JOURNAL OF

Algebra

Provided by Elsevier - Publisher Connector

CORE

Available online at www.sciencedirect.com

Journal of Algebra 321 (2009) 3594–3600

www.elsevier.com/locate/jalgebra

A new proof for classification of irreducible modules of a Hecke algebra of type A_{n-1}

Nanhua Xi¹

Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China Received 22 February 2008

Available online 6 September 2008

Communicated by Andrew Mathas and Jean Michel

Dedicated to Gus Lehrer on the occasion of his 60th birthday

Abstract

In this paper we give a new proof for the classification of irreducible modules of a Hecke algebra of type A_{n-1} , which was obtained by Dipper and James in 1986.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Hecke algebra of symmetric group; Classification of irreducible modules

Let *H* be the Hecke algebra of the symmetric group S_n over a commutative ring *K* with an invertible parameter $q \in K$. In [DJ] Dipper and James worked out a classification of irreducible modules of *H* when *K* is a field, which is similar to the classification of irreducible S_n -modules over a field [J]. In this paper we shall give a new proof for the classification of Dipper and James. Essentially the idea is due to Dipper and James, Murphy [DJ,M], but we use Kazhdan–Lusztig theory and an affine Hecke algebra of type \tilde{A}_{n-1} to prove this result by a direct calculation.

As usual, the simple reflections of S_n consisting of the transposes $s_i = (i, i + 1)$ for i = 1, 2, ..., n - 1. As a free K-module, the Hecke algebra H has a basis T_w , $w \in S_n$, and the multiplication is defined by the relations $(T_s - q)(T_s + 1) = 0$ if s is a simple reflection, $T_w T_u = T_{wu}$ if l(wu) = l(w) + l(u), here $l : S_n \to \mathbf{N}$ is the length function.

For each partition $\lambda = (\lambda_1, ..., \lambda_k)$ of n, set $I_j = \{\lambda_1 + \cdots + \lambda_{j-1} + 1, \lambda_1 + \cdots + \lambda_{j-1} + 2, ..., \lambda_1 + \cdots + \lambda_{j-1} + \lambda_j\}$ for $1 \le j \le k$ (we understand $\lambda_0 = 0$). Let S_{λ} be the subgroup of S_n con-

0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.08.019

E-mail address: nanhua@math.ac.cn.

¹ N. Xi was partially supported by Natural Sciences Foundation of China (No. 10671193).

sisting of elements stabilizing each I_j . Then S_{λ} is a parabolic subgroup of S_n and is isomorphic to $S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_k}$. We shall denote by w_{λ} the longest element of S_{λ} . Set $C_{\lambda} = \sum_{w \in S_{\lambda}} T_w$. Following [KL] and [DJ,M] we consider the left ideal $N_{\lambda} = HC_{\lambda}$ of H and shall regard it as a left H-module. Let N'_{λ} be a maximal submodule of N_{λ} including $N_{\lambda} \cap \sum_{\mu > \lambda} HC_{\mu}H$ and not containing C_{λ} . Then the quotient module $M_{\lambda} = N_{\lambda}/N'_{\lambda}$ is an irreducible module of H. Assume that K is a field, then each irreducible module of H is isomorphic to some M_{λ} (see [KL, proof of Theorem 1.4] or [DJ,M]). When $\sum_{w \in S_n} q^{l(w)} \neq 0$, the irreducible modules M_{λ} , λ a partition of n, form a complete set of irreducible modules of H (see [DJ,G,M], when q is not a root of 1, this result was implied in [L]).

One of the main results in [DJ] is the following.

Theorem. Assume that K is a field. Then

- (a) the set $\{M_{\lambda} \mid C_{\lambda}M_{\lambda} \neq 0\}$ is a complete set of irreducible modules of *H*.
- (b) $C_{\lambda}M_{\lambda} \neq 0$ if and only if $\sum_{a=0}^{m} q^{a} \neq 0$ for all $1 \leq m \leq \max\{\lambda_{1} \lambda_{2}, \lambda_{2} \lambda_{3}, \dots, \lambda_{k-1} \lambda_{k}, \lambda_{k}\}$. (See [DJ, Theorems 6.3(i), 6.8(i) and 7.6] or [M, Theorems 6.4 and 6.9].)

