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Abstract

Using the Legendre–Fenchel transformation and the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz, we establish an existence result for perturbations of periodic
and asymptotically periodic semilinear Hamiltonian systems of the type

−∆u+ u=W2(x)|v|p−1v in R
N,

−∆v + v =W1(x)|u|q−1u in R
N,

u(x), v(x) → 0 as|x| → ∞,

u > 0, v > 0 in R
N, N � 2.

(PW )

Here, the numbersp,q > 1 are below the critical hyperbola ifN � 3, that is, they satisfy
1/(p + 1) + 1/(q + 1) > (N − 2)/N, while no additional restrictions onp and q are
required ifN = 2. The functionsWi , i = 1,2, are bounded positive continuous functions.
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1. Introduction

In this paper, we consider the semilinear Hamiltonian system
−∆u+ u=W2(x)|v|p−1v in R

N,

−∆v + v =W1(x)|u|q−1u in R
N,

u(x), v(x)→ 0 as|x| → ∞,

u > 0, v > 0 in R
N, N � 2,

(PW )

where the numbersp,q > 1 are below the critical hyperbola ifN � 3, that is,
they verify

1

p + 1
+ 1

q + 1
>

N − 2

N
,

while no additional restrictions onp andq are required ifN = 2 and the functions
Wi , i = 1,2, are bounded positive continuous functions for which we will give
additional assumptions later. We will study two main problems:

(1) The existence of positive solutions in the periodic case.
(2) The existence of positive solutions for the asymptotically periodic case.

The class of problems treated here has several difficulties. First, there is the
lack of compactness of the Sobolev embedding, since our domain is the whole
space. Second, it is challenging to find an adequate functional, the critical points
of which are still solutions of problem(PW ), so that we can apply variational
methods.

For the case of a bounded domain these systems were studied by a number of
authors, for instance, Clement et al. [4], Costa and Magalhães [5], de Figueiredo
and Magalhães [8], Hulshof and van der Vorst [12], de Figueiredo and Felmer [7].
The case of the whole space was considered recently, among others, by Serrin and
Zou [16], de Figueiredo and Yang [9], Sirakov [17] and Yang [19].

Motivated by the approach used in [19], namely the dual variational method,
we considered a class of elliptic system which generalizes the case of a single
equation explored by authors in [1]. One of the crucial points in this work was to
prove a version of a compactness result due to P.L. Lions to overcome the lack of
compactness in system(PW ).

We will impose some assumptions on our nonlinearities. The first of them
treats the situation whereWi is a periodic function; more precisely, we assume

Wi ∈ C0(RN) and inf
x∈RN

Wi(x) > 0, i = 1,2, (P1)

Wi(x + y)=Wi(x), i = 1,2, y ∈ Z
N, x ∈ R

N . (P2)

Theorem 1. Assume that(P1) and (P2) hold. Then problem(PW) possesses at
least one positive solution.
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The second result is a perturbation of the problem above, in the sense that the
asymptotic problem at infinity is a periodic problem. We shall impose the fol-
lowing:

Wi = Vi +Wi, Wi � 0, Wi ∈C0(RN), i = 1,2, (A1)

Wi(x)→ 0 as|x| → ∞, i = 1,2, (A2)

meas
{
x ∈ R

N : W1 > 0
}
> 0 or meas

{
x ∈ R

N : W2 > 0
}
> 0. (A3)

Theorem 2. Assume thatVi (i = 1,2) satisfies(P1) and(P2). Moreover, suppose
thatWi (i = 1,2) verifies(A1), (A2) and(A3). Then problem(PW ) possesses at
least one positive solution.

Recently in [19], Yang proved the existence of a solution of problem(PW)

by considering it a perturbation of an autonomous problem inR
N . In the present

paper, we work with a class of problems more general than that treated in [19].
The outline of this paper is as follows. In Section 2, we establish the dual

variational formulation using the Legendre–Fenchel transform. In Section 3, we
prove some technical lemmas. Sections 4 and 5 are dedicated to proving our
theorems. Remarks are given in Section 6.

2. Preliminary results

In this section, we introduce the Legendre–Fenchel transform and the varia-
tional framework for our Hamiltonian system inRN . Consider the linear contin-
uous operators

T1 :L(p+1)/p(RN) →Lq+1(RN)

and

T2 :L(q+1)/q(RN)→ Lp+1(RN),

where

T1 = T2 = (−∆+ id)−1.

