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Abstract In this work, the effects of slip velocity on the flow and heat transfer for an electrically

conducting micropolar fluid over a permeable stretching surface with variable heat flux in the pres-

ence of heat generation (absorption) and a transverse magnetic field are investigated. The governing

partial differential equations describing the problem are converted to a system of non-linear

ordinary differential equations by using the similarity transformation, which is solved numerically

using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation

and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and

the local Nusselt number are presented graphically. The numerical results of the local skin-friction

coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and

discussed.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

The study of flow and heat transfer past a stretching sheet prob-
lems has gained considerable interest because of its extensive
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engineering applications, such as in the extrusion of plastic
sheets, paper production, crystal growing and glass blowing.
Crane [1] presented an exact similarity solution in closed

analytical form for the laminar boundary flowof an incompress-
ible, steady viscous fluid over a stretching surface with a velocity
varying linearly with the distance from a fixed point. Gupta and

Gupta [2] extended the Crane’s problem to include suction or
blowing and studied its influence on the heat and mass transfer
in the boundary layer over a stretching surface. Vajravelu and

Rollins [3] studied the heat transfer characteristics in an electri-
cally conducting fluid over a stretching sheet with variable wall
temperature and internal heat generation or absorption.

The problem of MHD flow and heat transfer over a stretch-

ing surface has gained considerable interest because of its
applications in industry. For example in the extrusion of a
polymer sheet from a die, the sheet is sometimes stretched.

During this process, the properties of the final products depend
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considerably on the rate of cooling. By drawing such sheet in

an electrically conducting fluid subjected to a magnetic field,
the rate of cooling can be controlled and the final product
can be obtained with desired characteristics. Pavlov [4] studied
the boundary layer flow of an electrically conducting fluid due

to a stretching of a plane elastic surface in the presence of a
uniform transverse magnetic field. Chakrabarti and Gupta
[5] extended Pavlov’s work to study the heat transfer when a

uniform suction is applied at the stretching surface.
All the above analysis were restricted to the flow of Newto-

nian fluids. However, a new stage in the evaluation of fluid

dynamic theory whose flow shear behavior cannot be character-
ized by Newton relationships, was first introduced by Eringen
[6,7] as the theory of micropolar and thermomicropolar fluids.

This theory can be used to describe the behavior of fluids in
many practical applications. These applications include the
mathematical model for polymeric fluids, colloidal fluids, real
fluids with suspensions, liquid crystal, animal blood and exotic

lubricants, as examples, for which the classical Navier–Stokes
theory is inadequate. An excellent review of micropolar fluids
and their applications was presented by Ariman et al. [8].

Soundalgekar and Takhar [9] investigated the effects of suction
and injection on the flow past a continuously moving semi-infi-
nite porous plate in a micropolar fluid at rest. Hady [10] pre-

sented analytical solutions for the problem of heat transfer to
micropolar fluid from a non-isothermal permeable stretching
sheet. Heat transfer over a stretching surface with uniform or
variable surface heat flux in micropolar fluids was studied by

Ishak et al. [11]. Hassanien and Gorla [12] numerically studied
the effects of suction and blowing on the flow and heat transfer
of a micropolar fluid over a non-isothermal stretching surface.

Hayat et al. [13] analytically studied the problem of a steady
two-dimensional mixed convection flow of a micropolar fluid
over a non-linear stretching surface by means of HAM. Hayat

et al. [14] investigated the two-dimensional magnetohydrody-
namic (MHD) stagnation-point flow of an incompressible
micropolar fluid over a nonlinear stretching surface. Sajid

et al. [15] presented the exact solutions for thin film flows of a
micropolar fluid. The boundary layer flow of a micropolar fluid
through a porous channel was studied by Sajid et al. [16].