Now we argue for the theorem. For each module *E* we can attach a partition $\lambda = p(E)$ as follows, $C_{\lambda}E \neq 0$ but $C_{\mu}E = 0$ for all partitions μ satisfying $\mu > \lambda$. (We say that $\mu = (\mu_1, \mu_2, \dots, \mu_j) \ge \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ if $\mu_1 + \dots + \mu_i \ge \lambda_1 + \dots + \lambda_i$ for $i = 1, 2, \dots$)

Consider the two-sided ideal $F_{\lambda} = HC_{\lambda}H$ of H. According to the proof of Theorem 1.4 in [KL], $F_{\lambda}/(F_{\lambda} \cap \sum_{\mu > \lambda} F_{\mu})$ is isomorphic to the direct sum of some copies of $E_{\lambda} = N_{\lambda}/(N_{\lambda} \cap \sum_{\mu > \lambda} F_{\mu})$.

Let E'_{λ} be the sum of all submodules E of E_{λ} satisfying $C_{\lambda}E = 0$. We claim that either $E'_{\lambda} = E_{\lambda}$ or E'_{λ} is the unique maximal submodule of E_{λ} .

Let *D* be a submodule of E_{λ} such that $C_{\lambda}D \neq 0$. For any $h \in H$ we have $C_{\lambda}hC_{\lambda} \in aC_{\lambda} + \sum_{\mu>\lambda} F_{\mu}$, here $a \in K$ [KL]. Thus $C_{\lambda}D \neq 0$ implies that $D = E_{\lambda}$. Therefore $E'_{\lambda} = E_{\lambda}$ or E'_{λ} is the unique maximal submodule of E_{λ} . As a consequence, $M_{\lambda} = E_{\lambda}/E'_{\lambda}$ if $C_{\lambda}E_{\lambda} \neq 0$ and in this case $C_{\lambda}M_{\lambda} \neq 0$.

Now assume that *L* is an irreducible *H*-module such that $C_{\lambda}L \neq 0$ but $C_{\mu}L = 0$ for all $\mu > \lambda$. Let $x \in L$ be such that $C_{\lambda}x \neq 0$. Consider the *H*-module homomorphism $N_{\lambda} \to L$, $C_{\lambda} \to C_{\lambda}x$. By assumption, $F_{\mu}L = 0$ if $\mu > \lambda$. Thus we get a non-zero homomorphism $E_{\lambda} \to L$. We must have $C_{\lambda}E_{\lambda} \neq 0$ since $C_{\lambda}L \neq 0$. So *L* is isomorphic to M_{λ} . Noting that $C_{\mu}E_{\lambda} \neq 0$ implies that $\mu \leq \lambda$ [KL] we see that if $\lambda \neq \mu$ then M_{λ} is not isomorphic to M_{μ} when $C_{\lambda}M_{\lambda} \neq 0 \neq C_{\mu}M_{\mu}$. Part (a) is proved.

To prove part (b) we need to calculate $C_{\lambda}HC_{\lambda}$. This is equivalent to calculate all $C_{\lambda}T_wC_{\lambda}$. Clearly if $w \in S_{\lambda}$, then $T_wC_{\lambda} = q^{l(w)}C_{\lambda}$. So we only need to consider the element of minimal length in a double coset $S_{\lambda}wS_{\lambda}$. Now the affine Hecke algebra plays a role in calculating the product $C_{\lambda}T_wC_{\lambda}$.

Let *G* be the special linear group $SL_n(\mathbb{C})$ and let *T* be the subgroup of *G* consisting of diagonal matrices. Let $X = \text{Hom}(T, \mathbb{C}^*)$ be the character group of *T*. Let $\tau_i \in X$ be the character $T \to \mathbb{C}$, diag $(a_1, a_2, \ldots, a_n) \to a_i$. Then we have $\tau_1 \tau_2 \cdots \tau_n = 1$ and as a free abelian group *X* is generated by τ_i , $i = 1, 2, \ldots, n - 1$. The symmetric group S_n acts on *X* naturally: $w : X \to X, \tau_i \to \tau_{w(i)}$. Thus we can form the semi-direct product $\tilde{S}_n = S \ltimes X$. In \tilde{S}_n we have $w\tau_i = \tau_{w(i)}w$ for *w* in S_n . Let $s_0 = \tau_1^2 \tau_2 \cdots \tau_i \cdots \tau_{n-1}s$, where $s \in S_n$ is the transpose $(1, n) = s_1s_2 \cdots s_{n-2}s_{n-1}s_{n-2} \cdots s_2s_1$. Since $\tau_1\tau_2 \cdots \tau_n = 1$ we have $s_0^2 = 1$. The simple reflec-

