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Abstract

In this paper we give a new proof for the classification of irreducible modules of a Hecke algebra of type
A, _1, which was obtained by Dipper and James in 1986.
© 2008 Elsevier Inc. All rights reserved.
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Let H be the Hecke algebra of the symmetric group S, over a commutative ring K with an
invertible parameter ¢ € K. In [DJ] Dipper and James worked out a classification of irreducible
modules of H when K is a field, which is similar to the classification of irreducible S, -modules
over a field [J]. In this paper we shall give a new proof for the classification of Dipper and James.
Essentially the idea is due to Dipper and James, Murphy [DJ,M], but we use Kazhdan—Lusztig
theory and an affine Hecke algebra of type A,_; to prove this result by a direct calculation.

As usual, the simple reflections of S, consisting of the transposes s; = (i,i + 1) for i =
1,2,...,n — 1. As a free K-module, the Hecke algebra H has a basis Ty,, w € S, and the
multiplication is defined by the relations (75 — q)(Ty + 1) =0 if s is a simple reflection, T, T, =
Ty if l(wu) =1(w) +1(u), here [ : S, — N is the length function.

Foreachpartition A = (Aq,..., A) of m,set Ij = {A+---+A; 1+ 1, A+ +Aj 1 +2,...,
A4+ Ajo1+Aj)for 1 < j <k (we understand Ag = 0). Let S), be the subgroup of S, con-
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sisting of elements stabilizing each I;. Then S is a parabolic subgroup of S, and is isomorphic
to Sy, X Sy, X -+ x §y,. We shall denote by w the longest element of S. Set C;, = Zwe& Tw.
Following [KL] and [DJ,M] we consider the left ideal N, = HC) of H and shall regard it as a
left H-module. Let N, be a maximal submodule of Ny, including Ny N ,_;, HC, H and not
containing C;.. Then the quotient module M) = N, /N is an irreducible module of H. Assume
that K is a field, then each irreducible module of H is isomorphic to some M, (see [KL, proof
of Theorem 1.4] or [DJ,M]). When ), es, ql (w) # 0, the irreducible modules M;, A a partition
of n, form a complete set of irreducible modules of H (see [DJ,G,M], when ¢ is not a root of 1,
this result was implied in [L]).
One of the main results in [DJ] is the following.

Theorem. Assume that K is a field. Then

(a) the set {M, | C, M, # 0} is a complete set of irreducible modules of H.
(b) CaM; # 0 if and only if Z’a":()q“ #0 for all 1 < m < max{A; — A3, A2 — A3, ...,
A—1 — M, Ax}. (See [DI, Theorems 6.3(1), 6.8(i) and 7.6] or [M, Theorems 6.4 and 6.9].)

Now we argue for the theorem. For each module E we can attach a partition A = p(E)
as follows, C,E # 0 but C,E = 0 for all partitions p satisfying p > A. (We say that u =
(1,2, o) 2= A, ) if g+ pi A+ A fori=1,2,...)

Consider the two-sided ideal F; = HC;, H of H. According to the proof of Theorem 1.4
in [KL], F)./(F, N Z;»A F,,) is isomorphic to the direct sum of some copies of E; = N, /(N N
Z,u>)\ FM)'

Let E; be the sum of all submodules E of Ej satisfying CyE = 0. We claim that either
E} = E, or E| is the unique maximal submodule of E.

Let D be a submodule of E; such that C, D # 0. For any h € H we have C,hC) € aC) +
Z;»A F,, here a € K [KL]. Thus C; D # 0 implies that D = E, . Therefore E; = E) or E; is
the unique maximal submodule of E;. As a consequence, M, = E, /E i if C; E; # 0 and in this
case C, M, # 0.

Now assume that L is an irreducible H-module such that C; L # 0 but C,, L =0 forall u > A.
Let x € L be such that Cyx # 0. Consider the H-module homomorphism N, — L, C, — Cjx.
By assumption, F, L =0 if u > A. Thus we get a non-zero homomorphism Ej; — L. We must
have Cy Ej # 0 since C) L # 0. So L is isomorphic to M, . Noting that Cy, E; # 0 implies that
w < A [KL] we see that if A # u then M, is not isomorphic to M, when C; M; #0# C,,M,,.
Part (a) is proved.

To prove part (b) we need to calculate C, HC,. This is equivalent to calculate all C, Ty, C,.
Clearly if w € Sy, then T,,C, = ql @)y, So we only need to consider the element of minimal
length in a double coset S, wS,. Now the affine Hecke algebra plays a role in calculating the
product C), T, C;..