Actually, to be preciseT1 = i ◦ T1,p, where T1,p :L(p+1)/p(RN) →
W

1,(p+1)/p
0 (RN)∩W2,(p+1)/p(RN) is a linear continuous operator (see, e.g., [3,

Théorème IX.32]), andi :W2,(p+1)/p(RN) ↪→ Lq+1(RN) is a continuous embed-
ding, because the inequality 1/(q + 1) > p/(p + 1)− 2/N holds forN � 2. We
also recall that the embeddingj :W2,(p+1)/p(BR) ↪→ Lq+1(BR) is compact, for
all ballsBR = BR(0) in R

N centered at origin with radiusR. Similar remarks
hold forT2.
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Define the linear continuous operator

K :L(q+1)/q(RN)×L(p+1)/p(RN)→ Lq+1(RN)×Lp+1(RN)

given by

K =
(

0 T1
T2 0

)
.

In the sequel, we denote by〈η,Kω〉 the following function:

〈η,Kω〉 = η1T1ω2 + η2T2ω1, η = (η1, η2), ω = (ω1,ω2).

For

f (x, t)=W1(x)|t|q−1t and g(x, t) =W2(x)|t|p−1t, t ∈ R,

let

F(x, t)= W1(x)|t|q+1

q + 1
and G(x, t)= W2(x)|t|p+1

p + 1
, t ∈ R,

their primitives. Then the Legendre–Fenchel transforms

F ∗(x, s)= sup
t∈R

{
st − F(x, t)

}
and G∗(x, s)= sup

t∈R

{
st −G(x, t)

}
of these functions are the following:

F ∗(x, s)=
(

q

q + 1

)
1

W
1/q
1

|s|(q+1)/q and

G∗(x, s)=
(

p

p + 1

)
1

W
1/p
2

|s|(p+1)/p

(see the book by Mawhin and Willem [15] for more details).
Let

X = L(q+1)/q(RN)×L(p+1)/p(RN)

be the Banach space endowed with the norm

‖ω‖ =
√

|ω1|2(q+1)/q + |ω2|2(p+1)/p, ω = (ω1,ω2) ∈X,

where hereafter| · |∞,A, | · |s and
∫
f will meanL∞(A)-norm,Ls(RN)-norm and∫

RN f (x) dx, respectively. The symbolC denotes positive constants that may be
different on different occurrences.

We define the functionalΨW :X → R by

ΨW(ω) =
∫ (

F ∗(x,ω1)+G∗(x,ω2)
)− 1

2

∫
〈ω,Kω〉.
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ΨW is C1 and forη = (η1, η2) ∈X has Frechet derivative

Ψ ′
W(ω)η =

∫ |ω1|(1/q)−1ω1η1

W
1/q
1

+
∫ |ω2|(1/p)−1ω2η2

W
1/p
2

−
∫

〈η,Kω〉.

In the last equality, we made use of the following property of functionK:∫
〈η,Kω〉 =

∫
〈ω,Kη〉, η,ω ∈X.

We close this section with a proof that the critical points of the functional
ΨW are precisely the weak solutions of problem(PW ). Indeed, suppose thatω =
(ω1,ω2) ∈X is a critical point ofΨW , then∫ ( |ω1|(1/q)−1ω1

W
1/q
1

− T1ω2

)
η1 +

∫ ( |ω2|(1/p)−1ω2

W
1/p
2

− T2ω1

)
η2 = 0,

∀η ∈X.

Hence,

T1ω2 = |ω1|(1/q)−1ω1

W
1/q
1

= d

ds
F ∗(x,ω1)

and

T2ω1 = |ω2|(1/p)−1ω2

W
1/p
2

= d

ds
G∗(x,ω2).

Setting

u= T1ω2 and v = T2ω1, (1)

we have

ω1 =W1|u|q−1u and ω2 =W2|v|p−1v. (2)

From (1) and (2), we obtain that(u, v) ∈ W2,(p+1)/p(RN) × W2,(q+1)/q(RN)

is a weak solution of(PW ). Moreover, by bootstrap arguments, we have that
u(x), v(x)→ 0 as|x| → ∞ (see [17]).

Throughout this paper a positive solution(u, v) means thatu > 0 andv > 0
in R

N .

