A new proof for classification of irreducible modules of a Hecke algebra of type A_{n-1}

Nanhua Xi ${ }^{1}$
Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
Received 22 February 2008
Available online 6 September 2008
Communicated by Andrew Mathas and Jean Michel
Dedicated to Gus Lehrer on the occasion of his 60th birthday

Abstract

In this paper we give a new proof for the classification of irreducible modules of a Hecke algebra of type A_{n-1}, which was obtained by Dipper and James in 1986. © 2008 Elsevier Inc. All rights reserved.

Keywords: Hecke algebra of symmetric group; Classification of irreducible modules

Let H be the Hecke algebra of the symmetric group S_{n} over a commutative ring K with an invertible parameter $q \in K$. In [DJ] Dipper and James worked out a classification of irreducible modules of H when K is a field, which is similar to the classification of irreducible S_{n}-modules over a field [J]. In this paper we shall give a new proof for the classification of Dipper and James. Essentially the idea is due to Dipper and James, Murphy [DJ,M], but we use Kazhdan-Lusztig theory and an affine Hecke algebra of type \tilde{A}_{n-1} to prove this result by a direct calculation.

As usual, the simple reflections of S_{n} consisting of the transposes $s_{i}=(i, i+1)$ for $i=$ $1,2, \ldots, n-1$. As a free K-module, the Hecke algebra H has a basis $T_{w}, w \in S_{n}$, and the multiplication is defined by the relations $\left(T_{s}-q\right)\left(T_{s}+1\right)=0$ if s is a simple reflection, $T_{w} T_{u}=$ $T_{w u}$ if $l(w u)=l(w)+l(u)$, here $l: S_{n} \rightarrow \mathbf{N}$ is the length function.

For each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of n, set $I_{j}=\left\{\lambda_{1}+\cdots+\lambda_{j-1}+1, \lambda_{1}+\cdots+\lambda_{j-1}+2, \ldots\right.$, $\left.\lambda_{1}+\cdots+\lambda_{j-1}+\lambda_{j}\right\}$ for $1 \leqslant j \leqslant k$ (we understand $\lambda_{0}=0$). Let S_{λ} be the subgroup of S_{n} con-

[^0]sisting of elements stabilizing each I_{j}. Then S_{λ} is a parabolic subgroup of S_{n} and is isomorphic to $S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots \times S_{\lambda_{k}}$. We shall denote by w_{λ} the longest element of S_{λ}. Set $C_{\lambda}=\sum_{w \in S_{\lambda}} T_{w}$. Following [KL] and [DJ,M] we consider the left ideal $N_{\lambda}=H C_{\lambda}$ of H and shall regard it as a left H-module. Let N_{λ}^{\prime} be a maximal submodule of N_{λ} including $N_{\lambda} \cap \sum_{\mu>\lambda} H C_{\mu} H$ and not containing C_{λ}. Then the quotient module $M_{\lambda}=N_{\lambda} / N_{\lambda}^{\prime}$ is an irreducible module of H. Assume that K is a field, then each irreducible module of H is isomorphic to some M_{λ} (see [KL, proof of Theorem 1.4] or [DJ,M]). When $\sum_{w \in S_{n}} q^{l(w)} \neq 0$, the irreducible modules M_{λ}, λ a partition of n, form a complete set of irreducible modules of H (see [DJ,G,M], when q is not a root of 1 , this result was implied in [L]).

One of the main results in [DJ] is the following.

Theorem. Assume that K is a field. Then

(a) the set $\left\{M_{\lambda} \mid C_{\lambda} M_{\lambda} \neq 0\right\}$ is a complete set of irreducible modules of H.
(b) $C_{\lambda} M_{\lambda} \neq 0$ if and only if $\sum_{a=0}^{m} q^{a} \neq 0$ for all $1 \leqslant m \leqslant \max \left\{\lambda_{1}-\lambda_{2}, \lambda_{2}-\lambda_{3}, \ldots\right.$, $\left.\lambda_{k-1}-\lambda_{k}, \lambda_{k}\right\}$. (See [DJ, Theorems 6.3(i), 6.8(i) and 7.6] or [M, Theorems 6.4 and 6.9].)