In several physical problems such as fluids undergoing

exothermic or endothermic chemical reactions, it is important
to study the effects of heat generation and absorption. The
presence of heat generation or absorption may alter the

temperature distribution in the fluid which in turn affects
the particle deposition rate in systems such as nuclear reactors,
electronic chips, and semiconductor wafers. The exact model-

ing of internal heat generation or absorption is difficult but
some simple mathematical models may express its average
behavior for most physical situations. Following Foraboschi

and Federico [17], we shall assume that the volumetric rate
of heat generation Q½W=m3�, as:

Q ¼
Q0ðT� T1Þ; T P T1

0; T < T1;

�

where Q0 is the heat generation or absorption constant. The

above relation is valid for the state of some exothermic pro-
cesses having T1 as the onset temperature. The influence of
heat generation or absorption on the fluid flow over a stretching

surface has been studied by many authors. Cortell [18] studied
the flow and heat-transfer in a porous medium over a stretching
surface with internal heat generation or absorption. Heat gen-

eration/absorption and viscous dissipation effects on MHD
flow of a micropolar fluid over a moving permeable surface
embedded in a non-Darcian porous medium has been studied

by Mahmoud [19]. Damseh et al. [20] investigate the combined
heat and mass transfer by natural convection of a micropolar,
viscous and heat generating or absorbing fluid flow near a con-
tinuously moving vertical permeable infinitely long surface in

the presence of a first-order chemical reaction.
In the above mentioned studies, the effect of slip condition

has not been taken into consideration. Navier [21] proposed a

slip boundary condition where the slip velocity depends linearly
on the shear stress. Since then the effects of slip velocity on the
boundary layer flow of Newtonian and non-Newtonian fluids

have been studied by several authors. Ariel [22] studied the flow
of an elastico-viscous fluid past a stretching sheet with partial
slip. Hayat et al. [23] analytically studied the solutions of the

equations of motion and energy of a second grade fluid for
the developed flow over a stretching sheet with slip condition.
Hayat et al. [24] studied the effect of the slip condition on flows
of an Oldroyd 6-constant fluid. Roux [25] discussed the

solvability of the equations of motion for an incompressible
fluid of grade two subject to nonlinear partial slip boundary
conditions in a bounded simply-connected domain. Liakos

[26] studied the steady-state, isothermal flow of a viscoelastic
fluid obeying an Oldroyd-type constitutive law with slip bound-
ary condition. Asghar et al. [27] analytically studied the rotating

flow of a third grade fluid past a porous plate with partial slip
effects. Khan [28] presented the exact analytical solutions for
three basic fluid flow problems in a porous medium when the
no-slip condition is no longer valid. Asghar et al. [29] obtained

the exact analytical solutions for general periodic flows of a
second grade fluid in the presence of partial slip and a porous
medium. Mahmoud [30] studied the effects of slip velocity on

flow and heat transfer of a non-Newtonian power-law fluid
on a stretching surface with thermal radiation. Hayat et al.
[31] studied the flow and heat transfer of a Newtonian fluid over

an unsteady permeable stretching sheet with slip conditions.
Mahmoud andWaheed [32] investigated the effect of slip veloc-
ity onmixed convection flow of a micropolar fluid over a heated

stretching surface in the presence of a uniform magnetic field
and heat generation or absorption. The aim of the present work
is to investigate the flow and heat transfer of an electrically
conductingmicropolar fluid over a permeable stretching surface

with variable heat flux in the presence of slip velocity at the
surface, heat generation (absorption) and a uniform transverse
magnetic field.