3. Technical lemmas

First of all, we will prove that the functionalΨW verifies the Mountain Pass
Geometry, namely:

Lemma 1. In addition to assuming thatW ∈ L∞(RN), assume thatW satisfies
(P1). Then
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(i) there existρ,β > 0 such thatΨW(ω) � β , ‖ω‖ = ρ,

(ii) there existse ∈ X with ‖e‖> ρ such thatΨW(e)� 0.

Proof. Observe that, by the Hölder inequality and the boundedness ofT1 andT2,
we have∫

〈ω,Kω〉 �C
(|ω2|(p+1)/p|ω1|(q+1)/q + |ω1|(q+1)/q |ω2|(p+1)/p

)
�C

(|ω2|2(p+1)/p + |ω1|2(q+1)/q

)
≡C‖ω‖2, ω = (ω1,ω2) ∈X. (3)

Then

ΨW(ω) �C|ω1|(q+1)/q
(q+1)/q +C|ω2|(p+1)/p

(p+1)/p −C
(|ω1|2(q+1)/q + |ω2|2(p+1)/p

)
.

Thus, since(p + 1)/p < 2 and (q + 1)/q < 2, Lemma 1(i) is proved. Take
ω = (ω1,ω2) ∈X satisfying〈ω,Kω〉 > 0. Then

ΨW(tω) → −∞, ast → +∞.

This proves Lemma 1(ii) and the proof of Lemma 1 is completed.✷
The next result explains the behavior of the Palais–Smale sequence (in short,

(PS)c) at the levelc, that is, a sequence{ωn} ⊂X such that

ΨW(ωn)→ c and Ψ ′
W(ωn)→ 0 inX∗, asn→ ∞. (4)

We define the following numbers:

c1 = inf
ω∈N

ΨW(ω),

c2 = inf
0�=ω∈X sup

t�0
ΨW(tω),

c3 = inf
γ∈ΓW

max
t∈[0,1]

ΨW

(
γ (t)

)
,

where ΓW = {γ ∈ C([0,1],X): ΨW(γ (0)) = 0, ΨW(γ (1)) < 0} and N is
Nehari’s manifold given by

N = {
ω ∈ X − {0}: Ψ ′

W(ω)(ω)= 0
}
.

Lemma 2. Let {ωn} be a(PS)c sequence at levelc > 0. Then

(a) {ωn} is bounded inX.
(b) If ωn ⇀ω weakly inX, withω �= 0, thenω is a weak solution of(PW).
(c) c1 = c2 = c3.
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Proof. (a) Letωn = (ωn
1,ω

n
2) ∈ X be a (PS)c sequence withc > 0. Then, there

existC > 0 andn0 ∈ N such that

ΨW(ωn)− 1

2
Ψ ′
W(ωn)ωn �C + ‖ωn‖, n � n0.

That is(
q

q + 1
− 1

2

)∫ |ωn
1|(q+1)/q

W
1/q
1

+
(

p

p + 1
− 1

2

)∫ |ωn
2|(p+1)/p

W
1/p
2

�C +C
(∣∣ωn

1

∣∣
(q+1)/q + ∣∣ωn

2

∣∣
(p+1)/p

)
.

From this inequality, since(p + 1)/p, (q + 1)/q > 1, we conclude the bounded-
ness of the sequence{ωn} in X.

(b) Forη = (η1, η2) ∈ X, it suffices to prove the following statements:∫ |ωn
1|(1/q)−1ωn

1η1

W
1/q
1

→
∫ |ω1|(1/q)−1ω1η1

W
1/q
1

, asn → ∞, (i)

∫ |ωn
2|(1/p)−1ωn

2η2

W
1/p
2

→
∫ |ω2|(1/p)−1ω2η2

W
1/p
2

, asn→ ∞, (ii)

∫
〈η,Kωn〉 →

∫
〈η,Kω〉, asn → ∞. (iii)

Proof of (i). For η = (η1, η2) ∈ X, sinceΨ ′
W(ωn)η → 0, asn → ∞, from

Riesz representation theorem we obtain∣∣∣∣un − |ωn
1|(1/q)−1ωn

1

W
1/q
1

∣∣∣∣
q+1

→ 0, asn→ ∞, un = T1w
n
2. (5)

On the other hand, from definition of operatorT1, we infer that{un} is bounded
in W2,(p+1)/p(RN). Thus, by Sobolev embedding we can assume that (passing to
a subsequence if necessary)un → u a.e. inR

N andLq+1
loc (RN).