Now we argue for the theorem. For each module E we can attach a partition $\lambda=p(E)$ as follows, $C_{\lambda} E \neq 0$ but $C_{\mu} E=0$ for all partitions μ satisfying $\mu>\lambda$. (We say that $\mu=$ $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{j}\right) \geqslant \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ if $\mu_{1}+\cdots+\mu_{i} \geqslant \lambda_{1}+\cdots+\lambda_{i}$ for $i=1,2, \ldots$)

Consider the two-sided ideal $F_{\lambda}=H C_{\lambda} H$ of H. According to the proof of Theorem 1.4 in [KL], $F_{\lambda} /\left(F_{\lambda} \cap \sum_{\mu>\lambda} F_{\mu}\right)$ is isomorphic to the direct sum of some copies of $E_{\lambda}=N_{\lambda} /\left(N_{\lambda} \cap\right.$ $\left.\sum_{\mu>\lambda} F_{\mu}\right)$.

Let E_{λ}^{\prime} be the sum of all submodules E of E_{λ} satisfying $C_{\lambda} E=0$. We claim that either $E_{\lambda}^{\prime}=E_{\lambda}$ or E_{λ}^{\prime} is the unique maximal submodule of E_{λ}.

Let D be a submodule of E_{λ} such that $C_{\lambda} D \neq 0$. For any $h \in H$ we have $C_{\lambda} h C_{\lambda} \in a C_{\lambda}+$ $\sum_{\mu>\lambda} F_{\mu}$, here $a \in K[\mathrm{KL}]$. Thus $C_{\lambda} D \neq 0$ implies that $D=E_{\lambda}$. Therefore $E_{\lambda}^{\prime}=E_{\lambda}$ or E_{λ}^{\prime} is the unique maximal submodule of E_{λ}. As a consequence, $M_{\lambda}=E_{\lambda} / E_{\lambda}^{\prime}$ if $C_{\lambda} E_{\lambda} \neq 0$ and in this case $C_{\lambda} M_{\lambda} \neq 0$.

Now assume that L is an irreducible H-module such that $C_{\lambda} L \neq 0$ but $C_{\mu} L=0$ for all $\mu>\lambda$. Let $x \in L$ be such that $C_{\lambda} x \neq 0$. Consider the H-module homomorphism $N_{\lambda} \rightarrow L, C_{\lambda} \rightarrow C_{\lambda} x$. By assumption, $F_{\mu} L=0$ if $\mu>\lambda$. Thus we get a non-zero homomorphism $E_{\lambda} \rightarrow L$. We must have $C_{\lambda} E_{\lambda} \neq 0$ since $C_{\lambda} L \neq 0$. So L is isomorphic to M_{λ}. Noting that $C_{\mu} E_{\lambda} \neq 0$ implies that $\mu \leqslant \lambda$ [KL] we see that if $\lambda \neq \mu$ then M_{λ} is not isomorphic to M_{μ} when $C_{\lambda} M_{\lambda} \neq 0 \neq C_{\mu} M_{\mu}$. Part (a) is proved.

To prove part (b) we need to calculate $C_{\lambda} H C_{\lambda}$. This is equivalent to calculate all $C_{\lambda} T_{w} C_{\lambda}$. Clearly if $w \in S_{\lambda}$, then $T_{w} C_{\lambda}=q^{l(w)} C_{\lambda}$. So we only need to consider the element of minimal length in a double coset $S_{\lambda} w S_{\lambda}$. Now the affine Hecke algebra plays a role in calculating the product $C_{\lambda} T_{w} C_{\lambda}$.

Let G be the special linear group $S L_{n}(\mathbf{C})$ and let T be the subgroup of G consisting of diagonal matrices. Let $X=\operatorname{Hom}\left(T, \mathbf{C}^{*}\right)$ be the character group of T. Let $\tau_{i} \in X$ be the character $T \rightarrow \mathbf{C}$, $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \rightarrow a_{i}$. Then we have $\tau_{1} \tau_{2} \cdots \tau_{n}=1$ and as a free abelian group X is generated by $\tau_{i}, i=1,2, \ldots, n-1$. The symmetric group S_{n} acts on X naturally: $w: X \rightarrow X, \tau_{i} \rightarrow \tau_{w(i)}$. Thus we can form the semi-direct product $\tilde{S}_{n}=S \ltimes X$. In \tilde{S}_{n} we have $w \tau_{i}=\tau_{w(i)} w$ for w in S_{n}. Let $s_{0}=\tau_{1}^{2} \tau_{2} \cdots \tau_{i} \cdots \tau_{n-1} s$, where $s \in S_{n}$ is the transpose $(1, n)=s_{1} s_{2} \cdots s_{n-2} s_{n-1} s_{n-2} \cdots s_{2} s_{1}$. Since $\tau_{1} \tau_{2} \cdots \tau_{n}=1$ we have $s_{0}^{2}=1$. The simple reflec-
tions $s_{0}, s_{1}, \ldots, s_{n-1}$ generate a subgroup W of \tilde{S}_{n}, which is a Coxeter group of type \tilde{A}_{n-1}. Define $\omega=\tau_{1} s_{1} s_{2} \cdots s_{n-1}$. Then $\omega^{n}=1$ and $\omega s_{i}=s_{i+1} \omega$ for all i (we set $s_{n}=s_{0}$). Let Ω be the subgroup of \tilde{S}_{n} generated by ω. Note that W is a normal subgroup of \tilde{S}_{n} and we have $\tilde{S}_{n}=\Omega \ltimes W$. The Hecke algebra \tilde{H} of \tilde{S}_{n} is defined as follows. As a K-module, it is free and has a basis consisting of elements $T_{w}, w \in \tilde{S}_{n}$. The multiplication is defined by the relations $\left(T_{s_{i}}-q\right)\left(T_{s_{i}}+1\right)=0$ for all i and $T_{w} T_{u}=T_{w u}$ if $l(w u)=l(w)+l(u)$. The length function $l: \tilde{S}_{n} \rightarrow \mathbf{N}$ is defined as $l\left(\omega^{a} w\right)=l(w)$ for $w \in W$. Clearly H is a subalgebra of \tilde{H}.

