at (xk,tk) .  
(5.13) 

Since V ¢ ( x k , t k )  ---* O, ~k ~ 0 as k ~ oo, hence, b ~ k ( V ¢ ( x k , t k ) )  ~ O. Moreover, because 
Ihkl < 1, there is a subsequence of h a, also denoted by h k, such tha t  as k -~ ec, h a ~ h in 
R n × R with Ihl < 1. Applying limits to (5.13), we get 

0¢ 
ot (g ( V G  • u)) u (Sij - hihj)  Cx,xj <_ O, at (xo, to). (5.14) 

This is the same as (3.3). If u - ¢ has a local maximum, but not necessarily a strict local 
maximum at (xo, to), we just  need to repeat the argument  above with ¢(x, t) replaced by ¢(x, t) = 
¢(z,  t) + Ix - Xol 4 + (t - to) 4. Therefore, u is a subsolution of (3.1). Similarly, we can show tha t  
u is a supersolution. Hence, u is a viscosity solution of (3.1). 

STEP 4. UNIQUENESS. We will now prove the uniqueness and stability for the viscosity solution 
of (3.1). This proof is based on Theorem 8.3 in [8]. Let u be a viscosity solution of (3.1) with 
Lipschitz continuous initial da ta  I and v be a viscosity solution of (3.1) with I replaced by a 
Lipschitz continuous function I1. Let 

w ( x , y , t )  = u ( x , t )  - v ( y , t )  - (46) -11x-  yl 4 - )~t ,  t E [0, T], x , y  C R n, 

where 5 > 0 and A > 0 are constants to be determined later. 

CLAIM. 02(X, y, t) at tains maximum at t = 0 for an arbi trary positive constant  ,~. 

Indeed, if w ( x ,  y,  t) at tains its maximum at some point (xo, Yo, to) with to > 0, by Theorem 8.3 
in [8], for each # > 0, there exist X and Y, (n × n)-symmetric matrices, and c~, fl E R, such tha t  

a - Z = ~, (5.15) 

and 

0) 
_ y  _< A + # A  2, (5.16) 

c~ - (g ((VG * u)(xo,  to))) 2 aij  (6  -1  Ixo - yo] 2 (Xo - Yo)) X i j  

0g 
- g  ((VG • u) (xo, to)) - 5 / ( ( C a ,  ~) (xo, to)) 

× [(Vax~ • ~ ) (xo , to) .  ~-1 Jxo - yol 2 (xo - ~o)] 

-t-5 -1 IX0 - -  yo] 3 g ((VG * u)) (Xo, to) (u (x0, to) - I (Xo)) _< 0, 

fl - (g ( (VG * v) (Yo, to))) 2 aij  (5  -1  IXo - yol 2 (Xo - yo)) Yij 

Og 
- g  ((VG • v) (yo, to)) b7 ( ( C a  • v) (yo, to)) 

× [ (Vax ,  • v ) (yo , to ) .  ~-1 I~o - yot 2 (xo - yo)] 

__(~-1 IX 0 - -  yol3g ((VG * v)(Yo, to))(v (yo , to)  - L (Yo)) -> 0, 

(5.17) 

(5.18) 
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A = (Aij )nxn,  and 

Aij  = 5-alXo - yo125ij + 25-1(Xo - yo)i(Xo - Yo)j, (5.19) 

here (xo - Yo)i stands for the ith component  of Xo -- Y0. 
We observe tha t  22o ¢ Yo. Indeed, if xo = Yo, then from (5.19), A = 0, hence, X < 0 and Y > 0 

fi'om (5.16). Thus,  (5.17),(5.18) leads to a < 0 and/3  > 0, which contradicts  c~ - / 3  = ~ > 0. We 
n o w  choose 

= 5 Ixo - yo1-2 • (5.20) 

From (5.19) and (5.16) after some algebra, we have 

where 

Let  

Bij  = Ixo - yol 2 (~ij + 5 (X 0 -- yo) i (220 -- YO)j , 1 < i, j < n .  

U = ( V G ,  u) (220, to) ,  V = ( V G ,  v) (yo, to) ,  

D : a~ (~-11Xo- ~07 (220- yo)) 
l ~ i , j ~ n  ' 

and ( 
Q =  g ( U ) g ( V ) D  9 ( V ) 2 D  " 

Noting tha t  Q is a nonnegat ive  symmetr ic  matr ix,  from (5.21), we have 

Q X < 25-1Q - B  B 
_ _  - -  

Taking the trace,  we get 

g ( V ) 2 D i j X i j  - g (V)2Di jY i j  < 25 -1 (g(V) - 9 (V) )  2 t r a c e ( D B )  

_< 4~ - l ( g ( v )  - 9 ( v ) ) 2 > o  - yol 2 

Then ,  from (5.15), (5.17), and (5.18), 

)~ = c~ - /3 < I + I I  + I I I ,  

where 

(5.21) 

(5.22) 

(5.23) 

I = g (U)2Di jX i j  - g ( V ) 2 D o Y i j ,  (5.24) 

Og U H = g ( u ) ~ (  ) ( v c x , , u ) ( x o , t o )  

- g ( V l ~ ( V )  (vax , ,  v)(yo,to)]. ~-1Lxo - yo12 (22o - yo), (5.25) 

I I I  = 92(U)6 -1 [xo - yo[ 3 (u (Xo, to) - I (xo, to)) 

- g2(V)5-1 IXo - Yol 3 (v (xo, to) - 11 (Yo)) • (5.26) 