tions $s_0, s_1, \ldots, s_{n-1}$ generate a subgroup W of \tilde{S}_n , which is a Coxeter group of type \tilde{A}_{n-1} . Define $\omega = \tau_1 s_1 s_2 \cdots s_{n-1}$. Then $\omega^n = 1$ and $\omega s_i = s_{i+1}\omega$ for all i (we set $s_n = s_0$). Let Ω be the subgroup of \tilde{S}_n generated by ω . Note that W is a normal subgroup of \tilde{S}_n and we have $\tilde{S}_n = \Omega \ltimes W$. The Hecke algebra \tilde{H} of \tilde{S}_n is defined as follows. As a K-module, it is free and has a basis consisting of elements $T_w, w \in \tilde{S}_n$. The multiplication is defined by the relations $(T_{s_i} - q)(T_{s_i} + 1) = 0$ for all i and $T_w T_u = T_{wu}$ if l(wu) = l(w) + l(u). The length function $l: \tilde{S}_n \to \mathbf{N}$ is defined as $l(\omega^a w) = l(w)$ for $w \in W$. Clearly H is a subalgebra of \tilde{H} .

For $1 \le i \le n-1$, define $\sigma_i = \tau_1 \tau_2 \cdots \tau_i$. Then we have $s_i \sigma_j = \sigma_j s_i$ if *i* and *j* are different. Moreover we have $l(w_0 \prod_{i=1}^{n-1} \sigma_i^{a_i}) = l(w_0) + \sum_{i=1}^{n-1} a_i l(\sigma_i)$ if all a_i are non-negative integers. Here w_0 is the longest element of S_n . Also we have $l(\sigma_i s_j) = l(\sigma_i) - 1$ if and only if i = j.

Thus we have $T_{s_i}T_{\sigma_j} = T_{\sigma_j}T_{s_i}$ if $1 \le i \ne j \le n-1$ and $T_{\sigma_i} = T_{\sigma_i s_i}T_{s_i}$.

For a positive integer k we set $[k] = q^{k-1} + q^{k-2} + \dots + q + 1$, $[k]! = [k][k-1] \dots [2][1]$, we also set [0] = [0]! = 1. For any element $w \in \tilde{S}_n$ we set $C_w = \sum_{y \leq w} P_{y,w}(q)T_y$, where \leq is the Bruhat order and $P_{y,w}$ is the Kazhdan–Lusztig polynomial. Note that if w is a longest element of a parabolic subgroup of \tilde{S}_n , then $C_w = \sum_{y \leq w} T_y$. So we have $C_\lambda = C_{w_\lambda}$. Now we are ready to prove part (b) of the theorem.

Lemma 1. Let $\lambda = (i, 1, ..., 1)$ be a partition of n and $z \in S_n$ such that for any simple reflection $s, sz \leq z$ if and only if $s = s_i$ and $zs \leq z$ if and only if $s = s_i$. Then

$$C_{\lambda}T_{z}C_{\lambda} \in \pm q^{*}[i-j-1]!C_{\mu} + \sum_{\nu}F_{\nu},$$

for some $j \leq i - 1$, where * stands for an integer, $\mu = (i, j + 1, 1, ..., 1)$, the summation runs through $\nu = (i + m, j + 1 - m, 1, ..., 1) > \mu$ for $j + 1 \geq m \geq 1$.

Proof. Since for any simple reflection *s*, if $sz \le z$ or $zs \le z$ then we have $s = s_i$, we can find $j \le i - 1$ such that

$$z = (s_i s_{i-1} \cdots s_{i-j})(s_{i+1} s_i \cdots s_{i-j+1}) \cdots (s_{i+j-1} s_{i+j-2} \cdots s_{i-1})(s_{i+j} s_{i+j-1} \cdots s_i)$$

It is no harm to assume n = i + j + 1.