For $1 \leqslant i \leqslant n-1$, define $\sigma_{i}=\tau_{1} \tau_{2} \cdots \tau_{i}$. Then we have $s_{i} \sigma_{j}=\sigma_{j} s_{i}$ if i and j are different. Moreover we have $l\left(w_{0} \prod_{i=1}^{n-1} \sigma_{i}^{a_{i}}\right)=l\left(w_{0}\right)+\sum_{i=1}^{n-1} a_{i} l\left(\sigma_{i}\right)$ if all a_{i} are non-negative integers. Here w_{0} is the longest element of S_{n}. Also we have $l\left(\sigma_{i} s_{j}\right)=l\left(\sigma_{i}\right)-1$ if and only if $i=j$.

Thus we have $T_{s_{i}} T_{\sigma_{j}}=T_{\sigma_{j}} T_{s_{i}}$ if $1 \leqslant i \neq j \leqslant n-1$ and $T_{\sigma_{i}}=T_{\sigma_{i} s_{i}} T_{s_{i}}$.
For a positive integer k we set $[k]=q^{k-1}+q^{k-2}+\cdots+q+1,[k]!=[k][k-1] \cdots[2][1]$, we also set $[0]=[0]!=1$. For any element $w \in \tilde{S}_{n}$ we set $C_{w}=\sum_{y \leqslant w} P_{y, w}(q) T_{y}$, where \leqslant is the Bruhat order and $P_{y, w}$ is the Kazhdan-Lusztig polynomial. Note that if w is a longest element of a parabolic subgroup of \tilde{S}_{n}, then $C_{w}=\sum_{y \leqslant w} T_{y}$. So we have $C_{\lambda}=C_{w_{\lambda}}$. Now we are ready to prove part (b) of the theorem.

Lemma 1. Let $\lambda=(i, 1, \ldots, 1)$ be a partition of n and $z \in S_{n}$ such that for any simple reflection $s, s z \leqslant z$ if and only if $s=s_{i}$ and $z s \leqslant z$ if and only if $s=s_{i}$. Then

$$
C_{\lambda} T_{z} C_{\lambda} \in \pm q^{*}[i-j-1]!C_{\mu}+\sum_{\nu} F_{\nu}
$$

for some $j \leqslant i-1$, where $*$ stands for an integer, $\mu=(i, j+1,1, \ldots, 1)$, the summation runs through $v=(i+m, j+1-m, 1, \ldots, 1)>\mu$ for $j+1 \geqslant m \geqslant 1$.

Proof. Since for any simple reflection s, if $s z \leqslant z$ or $z s \leqslant z$ then we have $s=s_{i}$, we can find $j \leqslant i-1$ such that

$$
z=\left(s_{i} s_{i-1} \cdots s_{i-j}\right)\left(s_{i+1} s_{i} \cdots s_{i-j+1}\right) \cdots\left(s_{i+j-1} s_{i+j-2} \cdots s_{i-1}\right)\left(s_{i+j} s_{i+j-1} \cdots s_{i}\right)
$$

It is no harm to assume $n=i+j+1$.
Note that

$$
\sigma_{i}=\omega^{i}\left(s_{n-i} s_{n-i-1} \cdots s_{1}\right)\left(s_{n-i+1} s_{n-i} \cdots s_{2}\right) \cdots\left(s_{n-1} s_{n-2} \cdots s_{i}\right) .
$$

