How many miles to βX? II — Approximations to βX versus cofinal types of sets of metrics

Masaru Kada

Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

ARTICLE INFO

Article history:
Received 26 December 2008
Received in revised form 23 January 2009
Accepted 23 February 2009

MSC:
primary 54D35
secondary 03E17, 06A07, 54E35

Keywords:
Smirnov compactification
Stone–Čech compactification
Metrizable space
Tukey relation

1. Tukey relations between directed sets

We use standard terminology and refer the readers to [1] for undefined set-theoretic notions. For $a \in \mathbb{R}$, $\lfloor a \rfloor$ denotes the largest integer not exceeding a, and $\lceil a \rceil$ denotes the smallest integer not below a. For $f, g \in \omega^\omega$, we say $f \leq^* g$ if for all but finitely many $n < \omega$ we have $f(n) \leq g(n)$. A subset of ω^ω is called a dominating family if it is cofinal in ω^ω with respect to \leq^*. The dominating number δ is the smallest size of a dominating family. We let ω^{1^ω} denote the set of strictly increasing functions in ω^ω.

Let (D, \leq) and (E, \leq) directed partially ordered sets. A mapping ψ from D to E is called a Tukey mapping if the image of an unbounded subset of D by ψ is an unbounded subset of E, or equivalently, if the inverse image of a bounded subset of E is a bounded subset of D. We write $(D, \leq) \leq_T (E, \leq)$ (and often say D is Tukey below E, or E is cofinally finer than D) if there is a Tukey mapping from D to E. We will write $D \leq_T E$ if referred order relations on D and E are clear from the context.

A mapping ψ from E to D is called a convergent mapping if the image of a cofinal subset of E by ψ is a cofinal subset of D. It is easily checked that $D \leq_T E$ if and only if there is a convergent mapping from E to D.

We write $D \equiv_T E$ (and often say D is Tukey equivalent to E, D is cofinally similar to E, or D and E have the same cofinal type) if both $D \leq_T E$ and $E \leq_T D$ hold. In particular, if there is a mapping from D to E which is both Tukey and convergent, then $D \equiv_T E$ holds.

It is easy to see that $(\omega^{\omega^\omega}, \leq^*) \equiv_T (\omega^{1^\omega}, \leq^*)$ holds.
For a directed partially ordered set \((D, \leq)\), \(\text{add}(D, \leq)\) or \(\text{add}(D)\) denotes the smallest size of an unbounded subset of \(D\), and \(\cof(D, \leq)\) or \(\cof(D)\) denotes the smallest size of a cofinal subset of \(D\). It is easy to see that \(D \leq T E\) implies \(\text{add}(D) \geq \text{add}(E)\) and \(\cof(D) \leq \cof(E)\). Using this notation, the dominating number \(\mathfrak{d}\) is described as \(\mathfrak{d} = \cof((\omega^\omega, \leq^+)) = \cof((\omega_1^\omega, \leq^+))\).

2. Compactifications of metrizable spaces

A compactification of a completely regular Hausdorff space \(X\) is a compact Hausdorff space which contains \(X\) as a dense subspace. For compactifications \(\alpha X\) and \(\gamma X\) of \(X\), we write \(\alpha X \leq \gamma X\) if there is a continuous surjection \(f : \gamma X \to \alpha X\) such that \(f \upharpoonright X\) is the identity map on \(X\). If such an \(f\) can be chosen to be a homeomorphism, we write \(\alpha X \simeq \gamma X\). Let \(\text{Cpt}(X)\) denote the class of compactifications of \(X\). When we identify \(\simeq\)-equivalent compactifications, we may regard \(\text{Cpt}(X)\) as a set, and the order structure \((\text{Cpt}(X), \leq)\) is a complete upper semilattice whose largest element is the Stone–Čech compactification \(\beta X\).

The Smirnov compactification of a metric space \((X, d)\), denoted by \(u_d X\), is the unique compactification characterized by the following property: A bounded continuous function \(f\) from \(X\) to \(\mathbb{R}\) is continuously extended over \(u_d X\) if and only if \(f\) is uniformly continuous with respect to the metric \(d\).

The following theorem tells us that the Stone–Čech compactification of a metrizable space is approximated by the collection of all Smirnov compactifications. Let \(M(X)\) denote the set of all metrics on \(X\) which are compatible with the topology on \(X\).

Theorem 2.1. ([5, Theorem 2.11]) For a noncompact metrizable space \(X\), we have \(\beta X \simeq \text{sup}\{u_d X : d \in M(X)\}\) (the supremum is taken in the upper semilattice \((\text{Cpt}(X), \leq)\)).

