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1. Introduction

Let X and Y be two Banach spaces. We denote by L(X, Y ) (resp. C(X, Y )) the set of all bounded (resp. closed, densely
defined) linear operators from X into Y and we denote by K(X, Y ) the subspace of compact operators from X into Y . For
A ∈ C(X, Y ), we write D(A) ⊂ X for the domain, N(A) ⊂ X for the null space and R(A) ⊂ Y for the range of A. The nullity,
α(A), of A is defined as the dimension of N(A) and the deficiency, β(A), of A is defined as the codimension of R(A) in Y .
The set of Fredholm operators from X into Y is defined by

Φ(X, Y ) := {
A ∈ C(X, Y ) such that α(A) < ∞, β(A) < ∞ and R(A) is closed in Y

}
.

For A ∈ Φ(X, Y ), the number i(A) := α(A) − β(A). If X = Y then L(X, Y ), C(X, Y ), K(X, Y ), and Φ(X, Y ) are replaced by
L(X), C(X), K(X), and Φ(X) respectively. A complex number λ is in ΦA if λ − A is in Φ(X).

We denote by R(X) the class of all Riesz operators which is characterized in [2] by

R(X) := {
A ∈ L(X) such that λ − A ∈ Φ(X) for each λ �= 0

}
.

Let σ(A) (resp. ρ(A)) denote the spectrum (resp. the resolvent set) of A.
In this paper, we are concerned with the following essential spectra:

• σe(A) := {λ ∈ C such that λ − A /∈ Φ(X)} = C \ ΦA ,
• σw(A) := C \ ρw(A),
• σb(A) := C \ ρb(A),

where ρw(A) := {λ ∈ ΦA such that i(λ − A) = 0} and ρb(A) denotes the set of those λ ∈ ρw(A) such that all scalars near λ

are in ρ(A).
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The subset σe(.) is the Wolf essential spectrum [8,28], σw(.) is the Schechter essential spectrum [9–12,17,22,23] and σb(.)

denote the Browder essential spectrum [8,14,15,19].
Note that, if A is a self-adjoint operator on a Hilbert space, then

σe(A) = σw(A) = σb(A).

Also, note that all these sets are closed and in general they satisfy the following inclusions

σe(A) ⊆ σw(A) ⊆ σb(A).

When dealing with essential spectra of linear operators on Banach space, one of the main problems consists in studying
the essential spectra of the sum and the product of two operators. It is well known that if A and B are commuting bounded
operators on a Banach space then

σ(A + B) ⊆ σ(A) + σ(B), σ (AB) ⊆ σ(A)σ (B);
the spectrum of their sum and product are subsets of the sum and product of their spectra (see [18]). But, in general, if A
and B don’t commute there’s no reason to expect a simple relationship between their spectra and the spectra of their sum
or their product.

Among the works in this direction we quote [25]. In fact, the authors are concerned with the case where A and B are
respectively closed and bounded operators and which commute modulo the compact operators. Under some conditions,
they obtain

σe(A + B) ⊆ σe(A) + σe(B), σe(AB) ⊆ σe(A)σe(B).

We mentioned that these results don’t include the usual spectrum’s case and remain valid for bounded operators A and B .
Let A ∈ C(X). It follows from the closeness of A that D(A) (the domain of A) endowed with the graph norm ‖.‖A

(‖x‖A = ‖x‖ + ‖Ax‖) is a Banach space denoted by X A . Clearly, for x ∈ D(A) we have ‖Ax‖ � ‖x‖A , so A ∈ L(X A, X).
Furthermore, we have the obvious relations

α( Â) = α(A), β( Â) = β(A), R( Â) = R(A).

Furthermore, if A is a closed operator such that ΦA is not empty, then by [21, Theorem 2.9], ΦA is open, thus it is the
union of a disjoint collection of connected open sets. Each such set, Φi(A), will be called a component of ΦA . In each Φi(A),
a fixed point, λi , is chosen in a prescribed manner. Since α(λi − A) < ∞, R(λi − A) is closed and β(λi − A) < ∞, then there
exist a closed subspace Xi and a subspace Yi such that dim Yi = β(λi − A) satisfying

X = N(λi − A) ⊕ Xi and X = Yi ⊕ R(λi − A).

Now, let P1i be the projection of X onto N(λi − A) along Xi and let P2i be the projection of X onto Yi along R(λi − A). P1i
and P2i are bounded finite rank operators. It is shown in [21] that (λi − A)|D(A)∩Xi has a bounded inverse, Ai ,

Ai : R(λi − A) −→ D(A) ∩ Xi .