Let $y=\left(s_{i-j-1} s_{i-j} \cdots s_{i-1}\right) \cdots\left(s_{2} s_{3} \cdots s_{j+2}\right)\left(s_{1} s_{2} \cdots s_{j+1}\right)$. Since $n=i+j+1$ we have $z=y \omega^{-i} \sigma_{i}$ and $l\left(\sigma_{i}\right)=l\left(y^{-1}\right)+l(z)$ (we understand that $y=e$ if $j=i-1$). Thus we have $C_{\lambda} T_{z} C_{\lambda}=C_{\lambda} T_{y^{-1}}^{-1} T_{\omega}^{-i} T_{\sigma_{i}} C_{\lambda}$. Noting that $C_{\lambda} T_{y^{-1}}^{-1}=q^{-l(y)} C_{\lambda}$ and $C_{\lambda} T_{\sigma_{i}}=T_{\sigma_{i}} C_{\lambda}$, we get

$$
C_{\lambda} T_{z} C_{\lambda}=q^{-l(y)} C_{\lambda} T_{\omega}^{-i} T_{\sigma_{i}} C_{\lambda}=q^{-l(y)} T_{\omega}^{-i} T_{\omega}^{i} C_{\lambda} T_{\omega}^{-i} C_{\lambda} T_{\sigma_{i}}
$$

Let $w^{\prime}=\omega^{i} w_{\lambda} \omega^{-i}$. Then w^{\prime} is the longest element of the subgroup of \tilde{S}_{n} generated by $s_{i+1}, s_{i+2}, \ldots, s_{i+i-1}$. Let $k=i-j-2$, then $2 i-1=k+i+j+1$. We have $w^{\prime}=u w_{k}$ for some u and $l\left(w^{\prime}\right)=l(u)+l\left(w_{k}\right)$, where w_{k} is the longest element of the subgroup W_{k} of S_{n} generated by $s_{1}, s_{2}, \ldots, s_{k}$ if $k \geqslant 1$ and $w_{k}=e$ is the neutral element if $k=-1$ or 0 . We
also have $u=u^{\prime} u_{i+1}$ for some u^{\prime} and $l(u)=l\left(u^{\prime}\right)+l\left(u_{i+1}\right)$, where u_{i+1} is the longest element of the subgroup of U_{i+1} of S_{n} generated by $s_{i+1}, \ldots, s_{i+j}=s_{n-1}$. Set $C_{\lambda}^{\prime}=C_{w^{\prime}}$. Then $C_{\lambda}^{\prime}=T_{\omega}^{i} C_{\lambda} T_{\omega}^{-i}=h C_{u_{i+1}} C_{w_{k}}$ for some h in H, where $C_{u_{i+1}}$ is the sum of all $T_{x}, x \in U_{i+1}$, and $C_{w_{k}}$ is the sum of all $T_{x}, x \in W_{k}$. Clearly we have $C_{w_{k}} C_{\lambda}=[k+1]!C_{\lambda}$ and $C_{u_{i+1}} C_{\lambda}=C_{\mu}$. Therefore $C_{\lambda}^{\prime} C_{\lambda}=[k+1]!h C_{\mu}$. Note that $u w_{\lambda}=u^{\prime} u_{i+1} w_{\lambda}=u^{\prime} w_{\mu}$ is in the subgroup of \tilde{S}_{n} generated by $s_{p}, p \neq i$. The subgroup is isomorphic to the symmetric group S_{n}. Applying the Robinson-Schensted rule we see that $u w_{\lambda}$ and w_{μ} are in the same left cell. (See [A] for an exposition of Robinson-Schensted rule. One may see this fact also from star operations introduced in [KL].) Write $C_{\lambda}^{\prime} C_{\lambda}=\sum a_{v} C_{v}$, then clearly $a_{u w_{\lambda}}=[k+1]$!. Since T_{ω} and $T_{x_{i}}$ are invertible, we see that in the expression $C_{\lambda} T_{z} C_{\lambda}=\sum b_{v} C_{v}, b_{v} \in K$, there exists x such that $b_{x} \neq 0$, x and w_{μ} are in the same two-sided cell. Since $z=z^{-1}$ and $w_{\lambda}=w_{\lambda}^{-1}$, by the symmetry we see that x and w_{μ} are in the same left cell and right cell as well. So we must have $x=w_{\mu}$ (see [KL, proof of Theorem 1.4]). Moreover we must have $b_{\mu}= \pm q^{a}[k+1]$! for some integer a. If $b_{v} \neq 0$ and $v \neq w_{\mu}$, we must have $C_{v} \in F_{v}$ for some $v>\mu$. We claim that for such v we have $\nu=(i+m, j+1-m, 1, \ldots, 1)$ for some $m \geqslant 1$. Since $C_{\lambda} T_{z} C_{\lambda}$ is contained in the subalgebra of H generated by $T_{s_{1}}, \ldots, T_{s_{i+j}}$, we may assume that $n=i+j+1$. In this case we must have $v=(i+m, j+1-m)$ for some $m \geqslant 1$ since $\mu=(i, j+1)$ and $\nu>\mu$. The lemma is proved.

