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Abstract

In this paper we give a new proof for the classification of irreducible modules of a Hecke algebra of type
An−1, which was obtained by Dipper and James in 1986.
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Let H be the Hecke algebra of the symmetric group Sn over a commutative ring K with an
invertible parameter q ∈ K . In [DJ] Dipper and James worked out a classification of irreducible
modules of H when K is a field, which is similar to the classification of irreducible Sn-modules
over a field [J]. In this paper we shall give a new proof for the classification of Dipper and James.
Essentially the idea is due to Dipper and James, Murphy [DJ,M], but we use Kazhdan–Lusztig
theory and an affine Hecke algebra of type Ãn−1 to prove this result by a direct calculation.

As usual, the simple reflections of Sn consisting of the transposes si = (i, i + 1) for i =
1,2, . . . , n − 1. As a free K-module, the Hecke algebra H has a basis Tw , w ∈ Sn, and the
multiplication is defined by the relations (Ts − q)(Ts + 1) = 0 if s is a simple reflection, TwTu =
Twu if l(wu) = l(w) + l(u), here l : Sn → N is the length function.

For each partition λ = (λ1, . . . , λk) of n, set Ij = {λ1 +· · ·+λj−1 +1, λ1 +· · ·+λj−1 +2, . . . ,

λ1 + · · · + λj−1 + λj } for 1 � j � k (we understand λ0 = 0). Let Sλ be the subgroup of Sn con-
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sisting of elements stabilizing each Ij . Then Sλ is a parabolic subgroup of Sn and is isomorphic
to Sλ1 × Sλ2 × · · · × Sλk

. We shall denote by wλ the longest element of Sλ. Set Cλ = ∑
w∈Sλ

Tw .
Following [KL] and [DJ,M] we consider the left ideal Nλ = HCλ of H and shall regard it as a
left H -module. Let N ′

λ be a maximal submodule of Nλ including Nλ ∩ ∑
μ>λ HCμH and not

containing Cλ. Then the quotient module Mλ = Nλ/N
′
λ is an irreducible module of H . Assume

that K is a field, then each irreducible module of H is isomorphic to some Mλ (see [KL, proof
of Theorem 1.4] or [DJ,M]). When

∑
w∈Sn

ql(w) �= 0, the irreducible modules Mλ, λ a partition
of n, form a complete set of irreducible modules of H (see [DJ,G,M], when q is not a root of 1,
this result was implied in [L]).

One of the main results in [DJ] is the following.

Theorem. Assume that K is a field. Then

(a) the set {Mλ | CλMλ �= 0} is a complete set of irreducible modules of H .
(b) CλMλ �= 0 if and only if

∑m
a=0 qa �= 0 for all 1 � m � max{λ1 − λ2, λ2 − λ3, . . . ,

λk−1 − λk,λk}. (See [DJ, Theorems 6.3(i), 6.8(i) and 7.6] or [M, Theorems 6.4 and 6.9].)

Now we argue for the theorem. For each module E we can attach a partition λ = p(E)

as follows, CλE �= 0 but CμE = 0 for all partitions μ satisfying μ > λ. (We say that μ =
(μ1,μ2, . . . ,μj ) � λ = (λ1, λ2, . . . , λk) if μ1 + · · · + μi � λ1 + · · · + λi for i = 1,2, . . . .)

Consider the two-sided ideal Fλ = HCλH of H . According to the proof of Theorem 1.4
in [KL], Fλ/(Fλ ∩∑

μ>λ Fμ) is isomorphic to the direct sum of some copies of Eλ = Nλ/(Nλ ∩∑
μ>λ Fμ).
Let E′

λ be the sum of all submodules E of Eλ satisfying CλE = 0. We claim that either
E′

λ = Eλ or E′
λ is the unique maximal submodule of Eλ.

Let D be a submodule of Eλ such that CλD �= 0. For any h ∈ H we have CλhCλ ∈ aCλ +∑
μ>λ Fμ, here a ∈ K [KL]. Thus CλD �= 0 implies that D = Eλ. Therefore E′

λ = Eλ or E′
λ is

the unique maximal submodule of Eλ. As a consequence, Mλ = Eλ/E
′
λ if CλEλ �= 0 and in this

case CλMλ �= 0.
Now assume that L is an irreducible H -module such that CλL �= 0 but CμL = 0 for all μ > λ.