Let Ti the bounded operator defined by: Ti x := Ai(I − P2i)x satisfying:

Ti(λi − A) = I − P1i on D(A), (1.1)

(λi − A)Ti = I − P2i on X . (1.2)

Hence, Ti is a quasi-inverse of (λi − A). Moreover, when λ ∈ Φi(A) and −1
λ−λi

∈ ρ(Ti), the operator R ′
λ(A) :=

Ti[(λ − λi)Ti + I]−1 is shown in [24] to be a quasi-inverse of (λ − A) (see Definition 2.1). In fact R ′
λ(A) is defined and

analytic for all λ ∈ ΦA except for at most an isolated set, Φ0(A), having no accumulation point in ΦA .
This work is devoted to extend the results started in [25] to various essential spectra of closed operators. In fact, we are

in the position to characterize the sum and the product of Wolf, Schechter and Browder essential spectra of two operators,
A ∈ C(X) and B ∈ L(X), which commute modulo the Fredholm perturbations.

Hence, we show that the description of the essential spectra of the sum and the product of two operators can be further
improved to generalize the results obtained by [25].

We organize our paper in the following way: In Section 2 we gather some results and notations from Fredholm theory
connected with the third section. The main results are presented in Section 3.

2. Preliminary results

Definition 2.1. A bounded operator B is called a quasi-inverse of the closed operator A if

(i) R(B) ⊂ D(A) and AB = I + K1, K1 ∈ K(X).
(ii) B A = I + K2, K2 ∈ K(X). ♦
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Definition 2.2. Let X and Y be two Banach spaces and let F ∈ L(X, Y ), F is said to be a Fredholm perturbation if T + F ∈
Φ(X, Y ) whenever T ∈ Φ(X, Y ). ♦

The set of Fredholm perturbations is denoted by F (X, Y ). In Definition 2.2, if we replace Φ(X, Y ) by Φb(X, Y ) :=
Φ(X, Y ) ∩ L(X, Y ) we obtain the set F b(X, Y ). These classes of operators are introduced and investigated by I.C. Gohberg,
A.S. Markus and I.A. Feldman in [6]. Recently, it is shown in [3] that F b(X, Y ) is a closed subset of L(X, Y ) and if X = Y ,
then F b(X) := F b(X, X) is a closed two-sided ideal of L(X).

The following identity was established in [3, Theorem 2.4].

Lemma 2.1. Let X and Y two Banach spaces. Then

F b(X, Y ) = F (X, Y ). ♦

Definition 2.3. Let X and Y be Banach spaces.

(i) An operator A ∈ L(X, Y ) is said to be weakly compact if A(U ) is relatively weakly compact in X for every bounded
subset U ⊂ X . The family of weakly compact operators from X to Y is denoted by W (X, Y ).

(ii) An operator S ∈ L(X, Y ) is called strictly singular if, for every infinite-dimensional subspace M of X , the restriction of
S to M is not a homeomorphism. The family of strictly singular operators from X to Y is denoted by S(X, Y ).

(iii) An operator S ∈ L(X, Y ) is said to be strictly cosingular if there exists no closed subspace N of Y with codim(N) =
∞ such that πN S : X −→ Y /N is surjective. The family of strictly cosingular operators from X to Y is denoted by
C S(X, Y ). ♦

The concept of strictly singular operators was introduced in the pioneering paper by T. Kato [16] as a generalization of
the notion of compact operators. The class of strictly cosingular operators was introduced by A. Pelczynski [20]. If X = Y ,
the family of weakly compact, strictly singular and strictly cosingular operators on X are denote by W (X) := W (X, X),
S(X) := S(X, X) and C S(X) := C S(X, X) respectively. The three families are closed two-sided ideals of L(X) containing

K(X) (cf. [5–7,27]).

Remark 2.1. (i) If X = Y , we conclude from Lemma 2.1 is that F (X) is a closed two-sided ideals of L(X).
(ii) It follows from [23, Theorem 2.1, p. 167] that we have

K(X, Y ) ⊆ F (X, Y ).

