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Abstract

Using the Legendre—Fenchel transformation and the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz, we establish an existence result for perturbations of periodic
and asymptotically periodic semilinear Hamiltonian systems of the type

—Au+u=Wox)wP v inRV,
—Av+v=Wi@)u4 . inRY,
u(x),v(x) >0 aslx| — oo,
u>0, v>0 InRNV, N>2

Here, the numberg, g > 1 are below the critical hyperbola N > 3, that is, they satisfy
1/(p+1) +1/(g +1) > (N —2)/N, while no additional restrictions op andq are
required ifN = 2. The functiong¥;, i = 1, 2, are bounded positive continuous functions.
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1. Introduction

In this paper, we consider the semilinear Hamiltonian system
—Au+4u=Wox)v|’"v inRV,
—Av+v=Wi(®)|u|9u inRVN,
u(x),v(x) >0 asjx| —> oo,
u>0, v>0 InRM, N>2

where the numberg, g > 1 are below the critical hyperbola ¥ > 3, that is,
they verify

1 1 N-2
+ >
p+1 qg+1 N
while no additional restrictions op andg are required itV = 2 and the functions

Wi, i =1,2, are bounded positive continuous functions for which we will give
additional assumptions later. We will study two main problems:

(Pw)

9

(1) The existence of positive solutions in the periodic case.
(2) The existence of positive solutions for the asymptotically periodic case.

The class of problems treated here has several difficulties. First, there is the
lack of compactness of the Sobolev embedding, since our domain is the whole
space. Second, it is challenging to find an adequate functional, the critical points
of which are still solutions of probleniPy ), so that we can apply variational
methods.

For the case of a bounded domain these systems were studied by a number of
authors, for instance, Clement et al. [4], Costa and Magalhdes [5], de Figueiredo
and Magalhaes [8], Hulshof and van der Vorst [12], de Figueiredo and Felmer [7].
The case of the whole space was considered recently, among others, by Serrin and
Zou [16], de Figueiredo and Yang [9], Sirakov [17] and Yang [19].

Motivated by the approach used in [19], namely the dual variational method,
we considered a class of elliptic system which generalizes the case of a single
equation explored by authors in [1]. One of the crucial points in this work was to
prove a version of a compactness result due to P.L. Lions to overcome the lack of
compactness in syste(Py ).

We will impose some assumptions on our nonlinearities. The first of them
treats the situation whe#; is a periodic function; more precisely, we assume

W; e CORY) and inf Wi(x)>0, i=1,2 (P1)

xeRN

Wix+y)=Wi(x), i=12 yeZ', xeR", (P2)

Theorem 1. Assume thatP1) and (P2) hold. Then problentPy) possesses at
least one positive solution.
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The second result is a perturbation of the problem above, in the sense that the
asymptotic problem at infinity is a periodic problem. We shall impose the fol-
lowing:

Wi=Vi+W;, W;>0, W;eC’®R"Y), i=12 (A1)
Wi(x) >0 as|x|—>o0,i=12, (A2)

meagx e RV: W1 >0} >0 or meagx e RV: W, > 0} > 0. (Aa)

Theorem 2. Assume thav; (i = 1, 2) satisfieq P1) and (P2). Moreover, suppose
that W; (i =1, 2) verifies(A1), (A2) and (A3). Then problen{Py) possesses at
least one positive solution.

Recently in [19], Yang proved the existence of a solution of prob{&m)
by considering it a perturbation of an autonomous problei®/n In the present
paper, we work with a class of problems more general than that treated in [19].
The outline of this paper is as follows. In Section 2, we establish the dual
variational formulation using the Legendre—Fenchel transform. In Section 3, we
prove some technical lemmas. Sections 4 and 5 are dedicated to proving our
theorems. Remarks are given in Section 6.