Now we define the following cardinal function.

Definition 2.2. ([3, Definition 2.2]) For a noncompact metrizable space \(X\), let \(\text{sa}(X) = \text{min}\{|D| : D \subseteq M(X)\}\) and \(\beta X \simeq \text{sup}\{u_d X : d \in D\}\).

For a topological space \(X\), \(X^{(1)}\) denotes the first Cantor–Bendixson derivative of \(X\), that is, the subspace of \(X\) which consists of all nonisolated points of \(X\). Note that \(\text{sa}(X) = 1\) holds if and only if there is a metric \(d \in M(X)\) which makes \((X, d)\) an Atsuji space (also called a UC-space), which is known to be equivalent to the compactness of \(X^{(1)}\) [5, Corollary 3.5].

Kada, Tomoyasu and Yoshinobu [4] proved the following theorem.

Theorem 2.3. ([4, Theorem 2.10]) For a locally compact separable metrizable space \(X\) such that \(X^{(1)}\) is not compact, \(\text{sa}(X) = 0\) holds.

For a compactification \(\alpha X\) of \(X\) and a pair \(A, B\) of closed subsets of \(X\), write \(A \parallel B\) (\(\alpha X\)) if \(\text{cl}_{\alpha X} A \cap \text{cl}_{\alpha X} B = \emptyset\), and otherwise \(A \not\parallel B\) (\(\alpha X\)). It is known that, for a normal space \(X\), \(\alpha X \simeq \beta X\) holds if and only if \(A \parallel B\) (\(\alpha X\)) for any pair \(A, B\) of disjoint closed subsets of \(X\) [2, Theorem 6.5]. For Smirnov compactification \(u_d X\) of \((X, d)\), it is known that \(A \parallel B\) (\(u_d X\)) if and only if \(d(A, B) > 0\) [5, Theorem 2.5].

For \(d_1, d_2 \in M(X)\), we write \(d_1 \leq d_2\) if the identity function on \(X\) is uniformly continuous as a function from \((X, d_2)\) to \((X, d_1)\). The following equivalent conditions for \(d_1 \leq d_2\) are known.

Proposition 2.4. For a metrizable space \(X\) and \(d_1, d_2 \in M(X)\), the following conditions are equivalent.

1. \(d_1 \leq d_2\).
2. \(u_{d_1} X \leq u_{d_2} X\).
3. For closed subsets \(A, B\) of \(X\), if \(A \parallel B\) (\(u_{d_1} X\)) then \(A \parallel B\) (\(u_{d_2} X\)).
4. For closed subsets \(A, B\) of \(X\), if \(d_1(A, B) > 0\) then \(d_2(A, B) > 0\).

For \(d_1, d_2 \in M(X)\), we write \(d_1 \sim d_2\) if \(d_1\) and \(d_2\) are uniformly equivalent, that is, if both \(d_1 \leq d_2\) and \(d_2 \leq d_1\) hold. We will identify uniformly equivalent metrics on \(X\) and simply write \(M(X)\) to denote the quotient set \(M(X)/\sim\). Then \((M(X), \leq)\) is a directed ordered set.

Woods showed (in the proof of [5, Theorem 2.11]) that for any pair \(A, B\) of disjoint nonempty closed subsets of a metric space \(X\) there is a metric \(d \in M(X)\) such that \(d(A, B) > 0\). Hence, if \(D \subseteq M(X)\) is cofinal with respect to \(\leq\), then \(\sup\{u_d X : d \in D\} \simeq \beta X\). As a consequence, we have \(\text{sa}(X) \leq \cof((M(X), \leq))\).

In the next section, we will prove the Tukey equivalence \((M(X), \leq) \equiv_T (\omega^\omega, \leq^+)\) for a locally compact separable metrizable space \(X\) such that \(X^{(1)}\) is not compact. It will be proved by refining the proof of Theorem 2.3 [4, Theorem 2.10] to fit in a context of Tukey relation.
3. The main theorem

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let X be a locally compact separable metrizable space such that $X^{(1)}$ is not compact. Then $(M(X), \preceq) \equiv_T (\omega^\omega, \preceq^*)$ holds.

Throughout this section, we assume that X is a locally compact separable metrizable space and $X^{(1)}$ is not compact. Since X is embedded into the Hilbert cube $\mathbb{H} = [0, 1]^\omega$ as a subspace, we fix such an embedding and regard X as a subspace of \mathbb{H}.

We will define a mapping from ω^ω to $M(X)$ which is both Tukey and convergent, that is, the image of an unbounded set is unbounded and the image of a cofinal set is cofinal.