(iii) If X = Y , R(X) is not an ideal (see [4]). In [22], it is proved that F (X) is a largest closed two-sided ideal contained
in R(X). Most of the results on ideal structure deal with the well-known closed ideals which have arisen from applied
work with operators. We can quote, for example, compact operators, weakly compact operators, strictly singular operators
(see [7,12,16]), strictly cosingular operators (see [20,27]). In general, we have

K(X) ⊂ S(X) ⊂ F (X) ⊂ J (X) and K(X) ⊂ C S(X) ⊂ F (X) ⊂ J (X),

where J (X) denotes the set

J (X) = {
F ∈ L(X) such that I − F ∈ Φ(X) and i(I − F ) = 0

}
. ♦

Lemma 2.2. Let A ∈ C(X, Y ). Suppose that there are operators A1 , A2 ∈ L(Y , X), F1 ∈ J (X) and F2 ∈ J (Y ) such that

A1 A = I − F1 on D(A), (2.1)

A A2 = I − F2 on Y . (2.2)

Then A ∈ Φ(X, Y ). ♦

Proof. The proof is similar to that in [13, Theorem 2.1]. �
Lemma 2.3. (See [25, Lemma 2.1].) Let A ∈ C(X) such that ΦA is not empty and n be a positive integer. Then for each λ ∈ ΦA \Φ0(A),
there exists a subspace Vλ dense in X and depending on λ such that for all x ∈ Vλ , R ′

λ(A)x ∈ D(An). ♦

3. Main results

Lemma 3.1. Let A ∈ Φ(X), B ∈ L(X) and F ∈ F (X). Suppose that AB |V = F |V where V is a dense subspace of X . Then B ∈ F (X). ♦
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Proof. Since A ∈ Φ(X), then there exists A0 ∈ L(X) such that A0 A = I − K1 where K1 ∈ K(X). Hence,

A0 AB |V = A0 F |V , (I − K1)B |V = F1|V ,

where F1 ∈ F (X), so we obtain,

B |V = (K1 B + F1)|V .

Now using the fact that the operators B and K1 B + F1 are bounded and the subspace V is dense, we have by continuity
that B = K1 B + F1. Hence, it is clear that B is a Fredholm perturbation. �
Lemma 3.2. Let A ∈ C(X), B ∈ L(X), λ ∈ ΦA \ Φ0(A) and μ ∈ ΦB \ Φ0(B). If there exist a positive integer n and a Fredholm
perturbation F1 , such that B : D(An) −→ D(A) and ABx = B Ax + F1x, for all x ∈ D(An). Then there exists a Fredholm perturbation
F depending analytically on λ and μ such that

R ′
λ(A)R ′

μ(B) = R ′
μ(B)R ′

λ(A) + F . ♦

Proof. Using Lemma 2.3, we infer that there exists a subspace Vλ dense in X such that for all x ∈ Vλ , we have R ′
λ(A)x ∈

D(An).
Now, let x ∈ Vλ , then we have

(λ − A)B R ′
λ(A)x = [

B(λ − A) − F1
]

R ′
λ(A)x = [

B(I − K1) − F1 R ′
λ(A)

]
x,

where K1 ∈ K(X). Set F2 = −F1 R ′
λ(A) ∈ F (X) and F3 = −B K1 + F2 ∈ F (X).

Hence, we get

(λ − A)B R ′
λ(A)x = Bx + F3x.

Moreover, (λ − A)R ′
λ(A)Bx = (I − K1)Bx = Bx − K2x, where K2 = K1 B ∈ K(X).

This make us conclude that

(λ − A)
[

B R ′
λ(A) − R ′

λ(A)B
]
x = (F3 + K2)x

= F4x, (3.1)

where F4 ∈ F (X). In fact Eq. (3.1) holds for all x ∈ Vλ , then the use of Lemma 3.1 make us conclude that

B R ′
λ(A) − R ′

λ(A)B = F5,

where F5 ∈ F (X). On the other hand,

(μ − B)
[

R ′
μ(B)R ′

λ(A) − R ′
λ(A)R ′

μ(B)
] = (I − K3)R ′

λ(A) − (μ − B)R ′
λ(A)R ′

μ(B)

= R ′
λ(A) − K4 − [

R ′
λ(A)(μ − B) + F5

]
R ′

μ(B)

= R ′
λ(A) − K4 − R ′

λ(A)(I − K5) + F6

= −K4 + K6 + F6

= F7

where Ki ∈ K(X) for i = 3,4,5,6 and Fi ∈ F (X) for i = 6,7. Hence,

R ′
μ(B)R ′

λ(A) − R ′
λ(A)R ′

μ(B) = F , where F ∈ F (X).