2. Formulation of the problem

The equations governing the behavior of an incompressible
steady micropolar fluid in vectorial form are [6,7]:

Conservation of mass:

r � V ¼ 0; ð1Þ
Conservation of momentum:

qðV � rÞV ¼ �rpþ ðlþ kÞr2Vþ kr� Xþ qf; ð2Þ

Conservation of angular momentum:

qjðV � rÞX ¼ ða0 þ b0 þ c0Þrðr � XÞ � c0r� ðr � XÞ
þ kr� V� 2kXþ ql; ð3Þ
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Energy:

qcpðV � rÞT ¼ jr2Tþ uþQ; ð4Þ

where f is the body force per unit mass and l is the body couple

per unit mass. V is the translational vector, X is the micro-rota-
tion vector and p is the pressure. a0, b0, c0 and k are the mate-
rial constants for micropolar fluids. q is the fluid density, j is

the micro-inertia, l is the dynamic viscosity, j is the thermal
conductivity. T is the fluid temperature, u is the dissipation
function and cp is the specific heat at constant pressure.

Consider the two-dimensional flow of an incompressible
electrically conducting micropolar fluid past a porous stretch-
ing surface which coincides with the plane y= 0, the flow
being in the region y > 0. The x-axis is taken along the stretch-

ing surface in the direction of motion. A uniform magnetic
field B0 is imposed along y-axis, which is normal to the surface.
It is assumed that the variable surface heat flux to be

qwðxÞ ¼ bxm (where b, m are constants and x measures the dis-
tance from the leading edge along the surface of the plate). If
the velocity and micro-rotation components are (u,v, 0) and

(0,0,N) , respectively, with neglecting the body couple, the mi-
cro-inertia, the viscous dissipation and using the usual bound-
ary layer approximations, the basic equations taking into

account the presence of heat generation (absorption) in the en-
ergy equation are [9]: Conservation of mass:

@u

@x
þ @v
@y
¼ 0; ð5Þ

Conservation of momentum:

u
@u

@x
þ v

@u

@y
¼ lþ k

q

� �
@2u

@y2
þ k

q
@N

@y
� rB2

0

q
u; ð6Þ

Conservation of angular momentum:

G1

@2N

@y2
� 2Nþ @u

@y

� �
¼ 0; ð7Þ

Energy:

u
@T

@x
þ v

@T

@y
¼ j

qcp

@2T

@y2
þ Q0

qcp
ðT� T1Þ; ð8Þ

Subject to the boundary conditions:

u ¼ axþ a� ðlþ kÞ @u
@y
þ kN

� �
; v ¼ vw;

N ¼ 0;
@T

@y
¼ � bxm

j
; at y ¼ 0; ð9Þ

u! 0; N! 0; T! T1; as y!1;

where u and v are the velocity components in the x and y direc-
tions; respectively. N is the micro-rotation or the angular
velocity, r is the electrical conductivity, B0 is the magnetic field

strength, G1 ¼ c
k
is the microrotation constant, a� is the slip

coefficient and m is the heat flux exponent. It is noted here that
the case of uniform surface heat flux corresponds to m = 0.

We introduce the following dimensionless variables :

g ¼ a

m

h i1=2
y; � ¼ ½am�1=2xfðgÞ;

N ¼ ax
a

m

h i1=2
hðgÞ; ð10Þ

T ¼ T1 þ
qwðxÞ

j
m
a

h i1=2
hðgÞ;
where � is the stream function defined in the usual way as

u ¼ @�
@y

and v ¼ � @�
@x

so that the conservation of mass Eq. (5)
is automatically satisfied.

Substituting variables (10) into Eqs. (6)–(9), one obtains the

following system of non-linear ordinary differential equations:

ð1þ KÞf 000 þ ff 00 � f 02 þ Kh0 �Mf 0 ¼ 0; ð11Þ
Gh00 � ð2hþ f 00Þ ¼ 0; ð12Þ
1

Pr
h00 þ fh0 �mf 0hþ ch ¼ 0: ð13Þ

The transformed boundary conditions are then given by:

f ¼ fw; f 0 ¼ 1þ að1þ KÞf 00; h ¼ 0; h0 ¼ �1 at g ¼ 0;

f0 ! 0; h! 0; h! 0 as g!1;
ð14Þ

where primes denote differentiation with respect to g, M ¼ rB2
0

aq

is the magnetic parameter, fw ¼ �ðamÞ
�1
2 vw is the suction (>0)

or the injection parameter (<0), K = k/l is the material

parameter, a ¼ a�l
ffiffi
a
m

p
is the slip parameter, G ¼ G1a

m is the

microrotation parameter, Pr ¼ lcp=j is the Prandtl number

and c ¼ Q0

aqcp
is the heat generation (>0) or absorption (<0)

parameter.