Remark. The author has not been able to determine the integer $*$ in the lemma.
Corollary 2. Let $\lambda=(i, j)$ be a partition of n. That is $i \geqslant j$ and $i+j=n$. Then for any z in S_{n} we have

$$
C_{\lambda} T_{z} C_{\lambda} \in[i-j]![j]!f C_{\lambda}+\sum_{\mu>\lambda} F_{\mu}
$$

where $f \in K$.

Proof. Since $C_{\lambda} C_{\lambda}=[i]![j]!C_{\lambda}$ and $T_{s} C_{\lambda}=C_{\lambda} T_{s}=q C_{\lambda}$ if $s \neq i$ in S_{n}, we may assume that $z=$ $\left(s_{i} s_{i-1} \cdots s_{i-k}\right) \cdots\left(s_{i+k} s_{i+k-1} \cdots s_{i}\right)$, where $k \leqslant j-1 \leqslant i-1$. Note that $C_{\lambda}=C_{w_{i-1}} C_{u_{i+1}}=$ $C_{u_{i+1}} C_{w_{i-1}}$ (see the proof of Lemma 1 for the definition of w_{i} and u_{i}). We have $C_{\lambda} T_{z} C_{\lambda}=$ $C_{u_{i+1}} C_{w_{i-1}} T_{z} C_{w_{i-1}} C_{u_{i+1}}$. By Lemma 1 we get $C_{w_{i-1}} T_{z} C_{w_{i-1}} \in \pm q^{*}[i-k-1]!C_{w_{i-1} w_{i+1, i+k}}+$ $\sum_{v} F_{\nu}$, where $w_{i+1, i+k}$ is the longest element of the subgroup of $W_{i+1, i+k}$ of S_{n} generated by s_{i+1}, \ldots, s_{i+k}, and v runs through the partitions $(i+m, k+1-m, 1, \ldots, 1), k+1 \geqslant m \geqslant 1$.

We have $C_{u_{i+1}} C_{w_{i+1, i+k}} C_{u_{i+1}}=[k+1]![j]!C_{u_{i+1}}$. We also have $C_{\lambda} T_{z} C_{\lambda} \subset \sum_{\mu \geqslant \lambda} F_{\mu}$ and $C_{u_{i+1}} F_{\nu} C_{u_{i+1}} \subset \sum_{\mu \geqslant \nu} F_{\mu}$ for any ν. If $\mu \geqslant \lambda$ and $\mu \geqslant(i+m, \ldots)$ for some $m \geqslant 1$, we must have $\mu>\lambda$. So $C_{\lambda} T_{z} C_{\lambda} \in \pm q^{*}[i-k-1]![k+1]![j]!C_{\lambda}+\sum_{\mu>\lambda} F_{\mu}$. Since $[i-k-1]!=$ [$i-j]![i-j+1] \cdots[i-k-1]$, the corollary follows.

Lemma 3. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ be a partition of n. Then

$$
C_{\lambda} T_{z} C_{\lambda} \in\left(\prod_{i=1}^{k}\left[\lambda_{i}-\lambda_{i+1}\right]!\right) f C_{\lambda}+\sum_{\mu>\lambda} F_{\mu},
$$

where $f \in K$ and we set $\lambda_{k+1}=0$.

Proof. We use induction on k. When $k=1$, the lemma is trivial, when $k=2$, by Corollary 2 we see the assertion is true. Now assume that $k>2$. For $i \leqslant j$ we set $\lambda_{i, j}=\lambda_{i}+\cdots+\lambda_{j}$. We have (see the proof of Corollary 2 for the definition of $w_{k m}$)

$$
w_{\lambda}=w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1,2}-1} \cdots w_{\lambda_{1, k-1}+1, \lambda_{1, k}-1}=w_{\lambda_{1}-1} w^{\prime} .
$$

Let $z=x z_{1} y$, where x, y are in the subgroup of S_{n} generated by $s_{i}, i \neq \lambda_{1}$, and $l\left(s_{i} z_{1}\right)=$ $l\left(z_{1} s_{i}\right)=l\left(z_{1}\right)+1$ if $i \neq \lambda_{1}$. Write $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$, where x_{1}, y_{1} are in the subgroup $W_{\lambda_{1}-1}$ of S_{n} generated by $s_{1}, \ldots, s_{\lambda_{1}-1}$ and x_{2}, y_{2} are in the subgroup $U_{\lambda_{1}+1}$ of S_{n} generated by $s_{\lambda_{1}+1}, \ldots, s_{n-1}$.