Therefore

R ′
μ(B)R ′

λ(A) = R ′
λ(A)R ′

μ(B) + F .

Furthermore, the analyticity of F in λ and μ follows from the analyticity of R ′
μ(B) and R ′

λ(A). �
Theorem 3.1. Let A ∈ C(X) and B ∈ L(X). Suppose that there exist a positive integer n and F ∈ F (X) such that B : D(An) −→ D(A)

and ABx = B Ax + F x, for all x ∈ D(An). Then

(i) σe(A + B) ⊆ σe(A) + σe(B).

If σe(A) is empty, then σe(A) + σe(B) is also empty set.

(ii) If in the addition C\σe(A), C\σe(B) and C\σe(A + B) are connected, ρ(A) and ρ(A + B) are nonempty sets, then

σw(A + B) ⊆ σw(A) + σw(B).
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(iii) Moreover, if C\σw(A), C\σw(B) and C\σw(A + B) are connected, ρ(A) and ρ(A + B) are nonempty sets, then

σb(A + B) ⊆ σb(A) + σb(B).

Proof. (i) First, it is clear that the theorem is trivially true if we suppose that σe(A) + σe(B) is the entire complex plane.
Hence, we assume in the next that σe(A) + σe(B) is not the entire plane.

Second, we fix a point γ such that γ /∈ σe(A) + σe(B) and we define the operator A1 as A1 := γ − A. Hence, it is easy
to verify that if λ ∈ σe(B), the element γ − λ will be in ΦA which is equivalent to say that λ ∈ ΦA1 . In the following, we
will find a Cauchy domain D such that R ′

λ(A1) and R ′
λ(B) are analytic on B(D), the boundary of D.

In fact, σe(A) is closed and σe(B) is compact, then there exists an open set U ⊃ σe(B) such that B(U ), the boundary of
U is bounded and when λ ∈ U , (γ − λ) ∈ ΦA .

Therefore σe(B) ⊂ U ⊂ ΦA1 . Using [26, Theorem 3.3], we infer that there exists a bounded Cauchy domain D such that
σe(B) ⊂ D ⊂ U .

Note that Φ0(A1) (resp. Φ0(B)) does not accumulate in ΦA1 (resp. ΦB ), so we can chose D such that R ′
λ(A1) and R ′

λ(B)

are analytic on B(D). We claim also that R ′
λ(A1) is of the form T C(λ) where C(λ) is bounded operator valued analytic

function of λ and T is a fixed bounded operator such that T : X −→ D(A1) = D(A).
Now, let us define the operators M1 and M2 as follows

M1 = − 1

2π i

∫
+B(D)

R ′
λ(A1)R ′

λ(B)dλ

and

M2 = − 1

2π i

∫
+B(D)

R ′
λ(B)R ′

λ(A1)dλ.

In order to prove this assertion, we shall show that γ ∈ ΦA+B , hence, it suffices to find two Fredholm perturbations F1
and F2 such that

(γ − B − A)M1 = I + F1

and

M2(γ − B − A) = I + F2 on D(A).

Now, writing the operator γ − B − A as follows:

(γ − B − A) = (γ − λ − A) + (λ − B) = −(λ − A1) + (λ − B),

we get

(γ − B − A)M1 = − 1

2π i

∫
+B(D)

−(λ − A1)R ′
λ(A1)R ′

λ(B)dλ − 1

2π i

∫
+B(D)

−(λ − B)R ′
λ(A1)R ′

λ(B)dλ. (3.2)

Obviously, (λ − A1)R ′
λ(A1) = I + F where F is a bounded finite rank operator depending analytically on λ. Then the first

integral of the above equality is of the form

− 1

2π i

∫
+B(D)

−(I + F)R ′
λ(B)dλ.

Using [24, Theorem 13], we deduce that

1

2π i

∫
+B(D)

R ′
λ(B)dλ = I + K1,

where K1 ∈ K(X). Moreover, we mention also that
∫
+B(D)

−(I +F)R ′
λ(B)dλ is a compact operator. So, we infer that the first

integral of (3.2) is of the form I + K2, K2 ∈ K(X).
Applying Lemma 3.2, we get

R ′
λ(A1)R ′

λ(B) = R ′
λ(B)R ′

λ(A1) + F ,

where F is a Fredholm perturbation, then the second integral is equal to

− 1

2π i

∫
−(λ − B)R ′

λ(B)R ′
λ(A1)dλ − 1

2π i

∫
(λ − B)F dλ.
+B(D) +B(D)
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Since
∫
+B(D)

R ′
λ(A1)dλ is compact (see [24, Theorem 13]), then a same reasoning as the first part allows us to write

− 1

2π i

∫
+B(D)

−(λ − B)R ′
λ(B)R ′

λ(A1)dλ = I + K3, K3 ∈ K(X).