The physical quantities of interest are the local skin-friction
coefficient Cfx , the dimensionless wall couple stress Mx and

the local Nusselt number Nux , which are respectively; defined
as:

Cfx ¼
2sw

qðaxÞ2
;

Mx ¼
mw

qamx3
; ð15Þ

Nux ¼
xqw

jðTw � T1Þ
;

where the local wall shear stress sw , the wall couple stress mw

and the heat transfer from the plate qw are defined by:

sw ¼ � ðlþ kÞ @u
@y
þ kN

� �
y¼0
;

mw ¼ c0
@N

@y

� �
y¼0
; ð16Þ

qw ¼ � j
@T

@y

� �
y¼0
:

Using the similarity variables (10), we get

1

2
CfxRe

1=2
x ¼ �ð1þ KÞf00ð0Þ;

MxRex ¼ KGh0ð0Þ; ð17Þ

NuxRe
�1=2
x ¼ 1

hð0Þ ;

where Rex ¼ ðax
2

m Þ is the local Reynolds number.

In the case of Newtonian fluids (K= 0) with a = 0 , the
momentum Eq. (11) with the boundary conditions (14) has
an exact solution in the form:

fðgÞ ¼ fw þ
½1� expð�bgÞ�

b
; f0ðgÞ ¼ expð�bgÞ; ð18Þ
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where b is determined from

b ¼ fw þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2w þ 4ð1þMÞ

p
2

:

The local skin-friction coefficient given by (17) now

becomes:

1

2
CfxRe

1=2
x ¼ b: ð19Þ

The exact solution of Eq. (13) satisfying Eq. (14) in terms of
Kummer’s confluent hyper geometric function F1[a,c,x] is:

hðgÞ ¼ ðe�bgÞ
a0�b0

2 c1F1

�2mþ a0 � b0
2

; 1� b0;
�e�bgPr

b2

� ��

þ c2ðe�bgÞb0F1 �mþ
a0
2
þ b0

2
; 1þ b0;

�e�bgPr

b2

� ��
;

where

a0 ¼
ð1þ bfwÞPr

b2
; b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bfwÞ2Pr2 � 4b2Prc

q
b2

; c1 ¼ 0

and c2 ¼ �1=
 
�1
2

bða0 � b0ÞF1 �mþ
a0
2
þ b0

2
; 1þ b0;

�Pr
b2

� �

þ F1 1�mþ a0
2
þ b0

2
; 2þ b0;

�Pr
b2

� �
Prð�mþ a0

2
þ b0

2
Þ

bð1þ b0Þ

 !

� b0bF1 �mþ
a0
2
þ b0

2
; 1þ b0;

�Pr
b2

� �

The local Nusselt number given by (17) now becomes:

NuxRe
�1=2
x ¼ 1

c2F1 �mþ a0
2
þ b0

2
; 1þ b0;

�Pr
b2

h i : ð20Þ
3. Method of solution

The domain of the governing boundary layer Eqs. (11)–(14) is

the unbounded region [0,1). However, for all practical rea-
sons, this could be replaced by the interval 0 6 g 6 g1, where
g1 is some large number to be specified for computational con-

venience. Using the algebraic mapping:

v ¼ 2
g

g1
� 1;

the unbounded region [0,1) is mapped into the finite domain
[�1,1].