Note that

$$\sigma_i = \omega^{\iota}(s_{n-i}s_{n-i-1}\cdots s_1)(s_{n-i+1}s_{n-i}\cdots s_2)\cdots (s_{n-1}s_{n-2}\cdots s_i)$$

Let $y = (s_{i-j-1}s_{i-j}\cdots s_{i-1})\cdots (s_2s_3\cdots s_{j+2})(s_1s_2\cdots s_{j+1})$. Since n = i + j + 1 we have $z = y\omega^{-i}\sigma_i$ and $l(\sigma_i) = l(y^{-1}) + l(z)$ (we understand that y = e if j = i - 1). Thus we have $C_{\lambda}T_zC_{\lambda} = C_{\lambda}T_{y^{-1}}^{-1}T_{\omega}^{-i}T_{\sigma_i}C_{\lambda}$. Noting that $C_{\lambda}T_{y^{-1}}^{-1} = q^{-l(y)}C_{\lambda}$ and $C_{\lambda}T_{\sigma_i} = T_{\sigma_i}C_{\lambda}$, we get

$$C_{\lambda}T_{z}C_{\lambda} = q^{-l(y)}C_{\lambda}T_{\omega}^{-i}T_{\sigma_{i}}C_{\lambda} = q^{-l(y)}T_{\omega}^{-i}T_{\omega}^{i}C_{\lambda}T_{\omega}^{-i}C_{\lambda}T_{\sigma_{i}}$$

Let $w' = \omega^i w_\lambda \omega^{-i}$. Then w' is the longest element of the subgroup of \tilde{S}_n generated by $s_{i+1}, s_{i+2}, \ldots, s_{i+i-1}$. Let k = i - j - 2, then 2i - 1 = k + i + j + 1. We have $w' = uw_k$ for some u and $l(w') = l(u) + l(w_k)$, where w_k is the longest element of the subgroup W_k of S_n generated by s_1, s_2, \ldots, s_k if $k \ge 1$ and $w_k = e$ is the neutral element if k = -1 or 0. We

also have $u = u'u_{i+1}$ for some u' and $l(u) = l(u') + l(u_{i+1})$, where u_{i+1} is the longest element of the subgroup of U_{i+1} of S_n generated by $s_{i+1}, \ldots, s_{i+j} = s_{n-1}$. Set $C'_{\lambda} = C_{w'}$. Then $C'_{\lambda} = T^i_{\omega}C_{\lambda}T^{-i}_{\omega} = hC_{u_{i+1}}C_{w_k}$ for some h in H, where $C_{u_{i+1}}$ is the sum of all $T_x, x \in U^i_{i+1}$, and C_{w_k} is the sum of all T_x , $x \in W_k$. Clearly we have $C_{w_k}C_{\lambda} = [k+1]!C_{\lambda}$ and $C_{u_{i+1}}C_{\lambda} = C_{\mu}$. Therefore $C'_{\lambda}C_{\lambda} = [k+1]!hC_{\mu}$. Note that $uw_{\lambda} = u'u_{i+1}w_{\lambda} = u'w_{\mu}$ is in the subgroup of \tilde{S}_n generated by s_p , $p \neq i$. The subgroup is isomorphic to the symmetric group S_n . Applying the Robinson–Schensted rule we see that uw_{λ} and w_{μ} are in the same left cell. (See [A] for an exposition of Robinson-Schensted rule. One may see this fact also from star operations introduced in [KL].) Write $C'_{\lambda}C_{\lambda} = \sum a_v C_v$, then clearly $a_{uw_{\lambda}} = [k+1]!$. Since T_{ω} and T_{x_i} are invertible, we see that in the expression $C_{\lambda}T_zC_{\lambda} = \sum b_vC_v$, $b_v \in K$, there exists x such that $b_x \neq 0$, x and w_{μ} are in the same two-sided cell. Since $z = z^{-1}$ and $w_{\lambda} = w_{\lambda}^{-1}$, by the symmetry we see that x and w_{μ} are in the same left cell and right cell as well. So we must have $x = w_{\mu}$ (see [KL, proof of Theorem 1.4]). Moreover we must have $b_{\mu} = \pm q^{a}[k+1]!$ for some integer a. If $b_{\nu} \neq 0$ and $\nu \neq w_{\mu}$, we must have $C_{\nu} \in F_{\nu}$ for some $\nu > \mu$. We claim that for such ν we have $\nu = (i + m, j + 1 - m, 1, \dots, 1)$ for some $m \ge 1$. Since $C_{\lambda}T_zC_{\lambda}$ is contained in the subalgebra of H generated by $T_{s_1}, \ldots, T_{s_{i+j}}$, we may assume that n = i + j + 1. In this case we must have $\nu = (i + m, j + 1 - m)$ for some $m \ge 1$ since $\mu = (i, j + 1)$ and $\nu > \mu$. The lemma is proved.