Let x ∈ L be such that Cλx �= 0. Consider the H -module homomorphism Nλ → L, Cλ → Cλx.
By assumption, FμL = 0 if μ > λ. Thus we get a non-zero homomorphism Eλ → L. We must
have CλEλ �= 0 since CλL �= 0. So L is isomorphic to Mλ. Noting that CμEλ �= 0 implies that
μ � λ [KL] we see that if λ �= μ then Mλ is not isomorphic to Mμ when CλMλ �= 0 �= CμMμ.
Part (a) is proved.

To prove part (b) we need to calculate CλHCλ. This is equivalent to calculate all CλTwCλ.
Clearly if w ∈ Sλ, then TwCλ = ql(w)Cλ. So we only need to consider the element of minimal
length in a double coset SλwSλ. Now the affine Hecke algebra plays a role in calculating the
product CλTwCλ.

Let G be the special linear group SLn(C) and let T be the subgroup of G consisting of
diagonal matrices. Let X = Hom(T ,C∗) be the character group of T . Let τi ∈ X be the char-
acter T → C, diag(a1, a2, . . . , an) → ai . Then we have τ1τ2 · · · τn = 1 and as a free abelian
group X is generated by τi , i = 1,2, . . . , n − 1. The symmetric group Sn acts on X naturally:
w : X → X, τi → τw(i). Thus we can form the semi-direct product S̃n = S � X. In S̃n we
have wτi = τw(i)w for w in Sn. Let s0 = τ 2

1 τ2 · · · τi · · · τn−1s, where s ∈ Sn is the transpose
(1, n) = s1s2 · · · sn−2sn−1sn−2 · · · s2s1. Since τ1τ2 · · · τn = 1 we have s2 = 1. The simple reflec-
0
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tions s0, s1, . . . , sn−1 generate a subgroup W of S̃n, which is a Coxeter group of type Ãn−1.
Define ω = τ1s1s2 · · · sn−1. Then ωn = 1 and ωsi = si+1ω for all i (we set sn = s0). Let Ω

be the subgroup of S̃n generated by ω. Note that W is a normal subgroup of S̃n and we have
S̃n = Ω � W . The Hecke algebra H̃ of S̃n is defined as follows. As a K-module, it is free and
has a basis consisting of elements Tw , w ∈ S̃n. The multiplication is defined by the relations
(Tsi − q)(Tsi + 1) = 0 for all i and TwTu = Twu if l(wu) = l(w) + l(u). The length function
l : S̃n → N is defined as l(ωaw) = l(w) for w ∈ W . Clearly H is a subalgebra of H̃ .

For 1 � i � n − 1, define σi = τ1τ2 · · · τi . Then we have siσj = σj si if i and j are different.
Moreover we have l(w0

∏n−1
i=1 σ

ai

i ) = l(w0) + ∑n−1
i=1 ail(σi) if all ai are non-negative integers.

Here w0 is the longest element of Sn. Also we have l(σisj ) = l(σi) − 1 if and only if i = j .
Thus we have Tsi Tσj

= Tσj
Tsi if 1 � i �= j � n − 1 and Tσi

= Tσisi Tsi .
For a positive integer k we set [k] = qk−1 +qk−2 +· · ·+q +1, [k]! = [k][k −1] · · · [2][1], we

also set [0] = [0]! = 1. For any element w ∈ S̃n we set Cw = ∑
y�w Py,w(q)Ty , where � is the

Bruhat order and Py,w is the Kazhdan–Lusztig polynomial. Note that if w is a longest element
of a parabolic subgroup of S̃n, then Cw = ∑

y�w Ty . So we have Cλ = Cwλ . Now we are ready
to prove part (b) of the theorem.

Lemma 1. Let λ = (i,1, . . . ,1) be a partition of n and z ∈ Sn such that for any simple reflection
s, sz � z if and only if s = si and zs � z if and only if s = si . Then

CλTzCλ ∈ ±q∗[i − j − 1]!Cμ +
∑
ν

Fν,

for some j � i − 1, where ∗ stands for an integer, μ = (i, j + 1,1, . . . ,1), the summation runs
through ν = (i + m,j + 1 − m,1, . . . ,1) > μ for j + 1 � m � 1.

Proof. Since for any simple reflection s, if sz � z or zs � z then we have s = si , we can find
j � i − 1 such that

z = (sisi−1 · · · si−j )(si+1si · · · si−j+1) · · · (si+j−1si+j−2 · · · si−1)(si+j si+j−1 · · · si).