From (5), there existsω1 ∈L(q+1)/q(RN) such thatωn
1 → ω1 in L

(q+1)/q
loc (RN)

and a.e. inRN . Since

|ωn
1|(1/q)−1ωn

1

W
1/q
1

→ |ω1|(1/q)−1ω1

W
1/q
1

a.e. inR
N, asn→ ∞,

and (ωn
1) is bounded inLq+1(RN), we conclude that (i) holds. Similarly we

obtain (ii).
Proof of (iii). The proof follows by observing thatF :X → R given by

F(ϕ)=
∫

〈η,Kϕ〉, ∀η ∈ X,

belongs toX∗. ThenF(ωn)→ F(ω), asn → ∞. This completes the proof of (b).
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(c) The proof follows making some changes in the arguments used in the
paper by Ding and Ni [10] (see also the book by Willem [18]). This proves Lem-
ma 2. ✷

The next result is a version of the Compactness Lemma due to Lions [14,
Lemma 1.1] or Coti-Zelati and Rabinowitz [6, Lemma 2.18]. From now onBr(a)

denotes a ball inRN centered ata with radiusr andBr(0)= Br.

Lemma 3. Let be{ωn} a (PS)c sequence at levelc > 0, such thatωn ⇀ 0 weakly
in X, asn → ∞. Then, the sequence{ωn} satisfies either

(a) ωn → 0 strongly inX, asn → ∞, or
(b) there existρ,η > 0, {yn} ⊂ R

N and a subsequence of{ωn}, still denoted
by {ωn}, such that either

lim inf
n→∞

∫
Bρ(yn)

∣∣ωn
1

∣∣2/q � η or lim inf
n→∞

∫
Bρ(yn)

∣∣ωn
2

∣∣2/p � η.

Proof. Sincec > 0, situation (a) does not occur. Suppose that (b) does not hold.
Then

lim
n→∞

[
sup
y∈RN

∫
BR(y)

∣∣ωn
1

∣∣2/q]= lim
n→∞

[
sup
y∈RN

∫
BR(y)

∣∣ωn
2

∣∣2/p]= 0, ∀R > 0.

(6)

As in the proof of Lemma 2(a), sinceΨ ′
W(ωn)η → 0, η ∈ X, we can assume

that

ωn
1 → ω1 in L

(q+1)/q
loc (RN) asn → ∞

and

ωn
2 → ω2 in L

(p+1)/p
loc (RN) asn→ ∞.

Thus, from (5) and (6), we conclude that

lim
n→∞

[
sup
y∈RN

∫
BR(y)

|un|2
]

= lim
n→∞

[
sup
y∈RN

∫
BR(y)

|vn|2
]

= 0, ∀R > 0.

Since{un} ∈ W2,(p+1)/p(RN) and{vn} ∈ W2,(q+1)/q(RN), using a version of the
result by [14] or [6], which is found in [13, Lemme 8.4], it follows that∫

|un|q+1,

∫
|vn|p+1 → 0 asn → ∞.

From (5), we infer that∫ ∣∣ωn
1

∣∣(q+1)/q
,

∫ ∣∣ωn
2

∣∣(p+1)/p → 0 asn→ ∞,
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that is

‖ωn‖ → 0 asn → ∞,

which is a contradiction toc > 0. ✷
Remark. It is easy to check that sequence{yn} obtained in the last lemma can be
taken inZ

N .

4. Proof of Theorem 1—The periodic case

Existence. Note thatΨW verifies the assumptions of Lemma 1; then applying
the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [2] without(PS)
condition, there exists a sequence{ωn} ⊂X such that

ΨW(ωn)→ c and Ψ ′
W(ωn)→ 0, asn → ∞,

where

c = inf
γ∈ΓW

max
t∈[0,1]

ΨW

(
γ (t)

)
> 0. (7)

From Lemma 2, there existsω ∈ X such thatωn ⇀ ω weakly inX andω is a
weak solution of(PW ). If ω �= 0 the proof is finished. Now, ifω = 0, define

ω̂n
1(x)= ωn

1(x + yn), ω̂n
2(x)= ωn

2(x + yn), yn ∈ Z
N ,

with yn given in Lemma 3(b). Using the fact thatWi , i = 1,2, are 1-periodic
functions, it follows thatF ∗ andG∗ are 1-periodic functions and consequently
that ∫

〈ω̂n,Kω̂n〉 =
∫

〈ωn,Kωn〉,
∫

F ∗(x, ω̂n
1

)=
∫

F ∗(x,ωn
1

)
and ∫

G∗(x, ω̂n
2

)=
∫

G∗(x,ωn
2

)
.