Remark. The author has not been able to determine the integer * in the lemma.

Corollary 2. Let $\lambda = (i, j)$ be a partition of n. That is $i \ge j$ and i + j = n. Then for any z in S_n we have

$$C_{\lambda}T_{z}C_{\lambda} \in [i-j]![j]!fC_{\lambda} + \sum_{\mu>\lambda}F_{\mu},$$

where $f \in K$.

Proof. Since $C_{\lambda}C_{\lambda} = [i]![j]!C_{\lambda}$ and $T_sC_{\lambda} = C_{\lambda}T_s = qC_{\lambda}$ if $s \neq i$ in S_n , we may assume that $z = (s_is_{i-1}\cdots s_{i-k})\cdots (s_{i+k}s_{i+k-1}\cdots s_i)$, where $k \leq j-1 \leq i-1$. Note that $C_{\lambda} = C_{w_{i-1}}C_{u_{i+1}} = C_{u_{i+1}}C_{w_{i-1}}$ (see the proof of Lemma 1 for the definition of w_i and u_i). We have $C_{\lambda}T_zC_{\lambda} = C_{u_{i+1}}C_{w_{i-1}}T_zC_{w_{i-1}}C_{u_{i+1}}$. By Lemma 1 we get $C_{w_{i-1}}T_zC_{w_{i-1}} \in \pm q^*[i-k-1]!C_{w_{i-1}w_{i+1,i+k}} + \sum_{\nu} F_{\nu}$, where $w_{i+1,i+k}$ is the longest element of the subgroup of $W_{i+1,i+k}$ of S_n generated by s_{i+1}, \ldots, s_{i+k} , and ν runs through the partitions $(i+m, k+1-m, 1, \ldots, 1), k+1 \geq m \geq 1$.

We have $C_{u_{i+1}}C_{w_{i+1,i+k}}C_{u_{i+1}} = [k+1]![j]!C_{u_{i+1}}$. We also have $C_{\lambda}T_zC_{\lambda} \subset \sum_{\mu \ge \lambda} F_{\mu}$ and $C_{u_{i+1}}F_{\nu}C_{u_{i+1}} \subset \sum_{\mu \ge \nu} F_{\mu}$ for any ν . If $\mu \ge \lambda$ and $\mu \ge (i+m,...)$ for some $m \ge 1$, we must have $\mu > \lambda$. So $C_{\lambda}T_zC_{\lambda} \in \pm q^*[i-k-1]![k+1]![j]!C_{\lambda} + \sum_{\mu > \lambda} F_{\mu}$. Since $[i-k-1]! = [i-j]![i-j+1]\cdots[i-k-1]$, the corollary follows. \Box

Lemma 3. Let $\lambda = (\lambda_1, \lambda_2, ..., \lambda_k)$ be a partition of *n*. Then

$$C_{\lambda}T_{z}C_{\lambda} \in \left(\prod_{i=1}^{k} [\lambda_{i} - \lambda_{i+1}]!\right) f C_{\lambda} + \sum_{\mu > \lambda} F_{\mu},$$

where $f \in K$ and we set $\lambda_{k+1} = 0$.

Proof. We use induction on k. When k = 1, the lemma is trivial, when k = 2, by Corollary 2 we see the assertion is true. Now assume that k > 2. For $i \leq j$ we set $\lambda_{i,j} = \lambda_i + \cdots + \lambda_j$. We have (see the proof of Corollary 2 for the definition of w_{km})

$$w_{\lambda} = w_{\lambda_1-1}w_{\lambda_1+1,\lambda_1,2-1}\cdots w_{\lambda_{1,k-1}+1,\lambda_{1,k}-1} = w_{\lambda_1-1}w'.$$

Let $z = xz_1y$, where x, y are in the subgroup of S_n generated by $s_i, i \neq \lambda_1$, and $l(s_iz_1) = l(z_1s_i) = l(z_1) + 1$ if $i \neq \lambda_1$. Write $x = x_1x_2$ and $y = y_1y_2$, where x_1, y_1 are in the subgroup W_{λ_1-1} of S_n generated by $s_1, \ldots, s_{\lambda_1-1}$ and x_2, y_2 are in the subgroup U_{λ_1+1} of S_n generated by $s_{\lambda_1+1}, \ldots, s_{n-1}$.

