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Abstract 

Lether, F.G. and P.R. Wenston, The numerical computation of the Voigt function by a corrected midpoint 
quadrature rule for (- co, co), Journal of Computational and Applied Mathematics 34 (1991) 75-92. 

This paper presents a method for computing the Voigt function, through the application of a midpoint 
quadrature rule that has been corrected to accurately integrate a certain class of meromorphic functions. 

Keywords: Complex complementary error function, shifted rectangular quadrature rule, meromorphic function, 
spectral line profile. 

1. Introduction 

The Voigt function 

is of considerable importance in radiative transfer calculations and is frequently encountered in 
spectroscopy, where it describes spectral line profiles due to independent Lorentz and Doppler 
broadening. See [26,27,30]. 

The Voigt function can also be expressed in terms of the complex complementary error 
function: 

I%, Y) = Re[w(z)] 

where z=x+iy and 

w(z) = eCZ2erfc( -iz) 

i me 
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Fig. 1. The Voigt function V(x, y) for 0 Q x, y < 5. 

In this regard see [9-11,19,21,31,33,35], and the discussion in [38]. 
No closed-form evaluation for T/(x, y) is known except for a few special cases such as 

V(x, 0) = exp( -x2) 

and 

v/(0, y) = exp( y’) erfc( y) - ~r-‘/2y-‘, y * 00. 

For (x, y) in the first quadrant, it is known that 0 < V( x, y ) < 1 and for (x, y) bounded away 
from the x-axis [28] 

J%? Y> - 
,-l/2 

Y 

(x2 +y”) ’ 
x2 +y2+ co. 

These relationships are illustrated in Fig. 1, where annotations such as 5.7E-2 are to be 
interpreted as 5.7 X 10p2. 

In the following work it will be assumed that x and y are nonnegative, since the Voigt 
function enjoys the symmetry properties 

V(-x, y) = V(x, y) and -V(x, -y) = V(x, y). 

Considerable effort has been devoted to the numerical calculation of the Voigt function. Much 
of this work appears in the scientific literature. Notable in this regard is the work of the 
following authors: Young [39], Hummer [17], Armstrong [2], Harstad [13], Drayson [5], Pierlussi 
and Vanderwood [29], Karp [20], H ui, Armstrong and Wray [14], Twitty, Rarig and Thompson 
[37], Klim [22], Sulzmann [36], Drummond and Steckner [6] and Humlicek [15,16]. The ap- 
proaches of these authors are varied and make use of such techniques as series expansion, 
rational approximation, and numerical integration. 
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Many of the published methods for computing I’(x, y) partition the first quadrant into two 
or more zones and use a different mathematical technique on each separate zone. These hybrid 
algorithms splice together different approximations and have evolved, in part, because the 
behavior of V(x, y) near the x-axis is radically different from its behavior in the remainder of 
the first quadrant. These problems concerning the calculation of V(x, y) are not surprising, 
since the simple poles of the integrand at x f iy approach the interval of integration in (1.1) as 
y + 0. As noted in [2, Section 3.21, the limiting value I’( x, y) + exp( -x2) as y + 0 is not 
obtained by simply setting y = 0 in the integral (l.l), and serves as an additional warning that 
the numerical computation of V(x, y) is difficult when y is small. 

For our present purposes it is desirable to make the simple change of variable X = x - yu in 
(1.1) and express the Voigt function in the form 

V(x, y) = ;/_rr, “,:‘,;” du. 0.2) 

In contrast to (l.l), the integrand in (1.2) has fixed poles at pi that do not depend on x and y. 
The closed forms given above for k’(x, 0) and I’(O, y) also follow at once from the representa- 
tion (1.2). 

The main purpose of this paper is to show that the Voigt function can be computed accurately 
from (1.2), through the use of a corrected midpoint quadrature rule that takes the poles at ~f~i 
into account. In particular, the form (1.2) will be used in Result 2.5 
following theorem. 

Theorem 1.1. Let g(u) denote twice the even part of the integrand in 

b+) = 

e-(Yu-x)*(l + e-4xYu) 

u*+ 1 

of Section 2 to establish the 

(1.2): 

(I -3) 

Given x >, 0, Y > 0 and stepsize h > 0, with hy* # T, the Voigt function admits the representation 

V(x, Y) = Q(h) + C(h) + E(h) (1.4) 
where the midpoint quadrature sum 

Q(h)=: fg(nh+h/2) 
n=O 

(1.5) 

and the correction term 

i 

2 eY=-x= cos(2xy) i/2 
C(h) = 1+e2*/h 3 Y+vh) 7 

0, y > ( I.r/h)1’2. 