We now es t imate  (5.24)-(5.26). First ,  

Iu - Yl _< I (vG • u) (220,t0) - ( v G  • v)(220,%)1 

+ I ( V G * v ) ( x o , t o ) - ( V G * v ) ( y o , t o ) I  <-C ( sup l u - v  I + l x 0 - y 0 1 ~ .  (5.27) 
\R"  x [0,T] / 
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Then,  by the  mean  value theorem,  

Ig(U) - g(V)[ < c I g  - V I, (5.28) 

Og 9(V)_~(V ) O g  (VGx, * v) (Yo, to)l g ( u ) - ~ ( u )  ( vc~ ,  • u)(xo, to) - 

Og Og 
<_ g(U)-#i(u) - g(V)-b-i(v) I(VCx, • u) (xo, to)l (5.29) 

g ( V )  ~ ( v )  - , _ - + J ( v c ~ , . u ) ( x o , t o )  ( v c ~  v)(uo, to)l < C l U  v l ,  

192(u)~ (xo, to) - 92(V)v (vo, to)] 

< ]g~(U) - g~(v)]  lu (~o, to)[ + ]g~(V)] lu (~o, to) - v (yo, to)I (5.30) 
< c ( I u  - vl  + lu(xo,to) - v(yo,to)l). 

Similarly, 

] g 2 ( V ) I  (xo , to)  - g2(V)I1  (yo, to)[ < C (]U - V[ + II (xo, to) - I1 (zo, to)I) • (5.31) 

T h e  cons tants  C > 0 in (5.28)-(5.31) depend only on I ,  I1, and the  Lipschitz cons tan ts  for u 
and v. By  using es t imates  (5.27)-(5.31) and definitions (5.23)-(5.26), we get 

I( ( ) ] ,~ ~ C 5  - 1  sup [u - v[ [Xo - yo[ 2 + ]xo - yo] 4 + _ sup [u - v] [xo - yo] 3 • (5.32) 
L \ R ' ~  X [0,T] \ R " ×  [0,T] 

On the o ther  hand,  since (xo, Yo, to) is the m a x i m u m  point  of w(x, y, t), 

u (x0, to) -- V (x0, to) -- (45) -1 Ix0 -- y0[ 4 -- At0 _> u (Y0, to) -- v (Y0, to) -- At0. 

This  leads to  
]Xo - y o ]  _< (45L) 1/3, (5.33) 

where  L is a Lipschitz cons tant  for u in R n × [0, T]. Combining  this with (5.32) yields 

,~ ~_ C ~  - 1  _ sup [u -  v I (45L) 2/3 + _ sup [u -  v] 45L + (45L) 4/3 
\ R  '~ × [0,T] \ R " x  [0,T] . 

(5.34) 

\ R "  x [0,T l R ' x  [0,T] 

where  Co > 0 depends  only on I ,  I1, and the  Lipschitz constants  of u and v. We now set 

( 5 = L  - 4 _  sup l u - v [  (5.35) 
\ R  '~ x t0,T] 

and f rom (5.34), we obta in  

Let  

/ L-4/3 \ 
_< Co ¢L4/. + +~)  sup I~-  vl. A 

k / R"  X [0,T] 
(5.36) 

= Co (L 4/3 + L -4/3 + 2)~up I~-vl (5.37) 
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T h i s  leads  to  a c o n t r a d i c t i o n  w i t h  (5.36). There fore ,  for t he  choice (5.37) of ,k, w(x ,  y, t) a t t a i n s  
i ts  m a x i m u m  a t  t = 0, wh ich  is o u r  c la im.  Hence ,  

U(x , t )  -- v ( y , t )  -- (4(~)-11Z -- yl 4 -- )kt 

< s u p  - - (4 )-11x - y l  
• ,yER n 

<_ s u p  ( I ( y ) - I i ( y ) + I ( x ) - I ( y ) - ( 4 5 ) - 1 1 x - y l  4) 
x,yER" 

<__ s u p l I  - I l l  + sup  ( I ( x )  - I ( y )  - (45)-11x - yl 4) 
n .... Ix-yl>_o 

< _ s u p l l - I 1  l +  sup  ( L l x - y  I - ( 4 5 ) - 1 1 x - y 1 4 ) .  
R- Iz-yt>0 

( 5 . 3 8 )  

N o t i c i n g  t h a t  s u p r > 0 ( L r  - (4 (~) - l r  4) is achieved at  r = (SL) 1/a, a n d  l e t t i n g  x = y in  (5.38),  f rom 

(5.35) a n d  (5.37),  we ge t  

sup  l U - - V l < _ s u p l I - - I l l +  3 sup  l u - v l + C o ( L 4 / 3 + L - 4 / a T 2 )  T sup  l u - v l .  (5.39) 
n - x  [0,T] R '~ R,, x [0,T l n,, x [0,T] 

There fo re ,  t h e r e  exis ts  To > 0, suff ic ient ly  smal l  (To < 1 / (8Co(L  4/3 + L -4/a + 2))) such t h a t  
f rom (5.39),  we have  

sup  lu - vl _ 8 s u p  II - 111. (5.40) 
n'~x[O,To] n .... 

For  large t,  by  i t e r a t i on ,  we eas i ly  o b t a i n  

sup  lu - v I <_ C ( T )  sup  II - I l l .  
R ,~ x [0,T] R .... 

T h i s  proves  t h e  u n i q u e n e s s  a n d  s t ab i l i t y  for u. 
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