Therefore

ΨW(ω̂n)= ΨW(ωn) → c asn→ ∞. (8)

SinceF ∗′ is 1-periodic,

Ψ ′
W(ω̂n)ϕ = Ψ ′

W(ωn)ϕn, ϕn(x)= ϕ(x − yn), ϕ ∈X,

and it follows that

Ψ ′
W(ω̂n)→ 0 inX∗ asn→ ∞. (9)

Hence,{ω̂n} is a(PS)c sequence withc > 0 and it can be assumed that

ω̂n ⇀ ω̂ weakly inX asn→ ∞.
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As in the proof of Lemma 2(a), we have

ω̂n
1 → ω̂1 in L

(q+1)/q
loc (RN) asn → ∞

and

ω̂n
2 → ω̂2 in L

(p+1)/p
loc (RN) asn→ ∞.

From Lemma 3(b), we have either∫
BR+1(yn)

∣∣ω̂n
1

∣∣(q+1)/q � η > 0 or
∫

BR+1(yn)

∣∣ω̂n
2

∣∣(p+1)/p � η > 0.

Thenω̂ �= 0. Therefore by Lemma 2(b),̂ω is a weak nontrivial solution of(PW ).
Moreover, ifω is the solution obtained, we have

c = ΨW(ω)− 1

2
Ψ ′
W(ω)ω+ on(1)

so, by Fatou lemma and the last equality we getc � ΨW(ω). On the other hand,
Lemma 2 implies thatc �ΨW(ω), thusc = ΨW(ω).

Positivity. Let (u, v) ∈ W2,(p+1)/p(RN) × W2,(q+1)/q(RN) be a nontrivial
solution of problem(PW ). Then from (2), letω = (ω1,ω2) ∈ X be a nontrivial
critical point of the functionalΨW satisfyingΨW(ω) = c, where, by Lemma 2,
c is the mountain pass level characterized by

c = inf
z∈X\{0}sup

t�0
ΨW(tz) > 0.

First of all observe that sincec > 0, and by definition of〈η,Kω〉, we infer that if
ω = (ω1,ω2) �= (0,0) implies thatω1 �= 0 andω2 �= 0.

Claim 1. Eitherω+ = (ω+
1 ,ω

+
2 ) = (0,0) or ω− = (ω−

1 ,ω
−
2 ) = (0,0), whereω±

i= max{±ωi,0} (i = 1,2).

Using the equalitiesω1 = ω+
1 −ω−

1 andω2 = ω+
2 −ω−

2 , and using the linearity
of operatorK, we have the inequality∫

〈ω,Kω〉 �
∫

〈ω+,Kω+〉 +
∫

〈ω−,Kω−〉.
This inequality implies that

ΨW(ω) = max
t�0

ΨW(tω) � ΨW(tω) = ΨW(tω+)+ΨW(tω−) ∀t � 0. (10)

Suppose by contradiction thatω+ �= 0 andω− �= 0; then∫
〈ω+,Kω+〉> 0 and

∫
〈ω−,Kω−〉> 0. (11)
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We recall that ifω+ �= 0 thenω+
1 �= 0 andω+

2 �= 0. On the contrary, if one of the
functions were null we have∫

〈ω+,Kω+〉 = 0.

Therefore

ΨW(tω+)→ +∞, ast → ∞,

which is a contradiction to (10). From (11), lett±0 ∈ R be such that

ΨW

(
t±0 ω±)= max

t�0
ΨW(tω±).

From the definition of mountain pass levelc, given in (7), we infer that

ΨW

(
t+0 ω+)� c and ΨW

(
t−0 ω−)� c. (12)

Substitutingt+0 in (10) and using (12) we obtain

ΨW(ω)= c � ΨW

(
t+0 ω+)+ΨW

(
t+0 ω−)� c +ΨW

(
t+0 ω−),

that is,

ΨW

(
t+0 ω−)� 0.