It is no harm to assume n = i + j + 1.
Note that

σi = ωi(sn−i sn−i−1 · · · s1)(sn−i+1sn−i · · · s2) · · · (sn−1sn−2 · · · si).

Let y = (si−j−1si−j · · · si−1) · · · (s2s3 · · · sj+2)(s1s2 · · · sj+1). Since n = i + j + 1 we have
z = yω−iσi and l(σi) = l(y−1) + l(z) (we understand that y = e if j = i − 1). Thus we have
CλTzCλ = CλT

−1
y−1T

−i
ω Tσi

Cλ. Noting that CλT
−1
y−1 = q−l(y)Cλ and CλTσi

= Tσi
Cλ, we get

CλTzCλ = q−l(y)CλT
−i
ω Tσi

Cλ = q−l(y)T −i
ω T i

ωCλT
−i
ω CλTσi

.

Let w′ = ωiwλω
−i . Then w′ is the longest element of the subgroup of S̃n generated by

si+1, si+2, . . . , si+i−1. Let k = i − j − 2, then 2i − 1 = k + i + j + 1. We have w′ = uwk

for some u and l(w′) = l(u) + l(wk), where wk is the longest element of the subgroup Wk of
Sn generated by s1, s2, . . . , sk if k � 1 and wk = e is the neutral element if k = −1 or 0. We
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also have u = u′ui+1 for some u′ and l(u) = l(u′) + l(ui+1), where ui+1 is the longest ele-
ment of the subgroup of Ui+1 of Sn generated by si+1, . . . , si+j = sn−1. Set C′

λ = Cw′ . Then
C′

λ = T i
ωCλT

−i
ω = hCui+1Cwk

for some h in H , where Cui+1 is the sum of all Tx , x ∈ Ui+1, and
Cwk

is the sum of all Tx , x ∈ Wk . Clearly we have Cwk
Cλ = [k + 1]!Cλ and Cui+1Cλ = Cμ.

Therefore C′
λCλ = [k + 1]!hCμ. Note that uwλ = u′ui+1wλ = u′wμ is in the subgroup of S̃n

generated by sp , p �= i. The subgroup is isomorphic to the symmetric group Sn. Applying the
Robinson–Schensted rule we see that uwλ and wμ are in the same left cell. (See [A] for an ex-
position of Robinson–Schensted rule. One may see this fact also from star operations introduced
in [KL].) Write C′

λCλ = ∑
avCv , then clearly auwλ = [k + 1]!. Since Tω and Txi

are invert-
ible, we see that in the expression CλTzCλ = ∑

bvCv , bv ∈ K , there exists x such that bx �= 0,
x and wμ are in the same two-sided cell. Since z = z−1 and wλ = w−1

λ , by the symmetry we
see that x and wμ are in the same left cell and right cell as well. So we must have x = wμ (see
[KL, proof of Theorem 1.4]). Moreover we must have bμ = ±qa[k + 1]! for some integer a. If
bv �= 0 and v �= wμ, we must have Cv ∈ Fν for some ν > μ. We claim that for such ν we have
ν = (i + m,j + 1 − m,1, . . . ,1) for some m � 1. Since CλTzCλ is contained in the subalgebra
of H generated by Ts1, . . . , Tsi+j

, we may assume that n = i + j + 1. In this case we must have
ν = (i +m,j +1−m) for some m � 1 since μ = (i, j +1) and ν > μ. The lemma is proved. �
Remark. The author has not been able to determine the integer ∗ in the lemma.

Corollary 2. Let λ = (i, j) be a partition of n. That is i � j and i + j = n. Then for any z in Sn

we have

CλTzCλ ∈ [i − j ]![j ]!f Cλ +
∑
μ>λ

Fμ,

where f ∈ K .