(1.6) 

The error term E(h) in (1.4) satisfies 

IE(h) I G cpw 

where 
0.7) 

v(h) = , ,:7$, , csch[~*/(hY I’]. 0.8) 
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Table 1 
Error bounds (1.8) for E(h) 

t = hy y = 0.01 y=2 y=lO 

h v(h) h cp(h) h v(h) 

1 100 5.91’1o-s : 1.99.10-5 & 6.48.10-6 
; 50 2.05.10-2’ : 4.55. lo-l9 f 1.33.10-‘8 
$ 25 1.87.10-73 f; 3.85.10-71 & 5.11.10-70 
$ F 8.47.10-280 & 1.70.10-277 & 1.01 .10-276 

We note that the choice y = (q/h) ‘I2 has been excluded in the correction term (1.6), because 
cp( h) 4 00 as h -+ 7/y’. The error bound (1.7) shows that (1.4) is capable of high accuracy, since 
csch[T*/( hy)*] = 2 exp( -a2/t2), when t = hy < 1. In Table 1 we tabulate cp( h) for selected 
values of h and y, the product t = hy being constant in each row of Table 1. 

The representation (1.4) is similar to a result of Matta and Reichel [25], who applied a 
corrected trapezoidal rule to (1.1). By extending a theorem of [24] to include a certain class of 
meromorphic functions, we can obtain Matta and Reichel’s representation for V(x, y) in a 
direct manner, and thereby compare the merits of (1.4) with their result. 

Finally, in Section 3 of this paper we develop an algorithm for computing V(x, y) to a 
specified absolute error. For a given value of x and y, the algorithm determines both the stepsize 
h, and the number of terms that must be summed in (1.5) to produce the required accuracy for 
V(x, y). Some numerical results obtained from FORTRAN and TURBO Pascal implementa- 
tions of the pseudocode statement of the algorithm are presented. 

2. Corrected rectangular quadrature rules for V( x, y) 

In this section we use quadrature theory to develop an approximation to the Voigt function 
V(x, y). A family of corrected rectangular quadrature rules is derived for this purpose, and it is 
shown that T/(x, y) can be accurately computed by applying the midpoint rule from this family 
to the integral representation (1.2). 

Consider the numerical approximation of the integral 

by the shifted rectangular approximation [4] 

I(f)- Q<f; h, a> 
where the quadrature sum is given by 

Q(f; h, a)=h $ f(ah+nh) 
n=-cc 

(2-l) 

and the shift (Y E [0, 1) remains at our disposal. 
If f(u) is infinitely differentiable on ( - cc, co) and decreases rapidly to zero as x -+ f co, 

then it is well known [4] that I(f) can be computed to a high accuracy by (2.1), even for 
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relatively large values of the stepsize h > 0. For example [12], if f is the entire function 
f(u) = exp( - u*), then the absolute error in the approximation (2.1) is O(exp( -7*/h*)). Further 
applications and related theory can be found in [8,18,23,32,34]. 

If (2.1) is applied to a meromorphic function having poles near the interval of integration, 
then the rate of convergence of the approximation I(f) = Q( f; a, h) is often unsatisfactory 
when I( f ) must be computed to high accuracy. This is the situation for both (1.1) and (1.2), 
when y + 0. In order to deal with this problem it is helpful to determine a correction term for 

(2.1), C(f; h, a), so that the corrected rectangular approximation 

I(f > = Q(f; h, a) + C(f; h, a> 
is more accurate than (2.1) when f is a member of a certain class of meromorphic functions. We 
also need to understand how the value of the shift (Y influences the numerical properties of the 
corrected rectangular approximation. If possible, we would like to choose (Y so that the 
quadrature sum and correction term have the same sign, in order to avoid the loss of significant 
digits through the subtraction of nearly equal numbers on a digital computer. 

The following theoretical results can be used to develop approximations to V( x, JJ), and also 
provide an abstract setting for solving some related problems that we plan to address in a 
separate paper. 

