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1. INTRODUCTI~IV 

In 1957 Smith [3] considered some generalizations of the twin prime 
problem. He considered problems like the double twin primes, i.e., 

Are u, a + 2, u + 6, u + 8 all primes for infinitely many a? 

and problems concerning maximum occurrences of primes in intervals of 
fixed length like 

Can a length of 36 yield 11 primes infinitely often? 

A positive answer to either of these implies the twin prime conjecture 
but not vice versa. A positive answer to the second of these conjectures 
implies the first. Only 12 instances of the first occur with u < 10,000, 
while only three occurrences of the second conjecture exist in the primes 
~lO,OOO,OOO. (All of these three solutions are trivial in that the smallest 
prime is < 11.) 

In this paper we wish to consider analogous results related to the 
Gaussian primes. 

DEFINITION. A statement concerning a set of Gaussian primes is called 
“local” if the maximum distance between any two of the primes in the set 
is GM, where M is independent of the absolute value of the primes in 
the set. 

Some local conditions on Gaussian primes were discussed by Sierpinski 
[2] and Holben and Jordan [l]. 

Some examples of these local conditions are 

(1) yZ - y1 = 2 (Sierpinski twin), 
(2) ys - yZ = yZ - y1 = 2 (Sierpinski triplet), 
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(3) I ~2 - yl I = (2)1/2 (H. and J. twin), 

(4) ~3 - 72 = ~2 - yl and I y2 - yl I = (2)1/2 (H. and J. triplet), 

(5) 1’4 - ~3 = y3 - y2 = y2 - yl and 1 y2 - yl 1 = (2)1/2 (quad- 
ruplets), 

(6) YY - y4 = y4 - y3 = y3 - y2 = y2 - yland ly2 - yz I = (2)ljz 
(quintuplets). 

The question concerning the infinitude of each of the formations l-6 
is of interest and is closely related to the twin prime problems. 

The infinitude of formations l-5 is unsettled, but it is shown in [1] 
that there are only finitely many formations of type 6 (since 2 + i divides 
at least one of the y$). 

Since Gaussian integers form a two-dimensional set, while real integers 
are only one-dimensional, it will be useful to consider the placement of 
these formations rather than just the diameter of the expression. Further, 
since the Gaussian primes are symmetric with respect to both axes, the 
origin, and the lines x = y and x = -y, when we discuss a formation 
we will also be talking about its rotations and reflections. 

DEFINITION. A set of odd Gaussian integers, S, is checker-move con- 
nected if for any two CX, F in S there is a finite sequence P = {aI , a2 ,..., an} 
of odd Gaussian integers such that 

and P C S. Note that P might be the null set. 
Formations I and 2 are not checker-move connected, but formations 3-6 

are checker-move connected. 
In this paper we will consider checker-move connected sets that could 

possibly be composed of Gaussian primes. We will exhibit all of the sets 
with eight or fewer elements that would fall in this category and give some 
examples of sets containing as many as 48 elements. 

2. FORMATIONS WITH Two, THREE, OR FOUR ELEMENTS 

Any checker-move connected set with four or fewer elements could be 
a possible prime formation. There are only five sets with four elements 
and they are shown in Fig. 1. Part a of Fig. 1 is formation 5 and contains 
formations 3 and 4 as subsets. Examples of each type are numerous. 
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FIGURE 1 

Formations of Gaussian primes with rather large absolute value 
exhibiting each type are 

(a) 956 + 721 i, 957 + 722 i, 958 + 723 i, 959 + 724 I’, 

(b) 950 + 933 i, 951 j- 934 i, 952 + 933 i, 953 + 932 i, 

(c) 944 + 861 i, 945 + 862 i, 946 + 861 i, 947 + 862 i, 

(d) 949 + 950 i, 950 + 949 i, 950 + 951 i, 951 + 950 i, 
(e) 923 + 880 i, 923 + 882 i, 924 + 881 i, 925 + 882 i. 

Prime formations of types b, c, and e seem significantly more numerous 
than those of forms a and d. 

FIGURE 2 

FIGURE 3 
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3. FORMATIONS WITH FIVE ELEMENTS 

As was mentioned above, there are only a finite number of sets of 
Gaussian primes satisfying type 6 since 2 + i must be a factor of one of 
those five numbers. It was shown in [1] there are only finitely many sets 
of Gaussian primes appearing as b of Fig. 2. Other formations with only 
a finite number of Gaussian prime occurrences are exhibited in Fig. 2, 
Figure 3 exhibits those formations that could possibly have an infinite 
number of sets of Gaussian primes satisfying these conditions. 

Examples of the existence of at least one set of Gaussian primes satis- 
fying each of the formations of Fig. 3 can be found as subsets of the 
groups of checker-move connected primes of Fig. 5. 

4. FORMATIONS WITH MORE THAN FIVE ELEMENTS 

There are 12 formations with six elements for which there could be 
infinitely many sets of Gaussian primes satisfying the conditions. Examples 
of at least one set of Gaussian primes satisfying the conditions are found 

FIGURE 4 
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FIGURE 5 

as subsets of the checker-move connected set of Gaussian primes exhibited 
in Fig. 5. 

There are 20 formations with seven elements for which there could 
be infinitely many sets of Gaussian primes satisfying the conditions. 
Nontrivial examples of each of these can be found as subsets of formations 
in Fig. 5. 