We have $T_u C_{\lambda} = C_{\lambda} T_u = q^{l(u)} = q^{l(u)} C_{\lambda}$ for $u = x_1, y_1$ and $T_u C_{w_{\lambda_1 - 1}} = C_{w_{\lambda_1 - 1}} T_u$ for $u = x_2, y_2$. Note that $C_{\lambda} = C_{w_{\lambda_1 - 1}} C_{w'} = C_{w'} C_{w_{\lambda_1 - 1}}$. Thus

$$C_{\lambda}T_{z}C_{\lambda} = q^{l(x_{1})+l(y_{1})}C_{w'}T_{x_{2}}C_{w_{\lambda_{1}-1}}T_{z_{1}}C_{w_{\lambda_{1}-1}}T_{y_{2}}C_{w'}.$$

If $z_1 = e$, then

$$C_{\lambda}T_{z}C_{\lambda} = q^{l(x_{1})+l(y_{1})}[\lambda_{1}]!C_{w_{\lambda_{1}-1}}C_{w'}T_{x_{2}y_{2}}C_{w'}$$

We are reduced to the case k - 1.

Now assume that $z_1 \neq e$. By Lemma 1 we know that

$$C_{w_{\lambda_{1}-1}}T_{z_{1}}C_{w_{\lambda_{1}-1}} \in \pm q^{*}[\lambda_{1}-j-1]C_{w_{\lambda_{1}-1}w_{\lambda_{1}+1,\lambda_{1}+j}} + \sum_{\nu} F_{\nu},$$

where $j \leq \lambda_1 - 1$ is defined by

$$z_1 = s_{\lambda_1} s_{\lambda_1-1} \cdots s_{\lambda_1-j} s_{\lambda_1+1} s_{\lambda_1} \cdots s_{\lambda_1-j+1} \cdots s_{\lambda_1+j} s_{\lambda_1+j-1} \cdots s_{\lambda_1+j} s_{\lambda_1+j-1} \cdots s_{\lambda_1+j} s_{\lambda_1+j-1} \cdots s_{\lambda_1+j} s_{\lambda_1+j-1} \cdots s_{\lambda_1+j} s_{\lambda_1+j$$

and ν runs through the partitions $(\lambda_1 + m, j + 1 - m, 1, ..., 1), j + 1 \ge m \ge 1$.

Note that both $C_{\lambda}T_zC_{\lambda}$ and $C_{w'}T_{x_2}C_{w_{\lambda_1-1}w_{\lambda_1+1,\lambda_1+j}}T_{y_2}C_{w'}$ are contained in $\sum_{\mu \ge \lambda} F_{\mu}$ and $C_{w'}T_{x_2}F_{\nu}T_{y_2}C_{w'} \subset \sum_{\mu \ge \nu} F_{\tau}$ for any ν . Whenever $\mu \ge \lambda$ and $\mu \ge (\lambda_1 + m, ...)$ for some $m \ge 1$, we must have $\mu > \lambda$. Thus we have

$$C_{\lambda}T_{z}C_{\lambda} \in \pm q^{*}[\lambda_{1} - j - 1]!C_{w'}T_{x_{2}}C_{w_{\lambda_{1}-1}w_{\lambda_{1}+1,\lambda_{1}+j}}T_{y_{2}}C_{w'} + \sum_{\mu > \lambda}F_{\mu},$$

where * stands for an integer. Let $\tau = (\lambda_1, j + 1, 1, ..., 1)$. Then $w_{\lambda_1 - 1} w_{\lambda_1 + 1, \lambda + j} = w_{\tau}$. Note that $C_{w_{\lambda_1 - 1} w_{\lambda_1 + 1, \lambda_1 + j}} = C_{\lambda_1 - 1} C_{w_{\lambda_1 + 1, \lambda_1 + j}}$. If $j \ge \lambda_2$, then $\tau \le \lambda$, so $C_{w'} T_{x_2} C_{w_{\lambda_1 - 1} w_{\lambda_1 + 1, \lambda_1 + j}} T_{y_2} C_{w'}$ is contained in $(\sum_{\mu \ge \lambda} F_{\mu}) \cap (\sum_{\mu \ge \tau} F_{\mu}) \subset \sum_{\mu > \lambda} F_{\mu}$. We are done in this case.