Definition 2.1. Given s > 0, let q be the infinite strip 

~~={u+iu:-oo~u~oo,O~u~s} 

in the top half of the complex w = u + iv plane. Let AS denote the class of all functions f(w) 
that satisfy the following four conditions: 

(a) f(w) is analytic in the strip YS, except possibly for m poles wi, wZ, . . . , wm in the interior 
of q, with corresponding residues rt, r,, . . . , r,; 

(b) f(w) is real-valued when w is real; 
(c) the integrals I[ 1 f I] and I[ 1 f (u + is) 11 exist; 

(d) max,,,,,] f(u+iu) 1 +O as u--, *cc. 

Note that part (a) of this definition allows for the possibility that f(w) may be analytic in the 
strip S$ In this situation we regard m as zero, and interpret the correcdon term defined in (2.4) 
below as C( f; h, a) = 0. With this understanding the following theorem extends a result of 
Martensen [24] for the error in (2.1), to the case when f has m > 1 poles inside the strip 3. 

Theorem 2.2. Let f E A?, with s > 0, and let 

2 
x(w’ h’ a) = 1 _ exp[ -2Ti(w/h - a)] . (2.2) 

Then 

I(f > = Q<f; h> a) + C(f; h, a> + E(f; h, a), 
where the correction term 

(2.3) 

C(f; h, a) = 27r e Re[iX(w,; h, cx)rk], 
k=l 

(2.4) 
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and the quadrature error 

E(f; h, a) = Re/~~~~;3U(w; h, a)f(w) dw 

has the bound 

1 E(f; h, a) 1 6 
2 e-2Ts’h J/&f; & 

1 _ ,-2m/h 

where 

M(f; s) = lrn 1 f(u + is) 1 du. 
-03 

Proof. The proof of Theorem 2.2 is analogous to the proof of Martensen’s Theorem [24,7], which 
corresponds to the special case when (Y = 0 and m = 0 in our notation. Accordingly, we only 
outline the key modifications necessary when (Y E [0, 1) and f~+@,, with m 2 1. In order to 
preserve the analogy between the current work and [7, proof of Theorem 3.6.11, it is helpful to 
note that the kernel function X in (2.2) can be expressed in the alternate form 

.%?(w; h, ,)=l-icot(nw/h-cr). (2.7) 

There are two essential steps in the proof: 
(i) the derivation of the corrected quadrature sum representation 

h E f(nh+ah)+2T 5 Re[r,cot(awk/h-aT)] 
*=-cc k=l 

= Re 
J 

W+is i cot( Tw/h - cvrr)f( w) dw; 
-m+is 

(ii) the derivation of the integral representation 

/_lf( u) du = Re/::I:f( w) dw + 2~ 5 Re[ir,] . 
k=l 

The representation under (i) is established by applying the residue theorem and the Schwarz 
reflection principle of complex analysis to the integral of f(w) cot( rw/h - a~) about the 
boundary of the strip 

{ u+iu: -cOoou<o9, -S~Ucs) 

obtained by reflecting Sp about the real axis. In a similar manner the representation under (ii) 
follows by an application of the residue theorem to the integral of f(w) about both the strip Ys 
and its conjugate, as detailed in [7]. 

Subtracting the representation under (ii) from that of (i) we obtain 

I(f)=Q(f; h, a)+27 f Re[{i+cot(Tw/h-cr*)}r,] 
k=l 

+ q_y;“,,( 1 - i cot( Tw/h - (YT)}~( w) dw, 

which is equivalent to (2.3) by the alternate representation for X given by (2.7). 
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Finally, the upper bound on E follows directly from (2.2) and (2.9, since the triangle 
inequality yields 

In order to use (2.3) to compute V(x, y), it is helpful to apply Theorem 2.2 to a particular 
family of meromorphic functions that contains the integrands in (1.1) and (1.2). 

Corollary 2.3. Let G be an entire function such that f E A?,, where 

f(u) = 
G(u) 

(u-a)2+b2’ “O. 

Then for s # b, (2.3) holds with correction term 

C(f; h, a) = 
G( a + bi) 1 1 _ ,2nb/h-2n(a/h-n)i ) s T=- b, 

and 
ze-2ns/h 

M(G; s) 
IE(f; hy a) t ’ 1_e-2m,‘h. ,s2_bb2, ’ (2.8) 

Proof. We first consider the determination of the correction term. If 0 < s < b, then m = 0 and 
C( f; h, a) = 0. If s > b, the desired representation for the correction term follows directly from 
(2.2) and (2.4), since m = 1, w1 = a + bi, and the residue r, = G( a + bi)/(2bi). 