We have $T_{u} C_{\lambda}=C_{\lambda} T_{u}=q^{l(u)}=q^{l(u)} C_{\lambda}$ for $u=x_{1}, y_{1}$ and $T_{u} C_{w_{\lambda_{1}-1}}=C_{w_{\lambda_{1}-1}} T_{u}$ for $u=$ x_{2}, y_{2}. Note that $C_{\lambda}=C_{w_{\lambda_{1}-1}} C_{w^{\prime}}=C_{w^{\prime}} C_{w_{\lambda_{1}-1}}$. Thus

$$
C_{\lambda} T_{z} C_{\lambda}=q^{l\left(x_{1}\right)+l\left(y_{1}\right)} C_{w^{\prime}} T_{x_{2}} C_{w_{\lambda_{1}-1}} T_{z_{1}} C_{w_{\lambda_{1}-1}} T_{y_{2}} C_{w^{\prime}}
$$

If $z_{1}=e$, then

$$
C_{\lambda} T_{z} C_{\lambda}=q^{l\left(x_{1}\right)+l\left(y_{1}\right)}\left[\lambda_{1}\right]!C_{w_{\lambda_{1}-1}} C_{w^{\prime}} T_{x_{2} y_{2}} C_{w^{\prime}} .
$$

We are reduced to the case $k-1$.
Now assume that $z_{1} \neq e$. By Lemma 1 we know that

$$
C_{w_{\lambda_{1}-1}} T_{z_{1}} C_{w_{\lambda_{1}-1}} \in \pm q^{*}\left[\lambda_{1}-j-1\right] C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}}+\sum_{\nu} F_{\nu}
$$

where $j \leqslant \lambda_{1}-1$ is defined by

$$
z_{1}=s_{\lambda_{1}} s_{\lambda_{1}-1} \cdots s_{\lambda_{1}-j} s_{\lambda_{1}+1} s_{\lambda_{1}} \cdots s_{\lambda_{1}-j+1} \cdots s_{\lambda_{1}+j} s_{\lambda_{1}+j-1} \cdots s_{\lambda_{1}},
$$

and v runs through the partitions $\left(\lambda_{1}+m, j+1-m, 1, \ldots, 1\right), j+1 \geqslant m \geqslant 1$.
Note that both $C_{\lambda} T_{z} C_{\lambda}$ and $C_{w^{\prime}} T_{x_{2}} C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}} T_{y_{2}} C_{w^{\prime}}$ are contained in $\sum_{\mu \geqslant \lambda} F_{\mu}$ and $C_{w^{\prime}} T_{x_{2}} F_{\nu} T_{y_{2}} C_{w^{\prime}} \subset \sum_{\mu \geqslant \nu} F_{\tau}$ for any ν. Whenever $\mu \geqslant \lambda$ and $\mu \geqslant\left(\lambda_{1}+m, \ldots\right)$ for some $m \geqslant 1$, we must have $\mu>\lambda$. Thus we have

$$
C_{\lambda} T_{z} C_{\lambda} \in \pm q^{*}\left[\lambda_{1}-j-1\right]!C_{w^{\prime}} T_{x_{2}} C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}} T_{y_{2}} C_{w^{\prime}}+\sum_{\mu>\lambda} F_{\mu},
$$

where $*$ stands for an integer. Let $\tau=\left(\lambda_{1}, j+1,1, \ldots, 1\right)$. Then $w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda+j}=$ w_{τ}. Note that $C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}}=C_{\lambda_{1}-1} C_{w_{\lambda_{1}+1, \lambda_{1}+j}}$. If $j \geqslant \lambda_{2}$, then $\tau \nless \lambda$, so $C_{w^{\prime}} T_{x_{2}} C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}} T_{y_{2}} C_{w^{\prime}}$ is contained in $\left(\sum_{\mu \geqslant \lambda} F_{\mu}\right) \cap\left(\sum_{\mu \geqslant \tau} F_{\mu}\right) \subset \sum_{\mu>\lambda} F_{\mu}$. We are done in this case.