The following lemma, due to Kada, Tomoyasu and Yoshinobu [4, Lemma 2.8], is quite useful. Here we state this lemma in a modified and slightly strengthened form. Though it is not so difficult to modify the original proof to get the modified statement, we will present a complete proof for the reader’s convenience. For a function φ from X to \mathbb{R}, we write $\varphi(x) \to \infty$ as $x \to \infty$ if, for any $M \in \mathbb{R}$ there is a compact subset K of X such that $\varphi(x) > M$ holds for all $x \in X \setminus K$.

Lemma 3.2. Suppose that X is a locally compact separable metrizable space, $d \in M(X)$, diam$_d$(X) is finite, and γ is a continuous function from X to $[0, \infty)$ such that $\gamma(x) \to \infty$ as $x \to \infty$. For $n \in \omega$, let $K_n = \{ x \in X : \gamma(x) \leq \max[n, \text{diam}_d(X)] \}$. Then we can define a mapping from ω^ω to $M(X)$, which maps g to d_g, with the following properties.

1. If $x, y \in X \setminus K_n$, then $d_g(x, y) \geq g(n) \cdot d(x, y)$.
2. For $x, y \in X$, $d_g(x, y) \geq |\gamma(x) - \gamma(y)|$.
3. For $g_1, g_2 \in \omega^\omega$, $g_1 \leq^* g_2$ implies $d_{g_1} \leq d_{g_2}$.

Proof. We may assume that $g(0) \geq 1$. Define an increasing continuous function f_g from $[0, \infty)$ to $[1, \infty)$ in the following way: For $s \in [0, \infty)$, let $k = \lfloor 2s \rfloor, r = 2s - k$ and

$$f_g(s) = (1 - r) \cdot g(k) + r \cdot g(k + 1).$$

Note that, by the definition of f_g, if $g_1 \leq^* g_2$, then there is an $M \in [0, \infty)$ such that for all $s \in [M, \infty)$ we have $f_{g_1}(s) \leq f_{g_2}(s)$.

For $s \in [0, \infty)$, let

$$F_g(s) = \int_0^s f_g(t) \, dt.$$

Define functions ρ, ρ'_g from $X \times X$ to $[0, \infty)$ by the following:

$$\rho(x, y) = \max\{ |\gamma(x) - \gamma(y)|, d(x, y) \},$$

$$\rho'_g(x, y) = f_g(\max\{ |\gamma(x), \gamma(y)| \}) \cdot \rho(x, y).$$

ρ'_g is not necessarily a metric on X, because ρ'_g does not satisfy triangle inequality in general. So we define a function d_g from $X \times X$ to $[0, \infty)$ by the following:

$$d_g(x, y) = \inf\{ \rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, z_l) + \cdots + \rho'_g(z_{l-1}, y) : l < \omega \text{ and } z_0, \ldots, z_{l-1} \in X \}.$$

Note that, since f_g is increasing,

$$\rho'_g(x, y) = f_g(\max\{ |\gamma(x), \gamma(y)| \}) \cdot \rho(x, y) \geq f_g(\max\{ |\gamma(x), \gamma(y)| \}) \cdot |\gamma(x) - \gamma(y)| \geq |F_g(\gamma(x)) - F_g(\gamma(y))|.$$

Hence we have $d_g(x, y) \geq |F_g(\gamma(x)) - F_g(\gamma(y))|$, because

$$\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \geq |F_g(\gamma(x)) - F_g(\gamma(z_0))| + \cdots + |F_g(\gamma(z_{l-1})) - F_g(\gamma(y))| \geq |F_g(\gamma(x)) - F_g(\gamma(y))|.$$

Claim 1. For $n < \omega$ and $x, y \in X \setminus K_n$, $d_g(x, y) \geq f_g(n/2) \cdot d(x, y) = g(n) \cdot d(x, y)$.

Proof. We may assume that \(\gamma(x) = r \geq s = \gamma(y) \). Since \(y \in X \setminus K_n \) and by the definition of \(K_n \), we have \(s \geq n \). Since \(f_g \) is increasing, it suffices to show that \(\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \geq f_g(s/2) \cdot d(x, y) \) holds for any \(l < \omega, z_0, \ldots, z_{l-1} \in X \).