Eqs. (11)–(14) are transformed into the following
Chebyshev spectral equations:

ð1þ KÞf000ðvÞ þ g1
2

� 	
fðvÞf00ðvÞ � f02ðvÞ

 �

þ g1
2

� 	2
Kh0ðvÞ �Mf0ðvÞð Þ ¼ 0; ð21Þ

Gh00ðvÞ � 2
g1
2

� 	2
hðvÞ þ f00ðvÞ

� �
¼ 0; ð22Þ

1

Pr
h00ðvÞ þ g1

2

� 	
fðvÞh0ðvÞ �mf0ðvÞhðvÞð Þ

þ g1
2

� 	2
chðvÞ ¼ 0: ð23Þ

The transformed boundary conditions are given by:
fð�1Þ ¼ fw; f0ð�1Þ ¼ g1
2

� 	
þ 2

g1

� �
að1þKÞf00ð�1Þ; f0ð1Þ ¼ 0;

hð�1Þ ¼ 0 hð1Þ ¼ 0: ð24Þ

hð�1Þ ¼ � g1
2
; hð1Þ ¼ 0;

where now differentiation in Eqs. (21)–(23) will be with respect

to the new variable v.
Our technique is accomplished by starting with a Cheby-

shev approximation for the highest order derivatives, f000, h00

and h00 and generating approximations to the lower order

derivatives f00, f0, f, h0, h, h0 and h as follows:
Setting f000 ¼ /ðvÞ; h00 ¼ wðvÞ and h00 ¼ fðvÞ, then by inte-

gration we obtain:

f00ðvÞ ¼
Z v

�1
/ðvÞdvþ Cf

1; ð25Þ

f0ðvÞ ¼
Z v

�1

Z v

�1
/ðvÞdvdvþ Cf

1ðvþ 1Þ þ Cf
2; ð26Þ

fðvÞ ¼
Z v

�1

Z v

�1

Z v

�1
/ðvÞdvdvdvþ Cf

1

ðvþ 1Þ2

2

þ Cf
2ðvþ 1Þ þ Cf

3; ð27Þ

h0ðvÞ ¼
Z v

�1
wðvÞdvþ Ch

1; ð28Þ

hðvÞ ¼
Z v

�1

Z v

�1
wðvÞdvdvþ Ch

1ðvþ 1Þ þ Ch
2; ð29Þ

h0ðvÞ ¼
Z v

�1
fðvÞdvþ Ch

1; ð30Þ

hðvÞ ¼
Z v

�1

Z v

�1
fðvÞdvdvþ Ch

1ðvþ 1Þ þ Ch
2: ð31Þ

From the boundary condition (24), we obtain :

Cf
1 ¼ �

1

2þ að1þ KÞ 2
g1

� 	 Z 1

�1

Z v

�1
/ðvÞdvdv

� 1

2þ að1þ KÞ 2
g1

� 	 g1
2

� 	
;

Cf
2 ¼

g1
2

� 	
þ að1þ KÞ 2

g1

� �
Cf

1;

Cf
3 ¼ fw;

Ch
1 ¼ �

1

2

Z 1

�1

Z v

�1
wðvÞdvdv;

Ch
2 ¼ 0;

Ch
1 ¼ �

g1
2

� 	
;

Ch
2 ¼ g1 �

Z 1

�1

Z v

�1
fðvÞdvdv:

Therefore, we can give approximations to Eqs. (25)–(31) as
follows:

fiðvÞ ¼
XN
j¼0

l fij/j þ d f
i ; f 0i ðvÞ ¼

XN
j¼0

l f 1ij /j þ d f 1
i ;

f 00i ðvÞ ¼
XN
j¼0

l f 2ij /j þ d f 2
i ; ð32Þ
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hiðvÞ ¼
XN
j¼0

lhijwj þ dhi ; h0iðvÞ ¼
XN
j¼0

lh1ij wj þ dh1i ; ð33Þ

hiðvÞ ¼
XN
j¼0

lhijfj þ dh
i ; h0iðvÞ ¼

XN
j¼0

lh1ij fj þ dh1
i ; ð34Þ

for all i= 0(1)N, where

lhij ¼ b2ij � b2Nj; dh
i ¼ g1 1� ðvi þ 1Þ

2

� �
;