Let G be the special linear group SL,(C) and let 7" be the subgroup of G consisting of
diagonal matrices. Let X = Hom(7', C*) be the character group of T. Let 7; € X be the char-

acter T — C, diag(ay, a2, ...,a,) — a;. Then we have 7172---7, = 1 and as a free abelian
group X is generated by 7;,i =1,2,...,n — 1. The symmetric group §n acts on X natlirally:
w:X — X, 7, > Ty(). Thus we can form the semi-direct product S, = S x X. In S, we

have wt; = tyyw for w in S,. Let 5o = 17121:2~-~r,~ -+-T,_18, where s € S, is the transpose

(1,n) = 8182+ Sp—_28—18,—2 -+ - 8281. Since 7172 --- T, = 1 we have sg = 1. The simple reflec-
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tions sg, S1,...,S,—1 generate a subgroup W of S',,, which is a Coxeter group of type An 1-
Define w = 715152+ -s,—1. Then ©" = 1 and ws; = s;j4jw for all i (we set Sp = so). Let 2
be the subgroup of Sn generated by . Note that W is a normal subgroup of S, and we have
S,, = 2 x W. The Hecke algebra H of S,, is defined as follows. As a K-module, it is free and
has a basis consisting of elements T}, w € S,. The multiplication is defined by the relations
(T, — q)(Ty; + 1) =0 for all i and T,,T, = Ty, if [(wu) = I(w) + I(u). The length function
l: Sn — N is defined as [ (w%w) = l(w) for w € W. Clearly H is a subalgebra of H.

For 1 <i <n—1, define o'l =T1172---T;. Then we have s;0; = ojs; if i and j are different.
Moreover we have [(wo []/_; a”‘) =1(wo) + X i, ! a;1(0;) if all a; are non-negative integers.
Here wy is the longest element of §,,. Also we have [(0;s;) =1(0;) — 1 if and only if i = j.

Thus we have Ty, TUJ. = Taj T, if1<i#j<n—1land Ty, =Ty, Ty, .

For a positive integer k we set [k] = qk_1 +qk_2 +---4q+ 1, [k]' = [k][k —1]---[2][1], we
also set [0] = [0]! = 1. For any element w € S',, we set Cyy = Zygw Py w(q)Ty, where < is the
Bruhat order and Py, is the Kazhdan-Lusztig polynomial. Note that if w is a longest element
of a parabolic subgroup of S’,,, then Cy, =)
to prove part (b) of the theorem.

y<w Ty. So we have Cy = Cy, . Now we are ready

Lemma 1. Let A = (i, 1, ..., 1) be a partition of n and z € S, such that for any simple reflection
s, sz < zifand only if s = s; and zs < z if and only if s = s;. Then

CiT:Cre 2q*li — j— 1ICp+ Y Fy,
v

for some j < i — 1, where * stands for an integer, p = (i, j + 1,1, ..., 1), the summation runs
throughv=>G+m,j+1—m,1,....D)>upuforj+1>2m=1.

Proof. Since for any simple reflection s, if sz < z or zs < z then we have s = s;, we can find
Jj <i — 1 such that

Z=(8iSi—1 - Si—j)(Sit18i -+ Simjt1)  (Sitj—1Si+j—2"$i—1)(SitjSitj—1"""8i).

It is no harm to assume n =i + j + 1.

Note that
07 =& (Sn—iSn—i—1 51 (Snit1Sn—i =+ 52) =+ (Sp—1Sp—2 "+~ 57).
Let y= (Si—j—1Si—j---8i—1)---(5283---85j42)(s152---5j41). Since n =i + j + 1 we have
z=yw 'o; and l(o,) =1(y~ Y +1(2) (we understand that y =e if j =i — 1). Thus we have
G, T,C). = C;LT T, TmC;L Noting that C;L = q_l(y)CA and C, Ty, = Ty, C;,, we get