This implies that

t+0 > t−0 . (13)

Similarly, we have

t+0 < t−0 . (14)

From (13) and (14) we reach a contradiction, which implies thatω+ = 0 or
ω− = 0.

We can assume without loss of generality that

Claim 2. ω+ �= 0.

Suppose thatω− �= 0 (ω+ = 0). Define the vector̂ω = −ω = (−ω1,−ω2).
In this case, in view ofω1 � 0 andω2 � 0 we havêω+ �= 0 andω̂− = 0. Also,
observe that

ΨW(ω)= ΨW(ω̂) and Ψ ′
W(ω)ω = Ψ ′

W(ω̂)ω̂.

Thereforêω ∈N = {z ∈X \ {0}; Ψ ′
W(z)z = 0}.

Next we will prove thatΨ ′
W(ω̂) = 0. SinceΨW(ω̂) = c, there existsΘ ∈ R

N

(Lagrange multiplier) such that

Ψ ′
W(ω̂)=ΘJ ′(ω̂), (15)
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where

J (z)= Ψ ′
W(z)z.

Note that by (15), we have

0 =ΘJ ′(ω̂)ω̂,
which implies thatΘ = 0, sinceJ ′(ω̂)ω̂ �= 0. Therefore

Ψ ′
W(ω̂) = 0

andω̂ is a nontrivial critical point ofΨW with nonnegative entries. Hence from (2),
since ω �= (0,0), ω1,ω2 � 0 andw1,w2 �≡ 0, we infer that(u, v) �= (0,0),
u,v � 0 andu,v �≡ 0. Moreover,u andv verify the system

−∆u+ u=W2(x)v
p in R

N,

−∆v + v =W1(x)u
q in R

N,

u � 0, v � 0 in R
N, N � 2.

Sinceu,v ∈C2(R) (see, e.g., [17]), andu satisfies

−∆u+ u =W2(x)v
p � 0 in R

N,

by using the weak maximum principle (see, e.g., [11, Theorem 3.1]) we conclude
thatu > 0 in R

N . Similarly we havev > 0 in R
N . So, the solution is positive.✷

5. Proof of Theorem 2—The perturbed case

Note that applying Theorem 1, the system
−∆u+ u= V2(x)|v|p−1v in R

N,

−∆v + v = V1(x)|u|q−1u in R
N,

u(x), v(x)→ 0 as|x| → ∞,

u > 0, v > 0 in R
N, N � 2,

(PV )

possesses at least one positive dual solutionω̃ ∈ X, which is a critical point of
functionalΨV defined by

ΨV (ω)=
∫ ((

q

q + 1

)
1

V
1/q
1

|ω1|(q+1)/q +
(

p

p + 1

)
1

V
1/p
2

|ω2|(p+1)/p
)

− 1

2

∫
〈ω,Kω〉,

with ΨV (ω̃)= c1 andΨ ′
V (ω̃)η = 0, η ∈X, wherec1 was given in Lemma 2.

By Lemma 1 and the Mountain Pass Theorem, there exists a sequence{ωn} ⊂
X such that

ΨW(ωn)→ cω and Ψ ′
W(ωn)→ 0, asn → ∞,
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where

cω = inf
γ∈ΓW

max
t∈[0,1]

ΨW

(
γ (t)

)
> 0

and

ΓW = {
γ ∈C

([0,1],X): ΨW

(
γ (0)

)= 0, ΨW

(
γ (1)

)
< 0

}
.

From Lemma 2, we infer thatωn ⇀ ω weakly inX asn → ∞ and also thatw
is a weak solution of(PW ). Since the proof of positivity as well as the decay at
infinity follows as in the proof of Theorem 1, it is sufficient to show thatω �= 0.
Supposing by contradiction thatω = 0, we claim that

Claim 3.

(a)
∣∣ΨV (ωn)−ΨW(ωn)

∣∣→ 0 asn → ∞,

(b)
∥∥(Ψ ′

V −Ψ ′
W)(ωn)

∥∥= sup
η∈X, |η|=1

∣∣((Ψ ′
V −Ψ ′

W)(ωn)
)
η
∣∣→ 0

asn → ∞.

Assuming Claim 3 for a while, we have

ΨV (ωn) → cω and Ψ ′
V (ωn)→ 0 asn→ ∞.