There are 33 formations with eight elements for which there could be 
infinitely many sets of Gaussian primes satisfying the condition. For 
20 of these there are nontrivial examples given as subsets of sets in Fig. 5. 
For the rest there are only trivial examples or no examples at all. We 
exhibit these forms in Fig. 4. It would be nice if at least one nontrivial 
example could be found for each one. 

Formations with more than eight elements that may possibly have 
infinitely many sets of Gaussian primes that fill the condition can be seen 
as subsets of the examples of Figs. fj-8. 

The maximum number of elements in a formation of checker-move 
connected sets that could have infinitely many sets of Gaussian primes 
satisfying the conditions would be 48. 
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FIGURE 6 
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5. DOUBLY CONNECTED SETS AND CONSTELLATIONS 

DEFINITION. A checker-move set, D, is said to be doubly connected 
if for each ati in D, D - {ai] is a checker-move connected set. 

Figures Id and 4e are doubly connected sets. 

DEFINITION. By a constellation we mean a doubly connected set with 
connected appendages. 

Constellations of primes are very few, and the only nontrivial ones we 
know exist are in Fig. ld. 

Figure 6 indicates the constellations that are associated with the doubly 
connected set 4e. 

Figure 7 indicates the numerous constellations that are associated 
with the great doubly connected set. 

Figure 6 is a constellation that could be all Gaussian primes. 
Tn Fig. 7, if any one of the circled points and any one of the diamond 

encIosed points is eliminated judiciously so as not to separate the checker- 
move connected set, a checker-move connected set with 48 elements 
remains. There is no reason why all 48 of these points could not be 
Gaussian primes. Notice that if the elimination is done carefully, there 
will be a constellation of 48 points left. At least one each of the circled 
and square enclosed points must be removed in order for this formation 
possibly to be all primes. The reason that at least two points must be 
eliminated can be seen by considering a complete residue systems module 
5 + 2i and 5 - 2i. 

There are no other constellations that could possibly all be Gaussian 
primes infinitely often. A sort of maximal conjecture for checker-move 
connected sets is 

CO~&YYUW 1. There are infinitely many sets of 48 Gaussian primes 
that form a giant constellation (as exhibited in Fig. 7). 

And shghtly weaker is 

Conjecture 2. There are infinitely many sets of 48 Gaussian primes 
that form a checker-move connected set. 

There are no known examples outside the vicinity of the origin where 
a set of 96 Gaussian primes forms a checker-move connected set sur- 
rounding the origin. 

6. DIAMETER 

DEFINITION. The diameter of a checker-move connected set ,S is 
max{/ a - fi 11 for a, /3 in S. 
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The diameter of the checker-move connected set of Fig. la is 3(2)1/z, 
that of Fig. ld is 2, that of Fig. 4c is (50)112, and that of Fig. 7 is (386)V2. 

The question suggested is, what is the checker-move connected set of 
greatest diameter that could possibly have every element a Gaussian 
prime ? 

The result is that every set of Gaussian primes that are checker-move 
connected would have diameter <2(197)1/2. 

The 45 points forming a checker-move connected set exhibited in 
Fig. 8 has diameter 2(197)1/2. No checker-move connected set of greater 
diameter could possibly be a Gaussian prime. 

This leads to the fairly strong 

Conjecture 3. There is a set of 45 Gaussian primes that is a checker- 
move connected set forming the “great bird” formation exhibited in 
Fig. 8. 

Or somewhat weaker is 

Conjecture 4. There is a set of Gaussian primes that form a checker- 
move connected set that has diameter 2(197)l12. 

Of course Conjectures 3 and 4 can be strengthened to assert that there 
are infinitely many sets of Gaussian primes satisfying the conditions. 

Outside the region of the origin the connected set of Gaussian primes 
with the greatest diameter is exhibited in Fig. 5b; the length of these 
12 primes is 10. The diameter of the checker-move connected set that 
surrounds the origin is 2(137)llz. 

7. RFMARKS 

The smaller formations can be generated inductively just by attaching 
one more spot a checker-move away from an acceptable previous forma- 
tion and then checking divisibility conditions. This we did up to eight. 
For the larger formations we first considered the reduced residue system 
modulo 15 + 15i = (1 + i)(2 + i)(2 - i)3 and found irmnite strings that 
were checker-move connected. When we tried the reduced residue system 
modulo 195 + 195i = (1 + i)(2 + i)(2 - i) 3(3 + 2i)(3 - 2i), we found 
we had eliminated all in&rite sets of checker-move connected sets. 

The larger strings that remained were a bigger bird with 71 elements, 
the 50-point constellation, and a 51-point string (a nonsymmetric bird). 
When introducing the primes 4 + i and 4 - i, the 51-point string was 
shattered into much smaller strings, the 50-point constellation was 
unchanged, and the 7l-element bird had its wings trimmed-one shorter 
than the other. When 5 + 2i and 5 - 2i were introduced, the wings of 
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the big bird were trimmed to symmetry, as pictured in Fig. 8, and some 
points on the 50-point constellation need to be eliminated. None of the 
primes 6 & i, 5 & 4i had any effect. All other primes have norms greater 
than 48 so at least one of their residue classes will leave the two objects 
unchanged. 

In summary, the results can be seen by examining the 

3835533169510400 elements 

of the reduced residue system of 

145 836 795 + 145836795i 
= (1 + i)(2 + i)(2 - i) 3(3 + 2i)(3 - 2i)(4 + i)(4 - i)(5 + 2i)(5 - 2i) 

x (6 + i)(6 - i)(5 + 4i)(5 - 4i). 
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