CoT,C.=q 'O C T, T, Coo =g 'O T, T C T, Co T,
Let w = o'wyw . Then w’ is the longest element of the subgroup of S, generated by
Sit1,Si42, ..., Siti_1. Let k=i —j —2,then2i — 1=k +i+ j+ 1. We have w’ = uwy
for some u and I(w’) = I(u) + I(wg), where wy is the longest element of the subgroup Wy of
S, generated by s, s2,...,8¢ if k > 1 and wy = e is the neutral element if kK = —1 or 0. We
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also have u = u'u; | for some u’ and [(u) = 1(u’) + l(u;+1), where u;4; is the longest ele-
ment of the subgroup of U;41 of S, generated by s;41,...,si+; = sy—1. Set C; = Cyy. Then
C,’\ = ch;CAT;i = hCy, ,Cy, for some h in H, where Cy,, is the sum of all T, x € U;11, and
Cyy is the sum of all Ty, x € W;. Clearly we have Cy, Cy = [k + 1]!Cy and Cy,;,,Cy = Cy.
Therefore C; C). = [k + 1]1hC,,. Note that uwj; = u'u;yywy = u'w, is in the subgroup of S,
generated by s,, p # i. The subgroup is isomorphic to the symmetric group S,. Applying the
Robinson—Schensted rule we see that uw, and w,, are in the same left cell. (See [A] for an ex-
position of Robinson—Schensted rule. One may see this fact also from star operations introduced
in [KL].) Write C; Cy = »_a,C,, then clearly a,,, = [k + 1]!. Since T,, and T\, are invert-
ible, we see that in the expression C, T;Cy = Y _ b, Cy, by € K, there exists x such that b, # 0,
x and w,, are in the same two-sided cell. Since z = 77! and wy, = w;l, by the symmetry we
see that x and w,, are in the same left cell and right cell as well. So we must have x = w,, (see
[KL, proof of Theorem 1.4]). Moreover we must have b, = +q“[k + 1]! for some integer a. If
by # 0 and v # w,,, we must have C, € F, for some v > 1. We claim that for such v we have
v=>G+m,j+1—m,1,...,1) for some m > 1. Since C, T,C), is contained in the subalgebra
of H generated by T, ..., Ty, ;, we may assume that n =i + j + 1. In this case we must have
v=(i+m, j+1—m)forsomem > 1since u = (i, j+ 1) and v > . The lemma is proved. O

Remark. The author has not been able to determine the integer * in the lemma.

Corollary 2. Let A = (i, j) be a partition of n. That is i > j and i + j = n. Then for any z in S,
we have

CiT.Cr e i = 1N fCr+ Y Fu,
>

where f € K.

Proof. Since C),C) =[i]![j]!C) and T, C) = C,. Ty = qC,, if s # i in S,,, we may assume that 7 =
(SiSi—1--+Si—k) - (Si4kSi+k—1---5i), where k < j — 1 <i — 1. Note that C) = Cwi—lcuiﬂ =
Cu;, Cu,;_, (see the proof of Lemma 1 for the definition of w; and u;). We have C,T,C) =
CuipCu;_ T:Cy;_, Cyy,, - By Lemma 1 we get Cy,_ T;Cyy,_; € 2q*[i —k — 1]!Coy_ywyyy 0y +
>, Fu, where w;4 4k is the longest element of the subgroup of Wiy ;4 of S, generated by
Sit1, .-+, Sit+k, and v runs through the partitions (i +m,k+1—m,1,..., 1), k+1>m > 1.

We have Cy,, Cu,,, ;1 Cuiyy = [k + 11[j1!Cy,,,. We also have CoT.C; C ) 5, F, and
Cu FuCyyyy C ZM>V F, for any v. If w > A and p > (i + m,...) for some m > 1, we
must have u > L. So C), T,C; € £q*[i —k — 1]'[k + 1]![J1!Cy + ZMM F,.Since [i —k—1]!=
[i —jIi —j+1]---[i —k — 1], the corollary follows. O

Lemma 3. Let .. = (A1, A2, ..., Ak) be a partition of n. Then

k
CiT.Cs. € (]‘[[A,- —,\H]]!)fcx +Y  Fu.

i=1 w>Ai

where f € K and we set Ay+1 =0.
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Proof. We use induction on k. When k = 1, the lemma is trivial, when k£ = 2, by Corollary 2 we
see the assertion is true. Now assume that k > 2. Fori < j wesetA; j = A; +---+ A;. We have
(see the proof of Corollary 2 for the definition of wg;,)

/
Wi = Wy, -1 w}»]ﬁ»l,)\],zfl e w)\l,k71+],)»1_k71 =Wir—-1w .

Let z = xz1y, where x, y are in the subgroup of S, generated by s;, i # A1, and I(s;z1) =
I(z18;) =1(z1) + 1 if i £ Aq. Write x = x1x2 and y = y;y», where x1, y; are in the subgroup
Wy, -1 of S, generated by sy, ..., s),—1 and x2, y, are in the subgroup U}, 41 of S, generated by

Shi41s -+ s Sn—1-
We have T,,C;. = C,. T, = ¢'™ = ¢'®™¢C; for u = x1, y; and TuCuy,, = Cuy, Ty for u =
X2, ¥2. Note that C), = CwAHer = Cw/Cw)\l—l . Thus

GG = ql(lel(yl)Cw’sz Cwl—l Iy thﬂ Ty, Cuy.
If z; = e, then
C,T.C5. = ql(x1)+l(y1)[)hl]!ch171Cw/szyZCw,.