lh1ij ¼ bij; dh1
i ¼ �

g1
2
;

lhij ¼ b2ij �
ðvi þ 1Þ

2
b2Nj; dhi ¼ 0;

lh1ij ¼ bij �
1

2
b2Nj; dh1i ¼ 0;

lfij ¼ b3ij �
1

2þ að1þKÞ 2
g1

� 	 ðvi þ 1Þ2

2
þ að1þKÞðvi þ 1Þ 2

g1

� �" #
b2Nj;

dfi ¼ fw þ ðvi þ 1Þ g1
2

� 	
�

g1
2


 �
2þ að1þKÞ 2

g1

� 	

� ðvi þ 1Þ2

2
þ að1þKÞðvi þ 1Þ 2

g1

� �" #
;

lf1ij ¼ b2ij �
1

2þ að1þKÞ 2
g1

� 	 ðvi þ 1Þ þ að1þKÞ 2

g1

� �� �
b2Nj;

df1i ¼
g1
2

� 	
�

g1
2


 �
2þ að1þKÞ 2

g1

� 	 ðvi þ 1Þ þ að1þKÞ 2

g1

� �� �
;

lf2ij ¼ bij �
1

2þ að1þKÞ 2
g1

� 	b2Nj; df2i ¼ �
g1
2


 �
2þ að1þKÞ 2

g1

� 	 ;

where

b2ij ¼ ðvi � vjÞbij;

and bij are the elements of the matrix B, as given in Ref. [33].
This system is then solved using Newton’s iteration method.

By using Eqs. (32)–(34), one can transform Eqs. (21)–(23)
to the following system of nonlinear equations in the highest

derivatives:

ð1þKÞ/i þ
g1
2

� 	 XN
j¼0

lfij/j þ dfi

 ! XN
j¼0

lf2ij /j þ df2i

 !
�

XN
j¼0

lf1ij /j þ df1i

 !2
2
4

3
5

þ g1
2

� 	2
K
XN
j¼0

lh1ij wj þ dh1i

 !
�M

XN
j¼0

lf1ij /j þ df1i

 !" #
¼ 0; ð35Þ

Gwi � 2
g1
2

� 	2 XN
j¼0

lhijwj þ dhi

 !
þ

XN
j¼0

lf2ij /j þ df2i

 ! !
¼ 0; ð36Þ
Table 1 Comparison between analytical and numerical values of 1
2
C

m= 2, a = 0, Pr= 0.72 and fw ¼ 0:2.

M c 1
2CfxRe

1=2
x

Analytical

0.5 0.1 1.32882

1 0.1 1.51774

1.5 0.1 1.68430

0.5 0.1 1.32882

0.5 0.0 1.32882

0.5 �0.1 1.32882
1

Pr
fi þ

g1
2

� 	 XN
j¼0

lfij/j þ dfi

 ! XN
j¼0

lh1ij fj þ dh1
i

 !
�m

XN
j¼0

lf1ij /j þ df1i

 !"
�

½
XN
j¼0

lhijfj þ dh
i

 !#
þ g1

2

� 	2
c
XN
j¼0

lhijfj þ dh
i

 !
¼ 0; ð37Þ
4. Results and discussion

In order to asses the accuracy of the present numerical meth-
od, we have compared our numerical results taking a = 0,

m= 2, fw ¼ 0:2 and K = 0 (for Newtonian fluids case) with
those obtained analytically (Eqs. (19) and (20)). It can be seen
that the numerical results are in good agreement with those ob-

tained analytically, as shown in Table 1. Table 2 illustrates the
comparison between our numerical results for Newtonian flu-
ids case (K= 0, M= 0 and fw ¼ 0 in Eq. (14)) with those
reported by Andersson [34] and Mahmoud [35] for various val-

ues of a. The results show a good agreement.
The effects of the slip parameter a on the velocity, micro-

rotation and temperature distributions are shown in Figs. 1–3.