2. Preliminary results

In this section, we introduce the Legendre—Fenchel transform and the varia-
tional framework for our Hamiltonian system R". Consider the linear contin-
uous operators

Ty LPHD/P(RNY 5 L4HLRY)
and

Tp: L4tD/aRN) - LPTLRN),
where

Ti=To=(—A+id)~L

Actually, to be preciseT; = i o T1,, where Ty ,:LPtV/P[RN) —
W&’(”“)/”(RN) N w2@+D/P(RN) s a linear continuous operator (see, e.g., [3,
Théoréme 1X.32]), and: W2 »+D/P(RN) — L4t1(RN) is a continuous embed-
ding, because the inequality + 1) > p/(p + 1) — 2/N holds forN > 2. We
also recall that the embedding W2 (P+Y/P(Bg) — LIt1(By) is compact, for
all balls B = Bg(0) in RN centered at origin with radiug. Similar remarks
hold for T».
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Define the linear continuous operator
K LD/ @RN) x 0D/ RN) - LITERY) < LPH®RY)
given by
0 T
K= (Tz ’ ) .
In the sequel, we denote ljy, K w) the following function:

n, Kow) =mTiwz + n2Tw1, 1= 01,12), © = (01, w2).

For
F, )y =Wi)t? Y and g(x, 1) = Wa(x)|t|P 7Y, teR,
let
F(x,t):w and G(x,t):ﬁ, t eR,
qg+1 p+1

their primitives. Then the Legendre—Fenchel transforms

F*(x,s)=sup{st — F(x,n)} and G*(x,s)=sup{st — G(x,1)}
teR teR

of these functions are the following:

q 1 1
F*(x,s) = [ — | —=—|s|?tD/7 and
) (61+1)W11/q||

P 1 1
G*(x,s) = s|(p+D/p
() <p+1> Wzl/"I |

(see the book by Mawhin and Willem [15] for more details).
Let
X = 1.@+tD/q (RN) % LP+D/p (RN)

be the Banach space endowed with the norm

loll = 1012, 1, +102l2, 1 ©=(@1,09) €X,

where hereaftelr- |o0, 4, | - |s and [ f will mean L (A)-norm,L* (RV)-norm and
fRN f(x) dx, respectively. The symbdal denotes positive constants that may be
different on different occurrences.

We define the functionakby : X — R by

1
Uy (w) = /(F*(x,a)l) + G*(x, w2)) — 5/(0), Kw).
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Yy is Ct and forn = (1, n2) € X has Frechet derivative

1| YD1, 2| Y P~ Laon,
Wév(w)nzf + — | (n, Kw).
W:i-/q Wzl/p

In the last equality, we made use of the following property of funckan

/(77, Kw)z/(a),Kn), nweX.

We close this section with a proof that the critical points of the functional
Yy are precisely the weak solutions of probléRyy). Indeed, suppose that=
(w1, w2) € X is a critical point ofy, then

|a)1|(1/q)_1a)1 |a)2|(1/”)_1a)2
\/(T - lez 7]]_ +/ # - Tzwl 7)2 = 07
Wl WZ

VneX.
Hence,
lon| YDty d "
T = = —F x,
102 Wll/q 15 (x, w1)
and
|w2|(1/p)flw2 d
T: = ~ = _G*(x, .
201 Wzl T ’p (x, w2)
Setting
u="Tiwy and v="o;, D
we have
w1 = W1|u|q71u and wy = W2|v|p*lv. (2)

From (1) and (2), we obtain that(u, v) € W2@+D/P(RN) x w2 @+D/aRN)
is a weak solution of Py). Moreover, by bootstrap arguments, we have that
u(x), v(x) — 0 as|x| — oo (see [17]).
Throughout this paper a positive solutign, v) means that: > 0 andv > 0
in RV,

3. Technical lemmas

First of all, we will prove that the functionaly, verifies the Mountain Pass
Geometry, namely:

Lemma 1. In addition to assuming thay € L>(R"), assume thaW satisfies
(P1). Then
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(i) there existo, 8 > 0 such thawy (w) > B, || = p,
(ii) there existz € X with |le|| > p such thaty (e) <O0.