Now assume that $j \leqslant \lambda_{2}-1$. Then $\lambda_{1}-j-1 \geqslant \lambda_{1}-\lambda_{2}$ and

$$
C_{w_{\lambda_{1}-1}} T_{z_{1}} C_{w_{\lambda_{1}-1}} \in\left[\lambda_{1}-\lambda_{2}\right]!f_{1} C_{w_{\lambda_{1}-1} w_{\lambda_{1}+1, \lambda_{1}+j}}+\sum_{\nu} F_{\nu}
$$

for some $f_{1} \in K$, where v runs through the partitions $\left(\lambda_{1}+m, j+1-m, 1, \ldots, 1\right), j+1 \geqslant$ $m \geqslant 1$. Thus we have

$$
C_{\lambda} T_{z} C_{\lambda} \in\left[\lambda_{1}-\lambda_{2}\right]!f_{1} C_{w_{\lambda_{1}-1}} C_{w^{\prime}} T_{x_{2}} C_{w_{\lambda_{1}+1, \lambda_{1}+j}} T_{y_{2}} C_{w^{\prime}}+\sum_{\nu} C_{w^{\prime}} T_{x_{2}} F_{\nu} T_{y_{2}} C_{w^{\prime}}
$$

Note that $x_{2}, w^{\prime}, y_{2}, w_{\lambda_{1}+1, \lambda_{1}+j}$ are all in the subgroup of S_{n} generated by $s_{i}, \lambda_{1}+1 \leqslant i \leqslant n-1$ and $C_{w^{\prime}} T_{x_{2}} F_{\nu} T_{y_{2}} C_{w^{\prime}}$ is included in $\sum_{\mu \nless \lambda} F_{\mu}$ if $v=\left(\lambda_{1}+m, j+1-m, 1, \ldots, 1\right)$ for some $m \geqslant 1$. By induction hypothesis, we see the lemma is true.

Lemma 4. Let λ be as in Lemma 3. Recall that $\lambda_{1, j}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{j}$ for $j=1,2, \ldots, k$. Set

$$
z_{i}=\left(s_{\lambda_{1, i}} s_{\lambda_{1, i}-1} \cdots s_{\lambda_{1, i}-\lambda_{i+1}+1}\right) \cdots\left(s_{\lambda_{1, i+1}-1} s_{\lambda_{1, i+1}-2} \cdots s_{\lambda_{1, i}}\right)
$$

for $i=1,2, \ldots, k-1$. Define

$$
h=T_{z_{k-1}}\left(T_{z_{k-2}} T_{z_{k-1}}\right)\left(T_{z_{k-3}} T_{z_{k-2}} T_{z_{k-1}}\right) \cdots\left(T_{z_{1}} T_{z_{2}} \cdots T_{z_{k-1}}\right) .
$$

Then $C_{\lambda} h C_{\lambda} \in \pm q^{*} \prod_{i=1}^{k}\left(\left[\lambda_{i}-\lambda_{i+1}\right]!\right)^{i} C_{\lambda}+F_{>\lambda}$, where $*$ stands for an integer and $F_{>\lambda}=$ $\sum_{\mu>\lambda} F_{\mu}$.

Proof. Set $u_{i}=C_{w_{\lambda_{1, i-1}+1, \lambda_{1, i}-1}}$ (we understand that $\lambda_{1,0}=0$) and $h_{i}=T_{z_{i}}$. Then $C_{\lambda}=$ $u_{1} u_{2} \cdots u_{k}, u_{i} u_{j}=u_{j} u_{i}$ for all i, j, and $u_{i} h_{j}=h_{j} u_{i}$ if $i<j$. For $h^{\prime}, h^{\prime \prime} \in H$ and $F \subset H$, we write $h^{\prime} \equiv h^{\prime \prime}+F$ if $h^{\prime}-h^{\prime \prime} \in F$. Using Lemma 1 repeatedly we get