Fig. 1 depicts the effect of the slip parameter a on the dimen-
sionless velocity. It is noticed that the velocity distribution
decreases as a increases for both suction and injection. Also,

it is observed from Fig. 2 that the micro-rotation decreases with
increasing a in both cases of suction and injection. The temper-
ature distribution increases as a increases as shown in Fig. 3

Figs. 4–6 display the local skin-friction coefficient, the wall
couple stress and the local Nusselt number for various values
of a and fw, respectively, keeping all other parameters fixed,
respectively. It is noticed that the local skin-friction coefficient

increases due to suction and decreases in the case of injection
considerably for a fixed value of a. Also, it is observed that
for a fixed value of fw the local skin-friction coefficient de-

creases as a increases as seen in Fig. 4. It is found from
Fig. 5 that the effect of suction is to increase the dimensionless
couple stress, and the influence of injection is to decrease the

dimensionless couple stress for a fixed value of a. For a fixed
fw the dimensionless couple stress decreases as a increases.
From Fig. 6 it is shown that an increase in suction leads to
an increase in the local Nusselt number; whereas an increase

in the absolute value of injection leads to a decrease in the local
Nusselt number considerably for a fixed value of a. Also, it is
found that for a fixed fw the local Nusselt number decreases as

a increases. This behavior shows the importance of suction and
injection in controlling the velocity, micro-rotation and the
temperature in the boundary layer.

The local skin-friction coefficient in the term of �f00ð0Þ, the
wall couple stress in the term of h0ð0Þ and the local Nusselt
fxRe
1=2
x and Nux=Re

1=2
x for various values of M and c with K= 0,

Nux=Re
1=2
x

Numerical Analytical Numerical

1.32881 1.02938 1.02958

1.51773 0.96966 0.969776

1.68426 0.91730 0.91750

1.32881 1.02938 1.02958

1.32881 1.08932 1.08952

1.13881 1.13991 1.13991



Table 2 Comparison of f0ð0Þ and �f00ð0Þ for various values of a with K = 0, M= 0 and fw ¼ 0.

a f0ð0Þ �f00ð0Þ
Andersson [34] Mahmoud [35] Present work Andersson [34] Mahmoud [35] Present work

0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 0.9128 0.91279 0.91279 0.8721 0.87208 0.87209

0.2 0.8447 0.84473 0.84472 0.7764 0.77637 0.77639

0.5 0.7044 0.70440 0.70440 0.5912 0.59119 0.59121

1.0 0.5698 0.56984 0.56982 0.4302 0.43016 0.43018

2.0 0.4320 0.43204 0.43199 0.2840 0.28398 0.28400

5.0 0.2758 0.27579 0.27579 0.1448 0.14484 0.14481

10.0 0.1876 0.18758 0.18759 0.0812 0.08124 0.08123

20.0 0.1242 0.12423 0.12420 0.0438 0.04378 0.04381

50.0 0.0702 0.07019 0.07019 0.0186 0.01859 0.01860

100.0 0.0450 0.04501 0.04500 0.0095 0.00955 0.00951

Figure 1 Velocity profiles for various values of a with G = 2,

K = 1.2, M= 0.5, Pr= 0.72, m= 2 and r = 0.1.

Figure 2 Micro-rotationn profiles for various values of a with

G = 2, K = 1.2, M= 0.5, Pr= 0.72, m = 2 and r = 0.1.

Figure 3 Temperature profile for varioous values of a with

G = 2, K = 1.2, M= 0.5, Pr= 0.72, m = 2 and r = 0.1.

Figure 4 Local skin friction cofficient as a function of a for

various values of fw when G = 2, K= 1.2, M= 0.5, Pr = 0.72,

m= 2 and r = 0.1.