To establish the error bound we note that 

1 (u - a + is)2 + b2 1 2 = [(u - a)’ + s2 + b2]’ - 4b2s2 

2 (s2 + b2)2 - 4b2s2 = (s2 - b2)2 

implies that 

I(u-a+is)2+b21 > 1s’ 

The definition of f in the statement 

-b21. 

of Corollary 2.3 and the previous inequality yield 

The required upper bound on E( f; h, a) follows from the previous inequality and (2.6). •I 

In applications of Corollary 2.3, it is worthwhile to compute M(G; s) and then determine a 
value of s that approximately minimizes the right side of the error bound (2.8). For the integrals 
(1.1) and (1.2) it turns out that an approximate minimum of (2.8) is obtained when the factor 
exp( - 21~s/h)M( G; s) in the numerator is minimized at s = q/h and s = T/( hy2), respectively. 

For each of the integral representations (1.1) and (1.2), Corollary 2.3 can be used to derive a 
corrected rectangular rule for the Voigt function of the form 

v(x, Y) = Q<L h, a> + C(f; h, a) + E(f; h, a). (2.9) 
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In view of (2.8) the stepsize h can be chosen so that the approximation, obtained by omitting the 
error term in (2.9), 

k’(x, Y) = Q<.f; h, a) + C(f; h, a> (2.10) 

has a negligible absolute error. (More on this point and the determination of h will be given in 
Section 3.) 

The following two results give explicit forms for (2.9) when Corollary 2.3 is applied to (1.1) 
with s = T/h, and to (1.2) with s = a/(hy2). 

Result 2.4. For the integral representation (1.1) we have 

f(u) = z. exp(-U2) 
(24 -x)’ +y2 

and the corrected rectangular rule (2.9) has positive quadrature sum 

Q(f; h, a) = % E exp -bh +nh)21 [ 
,,_-oo (ah+nh-x)2+y2’ 

In Corollary 2.3, a = x, b =Y, G(U) =Y~T-~ exp( - u2) and M(G; s) =y~-l/~ exp(s2). Taking 
s = r/h in Corollary 2.3 gives for Y # n/h the correction term 

1 

2ey2-x2 Re 
[ 

,-2xyi 

C(f; h, a> = 1 1 _ e2ny/he2n(a-x/h)i 3 
JJ<l 

h’ 

0, y>4 
h’ 

and 

]E(f; h, a) 1 < 271-1’2y 
exp( -q2/h2) 

Iy2--‘/h21 * l-exp(-2r2/h2)’ 

For the formulation in Result 2.4, the numerical evaluation of the right side of (2.10) is subject 
to the loss of significant digits if y is small and x = ah + kh for some integer k. In this situation 
Q<f; k a) + 00 and C(.f; h, a> + - co as y + 0, and an appropriate limiting process must be 
used to compute 

hY 
e-(ah+kh)2 

;’ (ah+kh-x)2+y2 
+ C(.f; h, 4. 

For example, if (Y = 0 and x = 0 we must deal with the difference 

h 2 eyz -- 
=Y e2ry/h _ I 

as y + 0. These subtle numerical difficulties are due to the nature of the integrand in (l-l), and 
are shared by the approximation given for the Voigt function in [25]. In particular, that 
approximation for the Voigt function corresponds to the special case when (Y = 0 in Result 2.4. 
(We remark that the error bound for E( f; h, 0) given by Result 2.4 depends on y, in contrast to 
the uniform error bound stated in [25]. However, the derivation of that bound as given in [3, pp. 
138, 1391 has some apparent technical problems.) 
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Result 2.5. For the integral representation (1.2) we have 

f(u) = 1. exp[-(P-x)*] 
71 u*+ 1 

and the corrected rectangular rule (2.9) has positive quadrature sum 

In Corollary 2.3, a = 0, b = 1, G(u) = 71-l exp[ - ( yu - x)*1 and M( G; s) = y-‘Y1/* exp( y*s*). 
Taking s = T/( hv*) in Corollary 2.3 gives for y # (1~/h)l/* the correction term 

I 2e Y2--x2 Re e2xyi 

C(f; h, a> = 

,], 
1 _ e2n,‘h e2na~ 

y < (;)l’*’ 

0, y> (;)l’*. 