Now assume that $j \leq \lambda_2 - 1$. Then $\lambda_1 - j - 1 \geq \lambda_1 - \lambda_2$ and

$$C_{w_{\lambda_{1}-1}}T_{z_{1}}C_{w_{\lambda_{1}-1}} \in [\lambda_{1}-\lambda_{2}]!f_{1}C_{w_{\lambda_{1}-1}w_{\lambda_{1}+1,\lambda_{1}+j}} + \sum_{\nu}F_{\nu}$$

for some $f_1 \in K$, where ν runs through the partitions $(\lambda_1 + m, j + 1 - m, 1, ..., 1), j + 1 \ge m \ge 1$. Thus we have

$$C_{\lambda}T_{z}C_{\lambda} \in [\lambda_{1} - \lambda_{2}]!f_{1}C_{w_{\lambda_{1}-1}}C_{w'}T_{x_{2}}C_{w_{\lambda_{1}+1,\lambda_{1}+j}}T_{y_{2}}C_{w'} + \sum_{\nu}C_{w'}T_{x_{2}}F_{\nu}T_{y_{2}}C_{w'}$$

Note that $x_2, w', y_2, w_{\lambda_1+1,\lambda_1+j}$ are all in the subgroup of S_n generated by $s_i, \lambda_1+1 \le i \le n-1$ and $C_{w'}T_{x_2}F_{\nu}T_{y_2}C_{w'}$ is included in $\sum_{\mu \le \lambda}F_{\mu}$ if $\nu = (\lambda_1 + m, j + 1 - m, 1, ..., 1)$ for some $m \ge 1$. By induction hypothesis, we see the lemma is true. \Box

Lemma 4. Let λ be as in Lemma 3. Recall that $\lambda_{1,j} = \lambda_1 + \lambda_2 + \cdots + \lambda_j$ for $j = 1, 2, \dots, k$. Set

$$z_i = (s_{\lambda_{1,i}} s_{\lambda_{1,i}-1} \cdots s_{\lambda_{1,i}-\lambda_{i+1}+1}) \cdots (s_{\lambda_{1,i+1}-1} s_{\lambda_{1,i+1}-2} \cdots s_{\lambda_{1,i}}),$$

for i = 1, 2, ..., k - 1. Define

$$h = T_{z_{k-1}}(T_{z_{k-2}}T_{z_{k-1}})(T_{z_{k-3}}T_{z_{k-2}}T_{z_{k-1}})\cdots(T_{z_1}T_{z_2}\cdots T_{z_{k-1}}).$$

Then $C_{\lambda}hC_{\lambda} \in \pm q^* \prod_{i=1}^k ([\lambda_i - \lambda_{i+1}]!)^i C_{\lambda} + F_{>\lambda}$, where * stands for an integer and $F_{>\lambda} = \sum_{\mu>\lambda} F_{\mu}$.

Proof. Set $u_i = C_{w_{\lambda_{1,i-1}+1,\lambda_{1,i-1}}}$ (we understand that $\lambda_{1,0} = 0$) and $h_i = T_{z_i}$. Then $C_{\lambda} = u_1 u_2 \cdots u_k$, $u_i u_j = u_j u_i$ for all i, j, and $u_i h_j = h_j u_i$ if i < j. For $h', h'' \in H$ and $F \subset H$, we write $h' \equiv h'' + F$ if $h' - h'' \in F$. Using Lemma 1 repeatedly we get