Proof. Since CλCλ = [i]![j ]!Cλ and TsCλ = CλTs = qCλ if s �= i in Sn, we may assume that z =
(sisi−1 · · · si−k) · · · (si+ksi+k−1 · · · si), where k � j − 1 � i − 1. Note that Cλ = Cwi−1Cui+1 =
Cui+1Cwi−1 (see the proof of Lemma 1 for the definition of wi and ui ). We have CλTzCλ =
Cui+1Cwi−1TzCwi−1Cui+1 . By Lemma 1 we get Cwi−1TzCwi−1 ∈ ±q∗[i − k − 1]!Cwi−1wi+1,i+k

+∑
ν Fν , where wi+1,i+k is the longest element of the subgroup of Wi+1,i+k of Sn generated by

si+1, . . . , si+k , and ν runs through the partitions (i + m,k + 1 − m,1, . . . ,1), k + 1 � m � 1.
We have Cui+1Cwi+1,i+k

Cui+1 = [k + 1]![j ]!Cui+1 . We also have CλTzCλ ⊂ ∑
μ�λ Fμ and

Cui+1FνCui+1 ⊂ ∑
μ�ν Fμ for any ν. If μ � λ and μ � (i + m, . . .) for some m � 1, we

must have μ > λ. So CλTzCλ ∈ ±q∗[i − k − 1]![k + 1]![j ]!Cλ + ∑
μ>λ Fμ. Since [i − k − 1]! =

[i − j ]![i − j + 1] · · · [i − k − 1], the corollary follows. �
Lemma 3. Let λ = (λ1, λ2, . . . , λk) be a partition of n. Then

CλTzCλ ∈
(

k∏
i=1

[λi − λi+1]!
)

f Cλ +
∑
μ>λ

Fμ,

where f ∈ K and we set λk+1 = 0.
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Proof. We use induction on k. When k = 1, the lemma is trivial, when k = 2, by Corollary 2 we
see the assertion is true. Now assume that k > 2. For i � j we set λi,j = λi + · · · + λj . We have
(see the proof of Corollary 2 for the definition of wkm)

wλ = wλ1−1wλ1+1,λ1,2−1 · · ·wλ1,k−1+1,λ1,k−1 = wλ1−1w
′.

Let z = xz1y, where x, y are in the subgroup of Sn generated by si , i �= λ1, and l(siz1) =
l(z1si) = l(z1) + 1 if i �= λ1. Write x = x1x2 and y = y1y2, where x1, y1 are in the subgroup
Wλ1−1 of Sn generated by s1, . . . , sλ1−1 and x2, y2 are in the subgroup Uλ1+1 of Sn generated by
sλ1+1, . . . , sn−1.

We have TuCλ = CλTu = ql(u) = ql(u)Cλ for u = x1, y1 and TuCwλ1−1 = Cwλ1−1Tu for u =
x2, y2. Note that Cλ = Cwλ1−1Cw′ = Cw′Cwλ1−1 . Thus

CλTzCλ = ql(x1)+l(y1)Cw′Tx2Cwλ1−1Tz1Cwλ1−1Ty2Cw′ .

If z1 = e, then

CλTzCλ = ql(x1)+l(y1)[λ1]!Cwλ1−1Cw′Tx2y2Cw′ .

We are reduced to the case k − 1.
Now assume that z1 �= e. By Lemma 1 we know that

Cwλ1−1Tz1Cwλ1−1 ∈ ±q∗[λ1 − j − 1]Cwλ1−1wλ1+1,λ1+j
+

∑
ν

Fν,

where j � λ1 − 1 is defined by

z1 = sλ1sλ1−1 · · · sλ1−j sλ1+1sλ1 · · · sλ1−j+1 · · · sλ1+j sλ1+j−1 · · · sλ1 ,

and ν runs through the partitions (λ1 + m,j + 1 − m,1, . . . ,1), j + 1 � m � 1.
Note that both CλTzCλ and Cw′Tx2Cwλ1−1wλ1+1,λ1+j

Ty2Cw′ are contained in
∑

μ�λ Fμ and
Cw′Tx2FνTy2Cw′ ⊂ ∑

μ�ν Fτ for any ν. Whenever μ � λ and μ � (λ1 +m, . . .) for some m � 1,
we must have μ > λ. Thus we have

CλTzCλ ∈ ±q∗[λ1 − j − 1]!Cw′Tx2Cwλ1−1wλ1+1,λ1+j
Ty2Cw′ +

∑
μ>λ

Fμ,

where ∗ stands for an integer. Let τ = (λ1, j + 1,1, . . . ,1). Then wλ1−1wλ1+1,λ+j =
wτ . Note that Cwλ1−1wλ1+1,λ1+j

= Cλ1−1Cwλ1+1,λ1+j
. If j � λ2, then τ � λ, so

Cw′Tx2Cwλ1−1wλ1+1,λ1+j
Ty2Cw′ is contained in (

∑
μ�λ Fμ) ∩ (

∑
μ�τ Fμ) ⊂ ∑

μ>λ Fμ. We are
done in this case.