The error satisfies 

IE(f; h> a) I G 

2T-v*y3 exp[ -I’/*] 

1 y4 - ,rr*/h* 1 ’ 1 - exp[ -2T*/(h*y*)] ’ 

In Result 2.5 it is possible to select the shift (Y to avoid the cancellation problems that were 
encountered in Result 2.4 when computing Q( f; h, a) + C( f; h, a) for small y. If we choose 
(Y = : in Result 2.5, then the corresponding midpoint correction term 

I 
2 eY2-x2 cos(2xy) 

C(f; h, :> = 
1 + exp(2T/h) ’ Y+‘*, 

0, Y ’ (;)I’*> 

is positive for the troublesome situation when y is small in (1.2). 
We note that Theorem 1.1 provides a convenient way to state the conclusion in Result 2.5 for 

the important case when cr = i. In Theorem 1.1 we have used the abbreviated notation Q(h), 
C(h) and E(h) in place of the more explicit Q(f; h, i), C(f; h, 4) and E(f; h, 3) of this 
section. The practical application of Theorem 1.1 is considered in the next section, 

3. The computation of the Voigt function 

This section is concerned with the development of an algorithm for the numerical computation 
of I/(x, y), correct to a specified absolute error E. The algorithm is based on the corrected 
midpoint representation (1.4), and the theoretical results given in Theorem 1.1. Attention can be 
restricted to the case x 2 0 and y > 0, since V( -x, r) = V(x, y), V(x, - y) = - V(x, y) and 
V(x, 0) = exp( -x2). 
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In order to apply the results of Theorem 1.1 it is convenient to introduce the Nth partial 
quadrature sum 

Q&,=X f dnh+W) 
n=O 

and define the corresponding trimming error TN(h) by 

T,(h)=; f g(nh+h/2), 
n=N+1 

(3 4 

where g is defined by (1.3). With this notation the corrected midpoint representation (1.4) can be 
written as 

I+, r) = [Q,(h) + C(h)] + T,(h) + E(h). 
Given x 2 0, y > 0 and E > 0, we wi: ;f 

I+, Y) = Q,(h) + C(h) 
satisfies 

I J+, Y) - [Q,(h) + C(h)] I 
It is sufficient to first determine h so tk ia 

IE(h)l & 

and then choose N in order that 

T,(h) < 3~. 

L to determine h and N so that the approximation 

< E. 

1t 

(3.2) 

(3.3) 

Consider the requirement (3.2). In view of (1.7) and (1.8) we can satisfy (3.2) if 

q(h)& 

or if 

G(t) < $E 

where t = hy and 

4(t) = 
2Y1’2y exp( -T2/t2) 

I Y2 - q2/t2 I ’ 1 - [exp( -T’/t’)]’ ’ 

Figure 2 is a plot of the level curves 

-log #(t) = d 

where the number of decimal digits d = 0(1)6, 8(2)18. In Fig. 2 the respective horizontal and 
vertical axes represent t and y, with 0.5 < t < 3.5, lo-l5 <y < 3. (Due to space limitations near 
the vertical y-axis in Fig. 2, the last four level curves corresponding to d = 12(2)18 are not 
labeled.) 

One way to satisfy (3.4) is to solve numerically for the largest positive root t *, of the nonlinear 
equation #(t) = +E and then take h = t */y. This has the advantage of determining the largest 
stepsize h satisfying (3.2), and minimizes the number of terms that need to be summed in QN( h). 
We have devised an iterative numerical method for computing t *, but the resulting algorithm is 
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1.0 1.5 2.0 2.5 3.0 

Fig. 2. Level curves for -log 4(t), 0.5 < t Q 3.5, IO-l5 < y < 3. 

3.5 

2.5 

somewhat involved, particularly for the case when y is very small. This is not surprising in view 
of Fig. 2, due to the nonlinear behavior of I/J(~) near the horizontal t-axis and near the hyperbola 
y = T/f. 

The following naive approach provides a simple, alternative method for determining an 
acceptable, but not necessarily optimal value for h. Starting with some initial stepsize h, and 
positive constant c1 < 1, we set t, = h,y and determine numerically by repeated trials the 
smallest integer k >, 0 such that +( ctt,) < :E, and then take h = c$,/y. In this scheme we have 
found that a reasonable value for the initial stepsize is h, = b, where b is given by (3.7) below. It 
is convenient to take c1 = l/a, this particular choice being exploited below for the efficient 
calculation of 4 ( t). 