Using the fact that 1
2π i

∫
+B(D)

(λ − B)F dλ is also a Fredholm perturbation, we have

(γ − B − A)M1 = I + F1, F1 ∈ F (X).

By a similar argument we obtain

M2(γ − B − A) = I + F2, F2 ∈ F (X).

Therefore (γ − B − A) ∈ Φ(X), and we deduce that

σe(A + B) ⊆ σe(A) + σe(B).

(ii) This assertion follows immediately from [1, Theorem 2.1].
(iii) The proof of this assertion holds from [14, Lemma 3.1]. �

Theorem 3.2. Let A ∈ C(X) and B ∈ L(X) ∩ Φ(X). Let B : D(A) −→ D(A) and suppose that there exist F ∈ F (X) such that ABx =
B Ax + F x, for all x ∈ D(A). Then B A is closable and

(i) σe(B A) ⊆ σe(A)σe(B),

σe(AB) ⊆ σe(A)σe(B).

(ii) If in the addition C\σe(B A), C\σe(AB), C\σe(A), C\σe(B) are connected, ρ(A), ρ(B A) and ρ(AB) are nonempty sets, then

σw(B A) ⊆ σw(A)σw(B),

σw(AB) ⊆ σw(A)σw(B).

(iii) Moreover, if C\σw(B A), C\σe(AB), C\σw(A), C\σw(B) are connected, ρ(A), ρ(B A) and ρ(AB) are nonempty sets, then

σb(B A) ⊆ σb(A)σb(B),

σb(AB) ⊆ σb(A)σb(B). ♦

Proof. (i) Since the operator F is bounded and the restriction of the operator AB on D(A) is closable, then B A is closable.
Furthermore it is clear that 0 /∈ σe(B) and σe(B) is not empty, so the theorem is trivially true if σe(A) = C and we will

assume in the next that σe(A) �= C.
Now, let γ a fixed point not in σe(B)σe(A). In what follows, we will show that γ ∈ Φ(B A). Observing that σe(A) is

closed, σe(B) is compact and 0 /∈ σe(B), we infer that there exists an open set U , with bounded boundary B(U ), containing
σe(B) and satisfying that 0 /∈ U and (γ −μA) ∈ Φ(X), ∀μ ∈ U . Let D be a bounded Cauchy domain such that σe(B) ⊂ D ⊆ U .

Writing (γ − μA) as follows

(γ − μA) = μγ

(
1

μ
− 1

γ
A

)
= γ

λ

(
λ − 1

γ
A

)
, λ = 1

μ

and taking D′ the image of D under the map λ = 1
μ , we can assume that R ′

λ(A1) is analytic in λ on B(D′) where A1 := 1
γ A.

This assumption holds true thanks to the fact that ∀μ ∈ D, 1
μ ∈ ΦA1 and the operator R ′

λ(A1) is analytic in λ throughout
ΦA1 except for at most an isolated set having no accumulation in ΦA1 .

Let us define the operators M1 and M2 as follows

M1 = − 1

2π i

∫
+B(D′)

1

γ λ
R ′

λ(A1)R ′
1
λ

(B)dλ

and

M2 = − 1

2π i

∫
+B(D′)

1

γ λ
R ′

1
λ

(B)R ′
λ(A1)dλ.

Since R(M1) ⊂ D(A), the operator (γ − B A)M1 is well defined and we have

(γ − B A)M1 = (γ − B A)M1,
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moreover

(γ − B A) = (γ − Bγ A1) = γ B(λ − A1) − γ λB + γ I = γ B(λ − A1) + γ (I − λB).

Then

(γ − B A)M1 = − 1

2π i

∫
+B(D′)

(
1

λ
B(λ − A1)R ′

λ(A1)R ′
1
λ

(B) +
(

1

λ
− B

)
R ′

λ(A1)R ′
1
λ

(B)

)
dλ.