We are reduced to the case k — 1.
Now assume that z; # e. By Lemma 1 we know that

kal—] T kal—] € iq*[)‘l —Jj- l]Cuul—lwx]+|,xl+j + ZFV’

v

where j < A1 — 1 is defined by
21 = SAySay—1 " SA —jSA 4+1Shy = SA —j+1 " Shy i Sh+j—1 " Saps

and v runs through the partitions (A1 +m, j+1—m,1,..., 1), j+1>2m>1.

Note that both C,T:Cy. and Cyy Ty, Cuy _yw;, 414,45 Ty, Cur are contained in > >y Fu and
Cy Ty, F,Ty,Cy C Zp,}v F; for any v. Whenever © > A and u > (A1 +m, ...) forsomem > 1,
we must have p > A. Thus we have

CATZCA € iq*[)‘l —Jj- 1]!Cw/TX2CwA1—lwkl+l,xl+_j Tysz' + Z F,,
w>Ar

where * stands for an integer. Let 7 = (Ay,j + 1,1,...,1). Then wy,jwx, 1134 =
we. Note that Cu, yw, 11,4 = Cau—1Cu; 4y, - I 2 Ao, then <t £ A, SO
Cur Ty Cusy,_ywy, 41,4 Tyo Cur 1s contained in (30,55 F) N (X0 Fu) € 3,05 Fu. We are
done in this case.

Now assume that j <A, —1.Then Ay —j — 1> XA — Az and

CWAI—ITZICWAI—I S _)‘2]!flcwxl—1wxl+|,;\1+j + ZFV

Vv
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for some f; € K, where v runs through the partitions (A1 +m, j+1—m,1,...,1), j+ 12>
> 1. Thus we have

CiT:Cy € [h — 221! f1Cuy, Cor Ty Cuy 114 Ty Cur + Z Cur Ty Fy Ty, Copr.

v

Note that xp, w’, y;, Wy, +1,%,+; are all in the subgroup of S, generated by s;, A +1<i<n—1
and C,y Ty, F,Ty,Cyy is included in ZM%A Foifv=Qi1+m,j+1—-—m,1,..., 1) for some
> 1. By induction hypothesis, we see the lemma is true. O

Lemma 4. Let A be as in Lemma 3. Recallthat Ay j =X +A2+---+Ajfor j=1,2,... k. Set

Zi = (S)\L,'S)»]','—l o 'S)\|y,'—)xi+]+1) oo (s)u]';+1—ls)\|,i+]—2 ot 'S)lei)a

fori=1,2,...,k— 1. Define
|( Zk— 2 1)(TZk zTZk 2TZk |) ( Tzz"'TZk—1)~

Then C;hC) € £q* ]_[f;l([)»,» — Ai+1]!)iCA + F-j, where x stands for an integer and F-) =

ZM>A FM'

Proof. Set u; = Cw)‘l,i—l"'lv}‘l.i_l (we understand that A1 o = 0) and h; = T;;. Then C), =
uiuy - -ug, uiuj = uju; for all i, j, and w;hj = hju; if i < j. For h',h” € H and F C H,
we write i’ =h" + F if ' — h” € F. Using Lemma 1 repeatedly we get
CahCy = ug (uk—1hik—1) (k—2hg—2hk—1) - -
X (uzhahs -« -hi—1)urhiuihouy - - hg—jug—1ug
=+q"[M — Al lug (uk—1hg—1) g—2hk—2hg—1) - -
X (ughahs -« -hg—1)ujuzhous - - - hg—1up—1uk + F=
=2q™ A1 — Aa)lugug (up—1hg—1) (ug—2he—2hg—1) -
X (uphohs -« - hg—1)uzhouy - - hg—jug—jug + F>y
=3¢ A1 — A2)!A2 — Aslluyug (ug—1hk—1) (ug—2hg—2hk—1) - -
X (ughahs -« - hp—1)upuzhsus - - - hg_jug—1ug + Fs)
= +q*[h1 — 22]!([A2 — /\3]!)2uluzuk(uk—lhk—l)(uk—zhk—zhk—l) a

X (uzhs -~ - hg—1)?ushzus - - hg—yug—ug + F=y,

k
H (4 =71 1) G+ Fose D

Combining Lemmas 3 and 4 we see that part (b) of the theorem is true. The theorem is proved.
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If Y e s, q'™) =0 and K is an algebraic closed field of characteristic 0, then we have the

Deligne-Langlands—Lusztig classification for irreducible modules of H (see [BZ,Z,KL1,X]). We
have another classification due to Ariki and Mathas for any sufficient large K (see [AM]). An
interesting question is to classify irreducible modules of H in the spirit of Deligne—Langlands—
Lusztig classification when ", s, ¢'™ =0, see [Gr] for an announcement. If one can manage

the calculation C; HC;, to get counterparts of Lemmas 3 and 4, the question will be settled.
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