Once h has been determined so that (3.2) is satisfied, the following theorem 
determine N so that (3.3) holds. 

Theorem 3.1. Given x 2 0, y > 0, h > 0 and E > 0, let r > 0 satisfy the condition 

e -” < Ar 

can be used to 

(3.6) 
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where 

A = $T&Y. 

Set 
7+x b=- 

Y * 

If N is the smallest positive integer satisfying the condition 

(N+ :)h>b, 

then 

T,(h) -C :E. 

(3.7) 

(34 

Proof. For u 2 x/y it is clear from (1.3) that g(u) is positive and decreasing with 

g( 24) < 2 e-(vu-x)2. 

Since (N + i)h 2 b >, x/y, the comparison of 

T,(h) = i f hg(nh + h/2) 
n=N+l 

with an integral gives 

(3.9) 

By (3.9) we have 

T,(h) & $/,“e -(YU-X)* du = 2 J 
00 e-fz dt_ 

TY 7 

(3.10) 

By [l, inequality 7.1.131 

J 

co 
e -t2 dt < $ 

7 

and (3.10) yields 

the last equality following from (3.6) and the definition of A. 0 

In order to apply Theorem 3.1 we observe that (3.6) will hold for any 7 > r*, where 7* is the 
unique positive root of 

e --T2 = AT. 

The latter equation can be solved numerically by the following fixed-point iteration scheme: 

r0 = f.P2, 

7 n+l =F(r,), n=O, l,... . 
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Here the iteration function is given by 

F(7) = [ -ln(A7)]l’* = UlV2[l _ 5]i’*, 

where u = - ln( A) = - ln( y) - ln( iT&). 
In order to force 7* < r0 = ul’*, so that (3.6) is satisfied, we make the additional assumption 

that y satisfies the inequality 

y G 2/( 71 ee). (3.11) 

(This constraint on y is not overly restrictive, since E +zz 1 in practice.) As a consequence of 
(3.11) we also have A < e-l and u >, 1. Since F’(r) < 0 for r > 0, the fixed-point iterates obey 

r1<r3< **. <7*-C ... <r2<ro. 

Therefore, all of the iterates r2m, m 2 0, satisfy (3.6). 

procedure Voigt(x,y,e.V,xyOK) 

C” + 2/(m) 

Cl t 1142 

cz + z/e7 

xyOK + (0 I x) and (0 < y) and (y 5 co/e) 

If not xyOK then 

v-0 

t&t? 

if y = 0 then 

v + cxp( - x2) 

else 

CT + ln(m/2) 

i + [-In(y) - cJ’2 

b + (7 + X)/Y 

t + by 

while {c2y exp( - Ir’/t’)}/ly’- ?r’/t’l/(l - [exp( - ?/tZ)]2} > t/Z 

t + c,t 

end while 

h + tly 

N - trunc(0.5 + b/h) 

St0 

u + h/2 

for i = 1 to N 

s + s + {[l+exp( -Ixyu)lexp[ - (su-x)‘l]/(u2+1) 

utu+h 

end for 

Q + hS/?r 

if y* < T/h then 

C + {2 exp(y’ - x*)cos(Zxy)}/[l+exp(2?i/h)] 

else 

c-0 

end if 

V+Q+C 

end If 

end if 

end procedure 

Fig. 3. Pseudocode algorithm for computing V(x, y). 
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Table 2 
Precise values for the Voigt function 

X Y V(X, Y) 

1 lo-*’ 0.36787 9441171442 32159 63831 
10 1o-4 0.5728717561645332253612329~10-6 
lO-3 lO-3 0.9988716223 354112471572117 
0 0.25 0.77034 65477 30996 74391 67391 
1 0.5 0.3549003328675778839224455 
5 5 0.5696543988817697896740047.10-’ 
1 10 0.55598319641055371345 93855.10-l 

However, for our purposes it is not very beneficial to do any fixed-point iterations beyond the 
initial guess. Computational experience shows that r0 = u112 > r* provides a simple, reasonably 
accurate approximation to r*. For example, when x = 1, y = 0.5 and E = lo-*’ we have 
~~ = 4.82, while T* = 4.66. We suggest taking T = 7. = u li2 in (3.7). N can then be determined 
from (3.8) with the certainty that (3.3) holds. 