On the one hand, the first part of the integrand can be written as follows:

∫
+B(D′)

1

λ
B(λ − A1)R ′

λ(A1)R ′
1
λ

(B)dλ =
∫

+B(D′)

1

λ
B
(

I + K1(λ)
)

R ′
1
λ

(B)dλ

=
∫

+B(D′)

1

λ
B R ′

1
λ

(B)dλ + K2

=
∫

+B(D)

1

μ
B R ′

μ(B)dμ + K2.

On the other hand, since 0 /∈ D , hence using [24, Theorems 14.9 and 13] we get

1

2π i

∫
+B(D)

1

μ
B R ′

μ(B)dμ = I + K3,

where Ki ∈ K(X), i = 1,2,3.
Note that the second part of the integrand can be also written as:

∫
+B(D′)

(
1

λ
− B

)
R ′

λ(A1)R ′
1
λ

(B)dλ =
∫

+B(D′)

(
1

λ
− B

)[
R ′

1
λ

(B)R ′
λ(A1) + F1

]
dλ

=
∫

+B(D′)

[
I + K4(λ)

]
R ′

λ(A1)dλ + F2

=
∫

+B(D′)

R ′
λ(A1)dλ + F3,

where K4 ∈ K(X) and Fi ∈ F (X), i = 1,2,3.
We claim that R ′

λ(A1) is analytic in D′ except for at most a finite number of points, then we deduce by Theorem 7.4
in [24] that

1

2π i

∫
+B(D′)

R ′
λ(A1)dλ = K5 ∈ K(X).

Therefore, (γ − B A)M1 = I + F4, where F4 ∈ F (X).
Now, we can easily check that D(B A) ⊆ D(AB) and B Ax = ABx + F x ∀x ∈ D(B A), so

(γ − B A) = γ B(λ − A1) + γ (I − λB) = γ (λ − A1)B + γ (I − λB) + F5,

where F5 ∈ F (X). Hence,

M2(γ − B A) = 1

2π i

∫
+B(D′)

1

γ λ
R ′

1
λ

(B)R ′
λ(A1)

[
γ (λ − A1)B + γ (I − λB) + F5

]
dλ

= − 1

2π i

∫
′

1

λ
R ′

1
λ

(B)(I + K6)B dλ − 1

2π i

∫
′

1

γ λ

(
R ′

λ(A1)R ′
1
λ

(B) − F1
)(

γ (I − λB) + F5
)

dλ
+B(D ) +B(D )
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=
[

1

2π i

∫
+B(D)

1

μ
R ′

μ(B)dμ

]
B + K7 − 1

2π i

∫
+B(D′)

R ′
λ(A1)R ′

1
λ

(B)

(
1

λ
− B

)
dλ + F6

= I + F7 − 1

2π i

∫
+B(D′)

R ′
λ(A1)(I + K8)dλ

= I + F8

where Ki ∈ K(X), i = 6,7 and Fi ∈ F (X), i = 6,7,8.
Therefore, we conclude that (γ − B A) ∈ Φ(X), and the proof of the first inclusion is completed.
Now, to show that σe(AB) ⊆ σe(B)σe(A), we will prove that (γ − AB) ∈ Φ(X).
Since R(M1) ⊂ D(A) and ABx = B Ax − F x, ∀x ∈ D(A), we obtain

(γ − AB)M1 = (γ − B A + F )M1 = (γ − B A)M1 + F M1 = I + F4 + F9 = I + F10,

where Fi ∈ F (X), i = 9,10. Furthermore, we have

M2(γ − AB) = M2
[
γ (λ − A1)B + γ (I − λB)

] = I + F11,

where F11 ∈ F (X). Hence, (γ − AB) ∈ Φ(X) and we deduce that σe(AB) ⊆ σe(A)σe(B).
(ii) The proof of this assertion holds from [1, Theorem 2.1].
(iii) This assertion follows immediately from [14, Lemma 3.1]. �
In the sequel, we give an example to illustrate our obtained results.

Example 3.1. We can give an immediate example to Theorem 3.1 and Theorem 3.2 by introducing the class of Riesz op-
erators. In fact, this class of operators is not generally a closed ideal of L(X), but it is shown in [2] that the sum and
the product of Riesz operators are still Riesz operators if we assume the commutativity modulo K(X). More precisely, if
A, B ∈ R(X) and AB − B A ∈ K(X) then A + B ∈ R(X). Furthermore, if A ∈ R(X), B ∈ L(X) and AB − B A ∈ K(X) then
AB, B A ∈ R(X). Since the essential spectrum of a Riesz operator is reduced to zero, then our results are well satisfied. ♦
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