Now assume that j � λ2 − 1. Then λ1 − j − 1 � λ1 − λ2 and

Cwλ1−1Tz1Cwλ1−1 ∈ [λ1 − λ2]!f1Cwλ1−1wλ1+1,λ1+j
+

∑
Fν
ν
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for some f1 ∈ K , where ν runs through the partitions (λ1 + m,j + 1 − m,1, . . . ,1), j + 1 �
m � 1. Thus we have

CλTzCλ ∈ [λ1 − λ2]!f1Cwλ1−1Cw′Tx2Cwλ1+1,λ1+j
Ty2Cw′ +

∑
ν

Cw′Tx2FνTy2Cw′ .

Note that x2,w
′, y2,wλ1+1,λ1+j are all in the subgroup of Sn generated by si , λ1 + 1 � i � n− 1

and Cw′Tx2FνTy2Cw′ is included in
∑

μ�λ Fμ if ν = (λ1 + m,j + 1 − m,1, . . . ,1) for some
m � 1. By induction hypothesis, we see the lemma is true. �
Lemma 4. Let λ be as in Lemma 3. Recall that λ1,j = λ1 + λ2 + · · ·+ λj for j = 1,2, . . . , k. Set

zi = (sλ1,i
sλ1,i−1 · · · sλ1,i−λi+1+1) · · · (sλ1,i+1−1sλ1,i+1−2 · · · sλ1,i

),

for i = 1,2, . . . , k − 1. Define

h = Tzk−1(Tzk−2Tzk−1)(Tzk−3Tzk−2Tzk−1) · · · (Tz1Tz2 · · ·Tzk−1).

Then CλhCλ ∈ ±q∗ ∏k
i=1([λi − λi+1]!)iCλ + F>λ, where ∗ stands for an integer and F>λ =∑

μ>λ Fμ.

Proof. Set ui = Cwλ1,i−1+1,λ1,i−1 (we understand that λ1,0 = 0) and hi = Tzi
. Then Cλ =

u1u2 · · ·uk , uiuj = ujui for all i, j , and uihj = hjui if i < j . For h′, h′′ ∈ H and F ⊂ H ,
we write h′ ≡ h′′ + F if h′ − h′′ ∈ F . Using Lemma 1 repeatedly we get

CλhCλ = uk(uk−1hk−1)(uk−2hk−2hk−1) · · ·
× (u2h2h3 · · ·hk−1)u1h1u1h2u2 · · ·hk−1uk−1uk

≡ ±q∗[λ1 − λ2]!uk(uk−1hk−1)(uk−2hk−2hk−1) · · ·
× (u2h2h3 · · ·hk−1)u1u2h2u2 · · ·hk−1uk−1uk + F>λ

≡ ±q∗[λ1 − λ2]!u1uk(uk−1hk−1)(uk−2hk−2hk−1) · · ·
× (u2h2h3 · · ·hk−1)u2h2u2 · · ·hk−1uk−1uk + F>λ

≡ ±q∗[λ1 − λ2]![λ2 − λ3]!u1uk(uk−1hk−1)(uk−2hk−2hk−1) · · ·
× (u2h2h3 · · ·hk−1)u2u3h3u3 · · ·hk−1uk−1uk + F>λ

≡ ±q∗[λ1 − λ2]!
([λ2 − λ3]!

)2
u1u2uk(uk−1hk−1)(uk−2hk−2hk−1) · · ·

× (u3h3 · · ·hk−1)
2u3h3u3 · · ·hk−1uk−1uk + F>λ

≡ · · ·

≡ ±q∗
k∏

i=1

([λi − λi+1]!
)i

Cλ + F>λ. �

Combining Lemmas 3 and 4 we see that part (b) of the theorem is true. The theorem is proved.
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If
∑

w∈Sn
ql(w) �= 0 and K is an algebraic closed field of characteristic 0, then we have the

Deligne–Langlands–Lusztig classification for irreducible modules of H̃ (see [BZ,Z,KL1,X]). We
have another classification due to Ariki and Mathas for any sufficient large K (see [AM]). An
interesting question is to classify irreducible modules of H̃ in the spirit of Deligne–Langlands–
Lusztig classification when

∑
w∈Sn

ql(n) = 0, see [Gr] for an announcement. If one can manage

the calculation CλH̃Cλ to get counterparts of Lemmas 3 and 4, the question will be settled.
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