In Fig. 3 we give an informal pseudocode statement of an algorithm for computing V( x, y) to 
a specified absolute error E. If the input arguments x and y do not satisfy the requirements x > 0 
and 0 <<y G 2/( 7 ee), then the algorithm returns zero for v and false for the xy-range status 
indicator xy OK. 

As an aid in verifying the implementation of the pseudocode in a particular computing 
environment, we list some selected values of v(x, y) in Table 2. The values of v(x, y) in Table 
2 are believed to be correct to twenty-five significant digits and were obtained by executing Voigt 
(x, y, E, V, yOK) with E = 0.5 X lo-“, m = 10(10)50. All of these numerical calculations were 
done on a VAX 11/785 computer using Version 4.8 of the VAX FORTRAN compiler and 
REAL * 16, quadruple precision, floating-point arithmetic. Quadruple precision on this machine 
employs (approximately) a 33-decimal digit mantissa, with nonzero numbers having magnitudes 
in the range 0.84 X 1O-4932 to 0.59 X 104932. 

The algorithm in Fig. 3 was also implemented using TURBO Pascal 5.5 on the Dell 210 PC. 
For the fixed choice E = lo-“, we obtained the values listed in Table 3 for the intermediate 
quantities b, h, N, Q(h) and C(h). The Pascal program utilized the extended data type 

Table 3 
Parameter values determined by the Voigt function algorithm for E = lo-l7 

X 

1 

Y 

lo-20 

b 

l.02.102’ 

h 

1.02.1021 

N Q(h) C(h) 

1 6.10.10-29 3.68.10-l 
10 lo-4 1.69. lo5 5.29. lo3 32 5.73.10-7 3.72.10-” 
lo-3 10-3 6.75. lo3 4.22. lo2 16 6.31.10-3 9.93.10-l 
0 0.25 2.53.10’ 1.58 16 7.31.10-l 3.94.10-2 
1 0.5 1.46.10’ 9.09.10-l 16 3.54.10-l 5.10*lo-4 
5 5 2.22 9.80.10-2 23 5.70.10-2 2.8O.lO-2s 
1 10 7.03.10-l 4.40.10-2 16 5.56-10-2 0 
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P + (*/tY 

q + exP(-P) 

r + q2 

while c,yq/{(y’-pl(l-r)} > e/2 

t + c,t 

P + 2P 

q+r 

* + q= 

end while 

Fig. 4. Replacement pseudocode for efficient while-loop 
in Fig. 3. 

a +- exp( - 2hZyZ) 

B + exP(2xyh) 

Y + 4 

6 t 118’ 

G + 1113 

H + exp[ - (hy/2 -x)‘] 

for i = 1 to N 

S + S + H(l+G)/(u*+l) 

utu+h 

G + 6G 

H + yH 

7 + w 

end for 

Fig. 5. Replacement pseudocode for efficient for-loop in 
Fig. 3. 

supported by the 80287 math coprocessor. Floating-point arithmetic in this computing environ- 
ment employs (approximately) a 19-decimal digit mantissa, with nonzero numbers having 
magnitudes in the range from 1.9 X 1O-4951 to 1.1 X 104932. It should be noted that the 
noninteger entries in Table 3 have been rounded to the number of places listed. The intermediate 
values listed in Table 3 may be useful for debugging purposes, if problems are encountered 
during the computer implementation of the pseudocode. 

It is possible to improve the efficiency of the simple algorithm in Fig. 3, by avoiding 
unnecessary evaluations of the exponential function in the while- and for-loops. This gain in 
efficiency can be realized by employing the elementary property exp( nt) = [exp( t)]“, where n in 
our applications will be a positive integer. As explained below, the price for this increased 
efficiency is the somewhat more complicated algorithm obtained by substituting the pseudocode 
in Figs. 4 and 5, for the respective while-loop and for-loop in Fig. 3. 

Consider the evaluations of #( t ) in the while-loop in Fig. 3. Since ci = l/ fi, we have 
exp[ - IT*/( c,t)*] = { exp[ - T2/t 2]}2. This observation is the basis for replacing the three state- 
ments in the while-loop in Fig. 3, by the nine statements in Fig. 4. Only one evaluation of the 
exponential function is required in Fig. 4 to determine a value of t that satisfies (3.4). 