$$
\begin{aligned}
C_{\lambda} h C_{\lambda}= & u_{k}\left(u_{k-1} h_{k-1}\right)\left(u_{k-2} h_{k-2} h_{k-1}\right) \cdots \\
& \times\left(u_{2} h_{2} h_{3} \cdots h_{k-1}\right) u_{1} h_{1} u_{1} h_{2} u_{2} \cdots h_{k-1} u_{k-1} u_{k} \\
\equiv & \pm q^{*}\left[\lambda_{1}-\lambda_{2}\right]!u_{k}\left(u_{k-1} h_{k-1}\right)\left(u_{k-2} h_{k-2} h_{k-1}\right) \cdots \\
& \times\left(u_{2} h_{2} h_{3} \cdots h_{k-1}\right) u_{1} u_{2} h_{2} u_{2} \cdots h_{k-1} u_{k-1} u_{k}+F_{>\lambda} \\
\equiv & \pm q^{*}\left[\lambda_{1}-\lambda_{2}\right]!u_{1} u_{k}\left(u_{k-1} h_{k-1}\right)\left(u_{k-2} h_{k-2} h_{k-1}\right) \cdots \\
& \times\left(u_{2} h_{2} h_{3} \cdots h_{k-1}\right) u_{2} h_{2} u_{2} \cdots h_{k-1} u_{k-1} u_{k}+F_{>\lambda} \\
\equiv & \pm q^{*}\left[\lambda_{1}-\lambda_{2}\right]!\left[\lambda_{2}-\lambda_{3}\right]!u_{1} u_{k}\left(u_{k-1} h_{k-1}\right)\left(u_{k-2} h_{k-2} h_{k-1}\right) \cdots \\
& \times\left(u_{2} h_{2} h_{3} \cdots h_{k-1}\right) u_{2} u_{3} h_{3} u_{3} \cdots h_{k-1} u_{k-1} u_{k}+F_{>\lambda} \\
\equiv & \pm q^{*}\left[\lambda_{1}-\lambda_{2}\right]!\left(\left[\lambda_{2}-\lambda_{3}\right]!\right)^{2} u_{1} u_{2} u_{k}\left(u_{k-1} h_{k-1}\right)\left(u_{k-2} h_{k-2} h_{k-1}\right) \cdots \\
& \times\left(u_{3} h_{3} \cdots h_{k-1}\right)^{2} u_{3} h_{3} u_{3} \cdots h_{k-1} u_{k-1} u_{k}+F_{>\lambda} \\
\equiv & \cdots \\
\equiv & \pm q^{*} \prod_{i=1}^{k}\left(\left[\lambda_{i}-\lambda_{i+1}\right]!\right)^{i} C_{\lambda}+F_{>\lambda} .
\end{aligned}
$$

Combining Lemmas 3 and 4 we see that part (b) of the theorem is true. The theorem is proved.

If $\sum_{w \in S_{n}} q^{l(w)} \neq 0$ and K is an algebraic closed field of characteristic 0 , then we have the Deligne-Langlands-Lusztig classification for irreducible modules of \tilde{H} (see [BZ,Z,KL1,X]). We have another classification due to Ariki and Mathas for any sufficient large K (see [AM]). An interesting question is to classify irreducible modules of \tilde{H} in the spirit of Deligne-LanglandsLusztig classification when $\sum_{w \in S_{n}} q^{l(n)}=0$, see [Gr] for an announcement. If one can manage the calculation $C_{\lambda} \tilde{H} C_{\lambda}$ to get counterparts of Lemmas 3 and 4 , the question will be settled.

Acknowledgments

I would like to thank Professor S. Ariki for pointing out a mistake. I am indebted to the referee for helpful comments. Part of the paper was written during my visit to the Department of Mathematics at the National University of Singapore. I am grateful to Professors C. Zhu and D. Zhang for invitation and to the department for hospitality and financial support.

References

[A] S. Ariki, Robinson-Schensted correspondence and left cells, in: Combinatorial Methods in Representation Theory, Kyoto, 1998, in: Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1-20.
[AM] S. Ariki, A. Mathas, The number of simple modules of the Hecke algebras of type $G(r, 1, n)$, Math. Z. 233 (3) (2000) 601-623.
[BZ] J. Bernstein, A. Zelevinsky, Induced representations of reductive p-adic groups, I, Ann. Sci. École Norm. Sup. 10 (1977) 441-472.
[DJ] R. Dipper, G.D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1) (1986) 20-52.
[Gr] I. Grojnowski, Representations of affine Hecke algebras and affine quantum $G L_{n}$ at roots of unity, Int. Math. Res. Not. 5 (1994) 213-216.
[G] A. Gyoja, Modular representation theory over a ring of higher dimension with application to Hecke algebras, J. Algebra 174 (1995) 553-572.
[J] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Math., vol. 682, Springer, Berlin, 1978.
[KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165-184.
[KL1] D. Kazhdan, G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987) 153-215.
[L] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (2) (1981) 490-498.
[M] G.E. Murphy, The representations of Hecke algebras of type A_{n}, J. Algebra 173 (1) (1995) 97-121.
[X] N. Xi, Representations of affine Hecke algebras and based ring of affine Weyl groups, J. Amer. Math. Soc. 20 (2007) 211-217.
[Z] A. Zelevinsky, Induced representations of reductive p-adic groups, II. On irreducible representations of $G L_{n}$, Ann. Sci. École Norm. Sup. 13 (1980) 165-210.

[^0]: E-mail address: nanhua@ math.ac.cn.
 ${ }^{1}$ N. Xi was partially supported by Natural Sciences Foundation of China (No. 10671193).
 0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2008.08.019