Then

0< cω � sup
t�0

ΨW(tω̃)= ΨW(t∗ω̃) for somet∗ ∈ R.

In view of ω̃i > 0 (i = 1,2), by (A1), (A3) and Lemma 2, we obtain

ΨW(t∗ω̃) < ΨV (t
∗ω̃) � sup

t�0
ΨV (tω̃)= c1,

which implies that

cω < c1. (16)

We will prove the reverse inequalityc1 � cω, thereby obtaining a contradiction.
From

Ψ ′
V (ωn)ωn = on(1) asn → ∞,

we have∫ ( |ωn
1|(q+1)/q

V
1/q
1

+ |ωn
2|(p+1)/p

V
1/p
2

)
=
∫

〈ωn,Kωn〉 + on(1) asn→ ∞.

(17)

Since{ωn} is bounded inX, assume that
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∫ ( |ωn
1|(q+1)/q

V
1/q
1

)
→L1 asn → ∞, (18)

∫ ( |ωn
2|(p+1)/p

V
1/p
2

)
→ L2 asn→ ∞ (19)

and ∫
〈ωn,Kωn〉 →L = L1 +L2 asn→ ∞. (20)

If L= 0, then

‖ωn‖ → 0 asn→ ∞,

which is a contradiction tocω > 0. SoL> 0. Then there existδ > 0,n0 ∈ N such
that ∫

〈ωn,Kωn〉 � δ > 0, n� n0. (21)

Thus, there existstn ∈ R such that

ΨV (tnωn)= max
t�0

ΨV (tωn), n� n0,

that is,

1

t
1−1/q
n

∫ |ωn
1|(q+1)/q

V
1/q
1

+ 1

t
1−1/p
n

∫ |ωn
2|(p+1)/p

V
1/p
2

=
∫

〈ωn,Kωn〉. (22)

From (22), we observe thattn is bounded from above. Also, sinceL> 0, we can
assume without loss of generality that∣∣ωn

1

∣∣(q+1)/q
(q+1)/q � δ0 > 0.

Note thattn �→ 0. Hence,∫
〈ωn,Kωn〉 → ∞ asn → ∞,

which is a contradiction to the boundedness of{wn}. Now, using arguments
similar to those in [1], we obtain that

tn → 1 asn→ ∞.

Therefore,

c1 � ΨV (tnωn)

= ΨV (ωn)+
(
1− t2n

)∫ 〈ωn,Kωn〉− (1− t
(q+1)/q
n

) q

q + 1

∫ |ωn
1|(q+1)/q

V
1/q
1

− (
1− t

(p+1)/p
n

) p

p + 1

∫ |ωn
2|(p+1)/p

V
1/p
2

.
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Observing thatL> 0 andtn → 1, passing to the limit asn → ∞ in the inequality
above, we obtain that

c1 � cω.

Proof of Claim 3. First, we observe that the inequality

1

V
1/q
1

− 1

W
1/q
1

= W
1/q
1 − V

1/q
1

(V1W1)1/q
� C

(
W

1/q
1 − V

1/q
1

)
� CW1

holds for some positive constantC. Similarly

1

V
1/p
2

− 1

W
1/p
2

�CW2.

As in the proof of Lemma 2(a) and sinceω = 0, we can assume that

ωn
1 → 0 inL

(q+1)/q
loc (RN), asn → ∞, (23)

and

ωn
2 → 0 inL

(p+1)/p
loc (RN), asn→ ∞. (24)

The proof of Claim 3 follows by showing that∫ ∣∣ωn
1

∣∣(q+1)/q
W1 → 0, asn → ∞, (I)∫ ∣∣ωn

2

∣∣(p+1)/p
W2 → 0, asn → ∞, (II)

sup
η∈X, |η|=1

∫ ∣∣ωn
1

∣∣(1/q)−1
ωn

1η1W1 → 0, asn→ ∞, η = (η1, η2) ∈X,

(III)

and

sup
η∈X, |η|=1

∫ ∣∣ωn
2

∣∣(1/p)−1
ωn

2η2W2 → 0, asn→ ∞, η = (η1, η2) ∈ X.