Speeding up the for-loop in Fig. 3 is somewhat more involved. The essential idea is to note 
that g(u) in (1.3) can be expressed as 

g(u) = ffbm + GWl 
u*+1 ’ 

where the functions H(U) = exp[ - ( yu - x)~] and G(U) = exp( - 4xyu) satisfy 

H( u + h) = exp( -h2y2 - 2hy2u + 2xyh)H( U) 

and 

G(u + h) = exp( -4xyh)G(u). 

These later properties yield the recurrence relations 

H[3(2j+ l)h] = [exp(-2hZy2)]’ exp(2xyh)H[+(2j- l)h], j= 1,2,..., 

and 

(3.12) 

G[$(2j+ l)h] =exp(-4xyh)G[i(2j- 1)/r], j= 1, 2,..., 
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0.035 7 

0.005 ( , , I 1 , I 1 / I 
12 3 4 5 6 7 8 9 lo 

Fig. 6. Average execution times: 0 algorithm in Figs. 3-5, A algorithm in [ll]. 

where H( :h) = exp[ -( $Jzv - x)‘] and G( :h) = l/exp(2xyh). We can compute H(u), G(u), and 
consequently g(u), at the required midpoints u = :h, Gh, . . . using only the three seed values 
G(ih), H(ih) and exp( - 2h2y2), of the exponential function. These observations form the basis 
for replacing the four statements in the for-loop in Fig. 3, with the thirteen statements in Fig. 5. 
Unlike Fig 3., only three evaluations of the exponential function are required in Fig. 5 to 
compute the midpoint sum S in the for-loop, for any value of N. 

In order to discuss some timing comparisons, it is convenient to introduce the grid (xi, yj) = 
(A i, &j), i, j= 0, l,... , lOL, of (1OL + 1)2 equally spaced points within the square [O,L] x 

[0, L]. For a fixed value of E, consider the average execution time Av( L) required to evaluate 
Y( x, y) over these grid points. In Fig. 6 we plot the average execution times Av( L), L = 1(0.5)10, 
for both the algorithm specified by Figs. 3-5, with E = 0.5 x lo-“, and Gautschi’s algorithm 
[ll], with V(x, y) = Re w(z). (This particular value of E was employed in the timing comparison 
because Gautschi’s algorithm has a absolute accuracy limited to ten decimal digits.) The average 
execution times shown in Fig. 6 are given in seconds, and were obtained on a Dell 210 PC using 
TURBO Pascal 5.5 and the extended data type supported by the 80287 match coprocessor. It is 
interesting to observe that the crossover point in Fig. 6 occurs near x = 5.33, where Gautchi’s 
algorithm switches over from a Taylor approximation to a Gauss-Hermite approximation for 

w(z). 
Although the algorithm specified in this paper by Figs. 3-5 is designed to compute V( x, y) to 

a specified absolute error E, it can be used in principle to compute V( x, y) to a specified relative 
error 77. To this end we can take E = vl/‘,, where V, is a positive lower bound for Y(x, y). 

Relative error is more appropriate when x is moderately large and y is very small, since as 
noted before V(x, 0) = exp( -x2). For example, if (x, y) = (5.4, lo-“), then Voigt (x, y, E, V, 
y OK) with the ten digit absolute error requirement E = 0.5 x lo-” yields V= 2.3047 X 10-12. 
For ten significant digits we require 11 = 0.5 x 10-r’. Taking V, = 2 x lo-l2 and E = 0.5 X 

10-‘“Vo = 1O-22 in Voigt (x, y, E, V, yOK) now yields 

I’= 2.2608 44498 419 X lo-‘* 



91 F.G. Lether, P.R. Wenston / Computation of the Voigt function 

in comparison with the exact value 

I’= 2.2608 44498 40791 39470 84105 x lo-‘*. 

In conjunction with this example it is interesting to note that the double precision complex 
FORTRAN function ZERFE, for computing W(Z) in the IMSL SFUN library, gives the 
approximation V = 2.0440 X lo-‘* for V(x, _v) = Re W(Z). ZERFE appears to be a translation 
of Gautschi’s algorithm [ll] and is accordingly limited to a fixed absolute error E = 0.5 x 10P”. 
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