Case 1. Assume that \(\gamma(z_i) > s/2 \) for all \(i < l \). Since \(f_g \) is increasing, the definition of \(\rho'_g \) yields
\[
\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) > f_g(s/2) \cdot (\rho(x, z_0) + \cdots + \rho(z_{l-1}, y)) \\
\geq f_g(s/2) \cdot f_g(s/2) \\
= f_g(s/2) \cdot d(x, y).
\]

Case 2. Assume that \(\gamma(z_i) \leq s/2 \) for some \(i < l \). Fix such an \(i \) and then we have the following:
\[
\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, z_i) \geq d_g(x, z_i) \\
\rho'_g(z_i, z_{i+1}) + \cdots + \rho'_g(z_{l-1}, y) \geq d_g(z_i, y) \\
\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \geq f_g(s/2) \cdot d(x, y).
\]

Hence it holds that
\[
\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \geq \left(f_g(r) - f_g(\gamma(z_i)) \right) + \left(f_g(s) - f_g(\gamma(z_i)) \right) \\
\geq \left(f_g(r) - f_g(s/2) \right) + \left(f_g(s) - f_g(s/2) \right) \\
\geq (r - s/2) \cdot f_g(s/2) + (s/2) \cdot f_g(s/2) \\
= r \cdot f_g(s/2).
\]

On the other hand, \(d(x, y) \leq r \), because \(x \in X \setminus K_n \) and hence \(r = \gamma(x) \geq \text{diam}_d(X) \) by the definition of \(K_n \). So we have
\[
\rho'_g(x, z_0) + \cdots + \rho'_g(z_{l-1}, y) \geq f_g(s/2) \cdot d(x, y).
\]

This concludes the proof of the claim. \(\square \)

Clearly \(d_g \) is symmetric and satisfies the triangle inequality. Since \(f_g(s) \geq 1 \) for all \(s \in [0, \infty) \), Claim 1 implies that \(d_g \) is a metric on \(X \). It is easy to see that \(d_g \) is compatible with the topology of \((X, d)\).

It is easy to check that, if \(g_1 \leq g_2 \), then there is a compact subset \(K \) of \(X \) such that for any \(x, y \in X \setminus K \) we have \(d_g_1(x, y) \leq d_g_2(x, y) \). Therefore, \(g_1 \leq g_2 \) implies \(d_{g_1} \leq d_{g_2} \).

Finally, for any \(x, y \in X \) we have \(d_g(x, y) \geq \rho(x, y) \geq |\gamma(x) - \gamma(y)| \). \(\square \)

Now we work on a fixed locally compact separable metrizable space \(X \) such that \(X^{(1)} \) is not compact. We regard \(X \) as a subspace of the Hilbert cube \(\mathbb{H} \). Let \(\mu \) be a fixed metric function on \(\mathbb{H} \). Since \(\mathbb{H} \) is compact, clearly \(\text{diam}_\mu(X) \) is finite.

Let \(E \) be a countable discrete closed subset of \(X^{(1)} \). Such a set \(E \) exists by our assumption. We can find a continuous function \(\gamma \) from \(X \) to \([0, \infty)\) and a sequence \(\{e_n: n < \omega\} \subseteq E \) with the following properties:

1. \(\gamma(x) \to \infty \) as \(x \to \infty \).
2. for each \(n \), \(\gamma(e_n) = n + 1/2 \).

For each \(n \), choose a sequence \(\{e_{n,j}: j < \omega\} \) in \(X \) so that:

1. \(\{e_{n,j}: j < \omega\} \) converges to \(e_n \).
2. for all \(j \), \(n < \gamma(e_{n,j}) < n + 1 \).

Now we consider the mapping from \((\omega^{1\omega}, \leq^*) \) to \((M(X), \preceq)\) obtained by applying Lemma 3.2 for \(X \) and \(\mu \), which maps \(g \in \omega^{1\omega} \) to \(\mu_g \in M(X) \). We will show that it is both a Tukey and a convergent mapping, which concludes the proof of Theorem 3.1.

To show this, we define two auxiliary mappings from \(M(X) \) to \(\omega^{1\omega} \) as follows. For \(n < \omega \), let \(K_n \) be the one which appears in the statement of Lemma 3.2. For \(\rho \in M(X) \), define \(h_\rho \) recursively by letting \(h(0) = 0 \) and
\[
h_\rho(n) = \min \{ l: l > h_\rho(n - 1) \text{ and } \forall x, y \in K_{n+2} (\rho(x, y) \geq 1/n \to \mu(x, y) \geq 1/l) \}
\]
for \(n \geq 1 \). The set of \(l \)'s in the definition of \(h_\rho(n) \) is nonempty because of compactness, and so \(h_\rho \) is well-defined. Also, for \(\rho \in M(X) \), define \(H_\rho \) recursively in the following way. For each \(n \geq 1 \), define \(j_n^\rho \in \omega \) by
\[
j_n^\rho = \min \{ j: \rho(e_{n,j}, e_n) \leq 1/n \}\n\]
Let \(H(0) = 0 \) and
\[
H_\rho(n) = \max \{ H_\rho(n - 1) + 1, \left[1/\mu(e_{n,j}, e_n) \right] \}
\]
for \(n \geq 1 \).
Lemma 3.3. The mapping from $\omega^{1\omega}$ to $M(X)$ which maps g to μ_g is a convergent mapping, that is, the image of a cofinal subset of $\omega^{1\omega}$ is a cofinal subset of $M(X)$.