$$\begin{split} C_{\lambda}hC_{\lambda} &= u_{k}(u_{k-1}h_{k-1})(u_{k-2}h_{k-2}h_{k-1})\cdots \\ &\times (u_{2}h_{2}h_{3}\cdots h_{k-1})u_{1}h_{1}u_{1}h_{2}u_{2}\cdots h_{k-1}u_{k-1}u_{k} \\ &\equiv \pm q^{*}[\lambda_{1}-\lambda_{2}]!u_{k}(u_{k-1}h_{k-1})(u_{k-2}h_{k-2}h_{k-1})\cdots \\ &\times (u_{2}h_{2}h_{3}\cdots h_{k-1})u_{1}u_{2}h_{2}u_{2}\cdots h_{k-1}u_{k-1}u_{k}+F_{>\lambda} \\ &\equiv \pm q^{*}[\lambda_{1}-\lambda_{2}]!u_{1}u_{k}(u_{k-1}h_{k-1})(u_{k-2}h_{k-2}h_{k-1})\cdots \\ &\times (u_{2}h_{2}h_{3}\cdots h_{k-1})u_{2}h_{2}u_{2}\cdots h_{k-1}u_{k-1}u_{k}+F_{>\lambda} \\ &\equiv \pm q^{*}[\lambda_{1}-\lambda_{2}]![\lambda_{2}-\lambda_{3}]!u_{1}u_{k}(u_{k-1}h_{k-1})(u_{k-2}h_{k-2}h_{k-1})\cdots \\ &\times (u_{2}h_{2}h_{3}\cdots h_{k-1})u_{2}u_{3}h_{3}u_{3}\cdots h_{k-1}u_{k-1}u_{k}+F_{>\lambda} \\ &\equiv \pm q^{*}[\lambda_{1}-\lambda_{2}]!([\lambda_{2}-\lambda_{3}]!)^{2}u_{1}u_{2}u_{k}(u_{k-1}h_{k-1})(u_{k-2}h_{k-2}h_{k-1})\cdots \\ &\times (u_{3}h_{3}\cdots h_{k-1})^{2}u_{3}h_{3}u_{3}\cdots h_{k-1}u_{k-1}u_{k}+F_{>\lambda} \\ &\equiv \cdots \\ &\equiv \pm q^{*}\prod_{i=1}^{k} ([\lambda_{i}-\lambda_{i+1}]!)^{i}C_{\lambda}+F_{>\lambda}. \quad \Box \end{split}$$

Combining Lemmas 3 and 4 we see that part (b) of the theorem is true. The theorem is proved.

If $\sum_{w \in S_n} q^{l(w)} \neq 0$ and *K* is an algebraic closed field of characteristic 0, then we have the Deligne–Langlands–Lusztig classification for irreducible modules of \tilde{H} (see [BZ,Z,KL1,X]). We have another classification due to Ariki and Mathas for any sufficient large *K* (see [AM]). An interesting question is to classify irreducible modules of \tilde{H} in the spirit of Deligne–Langlands–Lusztig classification when $\sum_{w \in S_n} q^{l(n)} = 0$, see [Gr] for an announcement. If one can manage the calculation $C_{\lambda} \tilde{H} C_{\lambda}$ to get counterparts of Lemmas 3 and 4, the question will be settled.

Acknowledgments

I would like to thank Professor S. Ariki for pointing out a mistake. I am indebted to the referee for helpful comments. Part of the paper was written during my visit to the Department of Mathematics at the National University of Singapore. I am grateful to Professors C. Zhu and D. Zhang for invitation and to the department for hospitality and financial support.

References

- [A] S. Ariki, Robinson–Schensted correspondence and left cells, in: Combinatorial Methods in Representation Theory, Kyoto, 1998, in: Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1–20.
- [AM] S. Ariki, A. Mathas, The number of simple modules of the Hecke algebras of type G(r, 1, n), Math. Z. 233 (3) (2000) 601–623.
- [BZ] J. Bernstein, A. Zelevinsky, Induced representations of reductive *p*-adic groups, I, Ann. Sci. École Norm. Sup. 10 (1977) 441–472.
- [DJ] R. Dipper, G.D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1) (1986) 20–52.
- [Gr] I. Grojnowski, Representations of affine Hecke algebras and affine quantum GL_n at roots of unity, Int. Math. Res. Not. 5 (1994) 213–216.
- [G] A. Gyoja, Modular representation theory over a ring of higher dimension with application to Hecke algebras, J. Algebra 174 (1995) 553–572.
- [J] G.D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Math., vol. 682, Springer, Berlin, 1978.
- [KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979) 165–184.
- [KL1] D. Kazhdan, G. Lusztig, Proof of the Deligne–Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987) 153–215.
- [L] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (2) (1981) 490–498.
- [M] G.E. Murphy, The representations of Hecke algebras of type A_n , J. Algebra 173 (1) (1995) 97–121.
- [X] N. Xi, Representations of affine Hecke algebras and based ring of affine Weyl groups, J. Amer. Math. Soc. 20 (2007) 211–217.
- [Z] A. Zelevinsky, Induced representations of reductive *p*-adic groups, II. On irreducible representations of GL_n , Ann. Sci. École Norm. Sup. 13 (1980) 165–210.