(IV)

Verification of (I). Splitting the integral, we have∫ ∣∣ωn
1

∣∣(q+1)/q
W1 =

∫
BR

∣∣ωn
1

∣∣(q+1)/q
W1 +

∫
RN−BR

∣∣ωn
1

∣∣(q+1)/q
W1. (25)

From (23), we have

lim sup
n→∞

∫ ∣∣ωn
1

∣∣(q+1)/q
W1 � lim sup

n→∞

∫
RN−BR

∣∣ωn
1

∣∣(q+1)/q
W1

�C|W1|∞,RN−BR
.
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Now forR large enough, using(A2) we conclude the proof of (I).
Verification of (II). Analogous to the proof of (I).
Verification of (III). Splitting the integral, we obtain∫ ∣∣ωn

1

∣∣(1/q)−1
ωn

1η1W1 =
∫
BR

∣∣ωn
1

∣∣(1/q)−1
ωn

1η1W1

+
∫

RN−BR

∣∣ωn
1

∣∣(1/q)−1
ωn

1η1W1

≡ J1 + J2.

By the Hölder inequality, we obtain

J1 � |W1|∞
( ∫
BR

∣∣ωn
1

∣∣(q+1)/q

)1/(q+1)( ∫
BR

|η1|q+1

)(q+1)/q

,

and by(A2) we have

J2 � ε‖ωn‖
( ∫

RN−BR

|η1|q+1

)(q+1)/q

, ∀ε > 0.

Then from (23) follows the verification of (III).
The proof of (IV) is similar to proof of (III). ✷

6. Final comments

Our results still hold when the functionsW2(x)|v|p−1v andW1(x)|u|q−1u are
replaced by two functionsf andg satisfying the following conditions:

(F1) f,g :RN ×R → R are measurable in the first variable and continuous in the
second variable.

(F2) f , g, F(x, t)= ∫ t
0 f (x, s) ds andG(x, t) = ∫ t

0 g(x, s) ds are increasing and
strictly convex int .

(F3) There existsC > 0 such that|f (x, t)| � C|t|q and|g(x, t)| � C|t|p , t ∈ R,
wherep,q > 1 (N � 2) and 1/(p + 1)+1/(q + 1) > (N − 2)/N (N � 3).

(F4) There exist constantsα,β > 2 such that 0< αF(x, t) � tf (x, t) and 0<
βG(x, t)� tg(x, t), t �= 0, x ∈ R

N .
(F5) |f (x, t) − f̃ (x, t)| < ε|t| and |g(x, t) − g̃(x, t)| < ε|t|, |x| > R, |t| � δ,

f → f̃ andg → g̃ uniformly for t bounded, as|x| → ∞, wheref̃ , g̃ are
periodic inx.

(F6) F(x, t) � F̃ (x, t) = ∫ t
0 f̃ (x, s) ds and G(x, t) � G̃(x, t) = ∫ t

0 g̃(x, s) ds,
meas{x ∈ R

N : f (x, t) = f̃ (x, t)} > 0 or meas{x ∈ R
N : g(x, t) = g̃(x, t)}

> 0.
(F7) f̃ (x, t)/t, g̃(x, t)/t are strictly increasing int , x ∈ R

N .
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In this generalization, in addition to the properties

F ∗′(x, s)= f−1(x, s)

and

F ∗(x, s)= st − F(x, t) with t = F ∗′
s (x, s), s = f (x, t),

we have:

(1) From(F4), we have

F ∗(x, s)�
(

1− 1

α

)
sF ∗′(x, s), s ∈R, x ∈ R

N.

(2) From(F3), there exists a constantC such that

F ∗(x, s)� C|s|q ′
,

1

q
+ 1

q ′ = 1, s ∈ R, x ∈ R
N .

(3) From(F7), we obtain that

F̃ ∗′(x, s)/s, s �= 0, x ∈ R
N,

is strictly decreasing for alls.

Finally, and most importantly,

Claim 4. If wn
1 ⇀w1 weakly inL(q+1)/q(RN) such thatF ∗′(x,wn

1) is bounded
in Lq+1(RN), then∫

F ∗′(x,wn
1

)
η1 →

∫
F ∗′(x,w1)η1 asn→ ∞, η = (η1, η2) ∈X.

Proof. The claim follows noticing that, sinceF ∗′(x, s) is strictly increasing,

wn
1 →w1 a.e. inR

N,asn → ∞.

From this fact and a result of Brezis and Lieb (see [13, Lemme 4.6]), we have the
convergence desired. Similar statements hold forG. ✷
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