Proof. It suffices to show that, for $\rho \in M(X)$ and $g \in \omega^{1\omega}$, if $h_\rho \leq^* g$ then $\rho \leq \mu_g$.

Suppose that $\rho \in M(X)$, $g \in \omega^{1\omega}$ and $h_\rho \leq^* g$. To show $\rho \leq \mu_g$, take any pair A, B of closed subsets of X which satisfies $\rho(A, B) > 0$, and we shall show $\mu_g(A, B) > 0$.

Take $k \in \omega$ so that $\rho(A, B) > 1/k$ and $g(n) \geq h_\rho(n)$ for all $n \geq k$. By the definition of h_ρ, for all $n \geq k$ and $x, y \in K_{n+2} \setminus K_n$, if $\rho(x, y) \geq 1/n$ then $\mu(x, y) \geq 1/h_\rho(n)$. So we have

$$\mu(A \cap (K_{n+2} \setminus K_n), B \cap (K_{n+2} \setminus K_n)) \geq 1/h_\rho(n).$$

Since $g(n) \geq h_\rho(n)$ for all $n \geq k$ and by the property 1 in Lemma 3.2, we have

$$\mu_g(A \setminus (K_{n+2} \setminus K_n), B \setminus (K_{n+2} \setminus K_n)) \geq 1$$

for all $n \geq k$. Also, by the property 2 in Lemma 3.2 and the definition of K_n's, for $m, n \in \omega$ with $k \leq m < n$ we have $\mu_g(X \setminus K_n, K_m) \geq n - m$ and so

$$\mu_g(A \setminus (K_{n+2} \setminus K_{n+1}), B \setminus (K_{n+2} \setminus K_{n+1})) \geq 1$$

and

$$\mu_g(A \setminus (K_{m+1} \setminus K_m), B \setminus (K_{m+2} \setminus K_{m+1})) \geq 1.$$

Hence $\mu_g(A, B) \geq \min\{1, \mu_g(A \cap K_{k+1}, B \cap K_{k+1})\} > 0$. \(\square\)

Lemma 3.4. The mapping from $\omega^{1\omega}$ to $M(X)$ which maps g to μ_g is a Tukey mapping, that is, the image of an unbounded subset of $\omega^{1\omega}$ is an unbounded subset of $M(X)$.

Proof. It suffices to show that, for $\rho \in M(X)$ and $g \in \omega^{1\omega}$, if $g \not\leq^* H_\rho$ then $\mu_g \not\leq \rho$.

Suppose that $\rho \in M(X)$, $g \in \omega^{1\omega}$ and $g \not\leq^* H_\rho$. To show $\mu_g \not\leq \rho$, we shall find a pair A, B of closed subsets of X such that $\rho(A, B) = 0$ but $\mu_g(A, B) > 0$.

Let $U = \{n: H_\rho(n) < g(n)\}$, $A = \{e_n, e^{\rho}: n \in U\}$ and $B = \{e_n: n \in U\}$. Since $g \not\leq^* H_\rho$, U is an infinite subset of ω. By the choice of j_n^{ρ}, for each $n \in U$ we have $\rho(e_n, j_n^{\rho}, e_n) \leq 1/n$, and hence $\rho(A, B) = 0$. On the other hand, for each $n \in U$, since $g(n) > H_\rho(n) \geq 1/\mu(e_n, j_n^{\rho}, e_n)$ and by the property 1 in Lemma 3.2, we have $\mu_g(e_n, j_n^{\rho}, e_n) \geq g(n) \cdot \mu(e_n, j_n^{\rho}, e_n) \geq 1$. By the choice of e_n, j_n's and the property 2 in Lemma 3.2, for any n, m, j with $n \neq m$ we have $\mu_g(e_n, j, e_m) > 1/2$. Hence $\mu_g(A, B) > 1/2$. \(\square\)

This concludes the proof of Theorem 3.1.

Acknowledgement

I would like to thank the referee for pointing out my errors in the first version of the paper.

References