Figure 5 Wall couple stess cofficient as a function of a for

various values of fw when G= 2, K = 1.2, M = 0.5, Pr = 0.72,

m= 2 and r = 0.1.
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number in the term of 1
hð0Þ for various values of M, m and c are

illustrated in Table 3. It is noted from this table that the local
skin-friction coefficient and the wall couple stress increase with
the increase of M for both suction and injection. The local

Nusselt number decreases with the increase of M and the heat
generation parameter, while the local Nusselt number increases
with the increase of m and the absolute value of the heat
absorption parameter for both suction and injection.



Figure 6 Local Nusselt number cofficient as a function of a for

various values of fw when G = 2, K = 1.2, M= 0.5, Pr= 0.72,

m= 2 and r = 0.1.

Table 3 Values of �f00ð0Þ, h0ð0Þ and 1
hð0Þ with K = 1.2, G = 2,

a = 0.1 and Pr= 0.72.

M fw c m �f00ð0Þ h0ð0Þ 1
hð0Þ

0.5 0.2 0.1 2 0.68093 0.194661 1.06836

1 0.2 0.1 2 0.77032 0.204439 1.01252

1.5 0.2 0.1 2 0.84625 0.211354 0.96228

0.5 �0.2 0.1 2 0.61652 0.185523 0.93455

1 �0.2 0.1 2 0.70862 0.197264 0.87108

1.5 �0.2 0.1 2 0.78681 0.205568 0.81090

0.5 0.2 0.2 2 0.68093 0.194661 1.01481

0.5 0.2 0.1 2 0.68093 0.194661 1.06836

0.5 0.2 0 2 0.68093 0.194661 1.11476

0.5 0.2 �0.1 2 0.68093 0.194661 1.15698

0.5 0.2 �0.2 2 0.68093 0.194661 1.19629

0.5 �0.2 0.2 2 0.61652 0.185523 0.87554

0.5 �0.2 0.1 2 0.61652 0.185523 0.93455

0.5 �0.2 0 2 0.61652 0.185523 0.98216

0.5 �0.2 �0.1 2 0.61652 0.185523 1.02466

0.5 �0.2 �0.2 2 0.61652 0.185523 1.06393

0.5 0.2 0.1 0 0.68093 0.194661 0.460672

0.5 0.2 0.1 0.5 0.68093 0.194661 0.641341

0.5 0.2 0.1 1 0.68093 0.194661 0.799354

0.5 0.2 0.1 2 0.68093 0.194661 1.06836

0.5 �0.2 0.1 0 0.61652 0.185523 0.247212

0.5 �0.2 0.1 0.5 0.61652 0.185523 0.463184

0.5 �0.2 0.1 1 0.61652 0.185523 0.642564

0.5 �0.2 0.1 2 0.61652 0.185523 0.934552
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5. Conclusions

In this study, we have presented the effects of slip velocity on
the flow and heat transfer of an electrically conducting micro-
polar fluid over a stretching surface with variable heat flux in

the presence of heat generation (absorption) and a uniform
transverse magnetic field. The results indicate that the numeri-
cal values of the local skin-friction coefficient and the wall cou-

ple stress increased with the increase of the magnetic parameter
and the local Nusselt number decreased with the increase of the
magnetic parameter for both cases of suction and injection. The

slip parameter has the effect of reducing the value of the local
skin-friction coefficient, the wall couple stress and the local
Nusselt number for both cases of suction and injection. Also,
it was found that injection case leads to reducing the local
skin-friction coefficient, the wall couple stress and the local

Nusselt number, but the effect of suction gives the opposite.
Moreover, the local Nusselt number is decreased as the heat
generation parameter is increased. Further, it was found that
the local Nusselt number increases with an increase in the abso-

lute value of the heat absorption parameter and the heat flux
exponent for both cases of suction and injection.
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