Proof. Observe that, by the Holder inequality and the boundedneBsaid 75,
we have

/(a), Kw) < C(lo2l(p+1/pl01lq+1 /g + |01l g+1/q 102l (p+1)/p)
2 2
< C(Iw2|(p+1)/p + |‘”1|(q+1)/q)
=Cllol?, ©=(01,w) € X. )
Then
1 1
Yw(w) > C|w1|§311§% + Ciwzlﬁﬁiﬁfﬁ = CllonlGy 41y + 021511y )-

Thus, since(p+1)/p <2 and (g +1)/q < 2, Lemma 1(i) is proved. Take
w = (w1, w2) € X satisfying{w, Kw) > 0. Then

Yy (tw) > —o0, ast — +oo.
This proves Lemma 1(ii) and the proof of Lemma 1 is completed.

The next result explains the behavior of the Palais—Smale sequence (in short,
(PS)) at the levek, that is, a sequende, } C X such that

Yw(wy) —c¢ and ¥y (w,) =0 inX* asn— oo. 4)

We define the following numbers:

c1= inf ¥y (w),
1= It w (o)

c2= inf sup¥y (tw),
O;éwext>0

c3= Inf max ¥ 1)),
3 yel t€[0,1] W(y())

where I'y = {y € C([0,1], X): ¥Yw(y(0) =0, ¥yw(y(@D) <0} and N is
Nehari’s manifold given by

N ={we X — {0} ¥y () () =0}.
Lemma 2. Let{w, } be a(P9. sequence at level> 0. Then
(@) {w,} is bounded inX.

(b) If w, — w weakly inX, with w # 0, thenw is a weak solution of Py).
(C) C1=C2=2C3.



C.O. Alves et al. / J. Math. Anal. Appl. 276 (2002) 673-690 679

Proof. (a) Letw, = (o}, wy) € X be a (PS) sequence witle > 0. Then, there
existC > 0 andng € N such that

1
Yy (wn) — 7

ZW‘;V (wp)wy, < C + |lwgll, n 2 no.

Thatis

q 1 |a)’{|("+1)/q p 1 |wg|(p+l)/p
- - + —_ e
(q+1 2)/ wy /e <p+1 2)/ w,'?

SC+ C(|wg|(q+l)/q + |wg|(p+l)/p)'

From this inequality, sincép + 1)/p, (¢ + 1)/q > 1, we conclude the bounded-
ness of the sequené¢e,} in X.
(b) Forn = (n1, n2) € X, it suffices to prove the following statements:

|a)’{|(1/‘1)*1w§n1 |w1|(1/‘1)*1a)1r;1 .
/ Ug / g AT U
U A
oA/ p)—1,n 1/p-1 -
w5 - 2712_>/ |w2| - w27’12’ asn — oo, (i)
w,"? w,"?
/(r/, Kw,) — /(r/, Kw), asn— oo. (i)

Proof of (i). For n = (n1,1m2) € X, since¥y, (w,)n — 0, asn — oo, from
Riesz representation theorem we obtain

" (l/q)flwn
— |1|71 — 0, asn— oo, u, =Tws. (5)
q+1

n

Wll/q

On the other hand, from definition of operaf@r, we infer that{u,} is bounded
in w2 P+D/p(RN). Thus, by Sobolev embedding we can assume that (passing to
a subsequence if necessauy)— u a.e. inRY andLl"ngl(RN).
From (5), there existe! € LD/9(RN) such that] — w1 in Ll(g;rl)/q (RM)
and a.e. iR". Since
|wg|(1/q)—lwfi lel(l/q)flwl e inRN’ asn > 00,

—
1/q 1/q
Wy Wy

and (»7) is bounded inL4+1(RY), we conclude that (i) holds. Similarly we
obtain (ii).
Proof of (iii). The proof follows by observing thak : X — R given by

F(¢)=/(U,K¢>, Vne X,

belongs taX*. ThenF (w,) — F(w), asn — oco. This completes the proof of (b).
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(c) The proof follows making some changes in the arguments used in the
paper by Ding and Ni [10] (see also the book by Willem [18]). This proves Lem-
maz2. O

The next result is a version of the Compactness Lemma due to Lions [14,
Lemma 1.1] or Coti-Zelati and Rabinowitz [6, Lemma 2.18]. From nowBpf)
denotes a ball ilRN centered at with radiusr and B, (0) = B,

Lemma 3. Let be{w, } a (PS. sequence at level> 0, such thatw,, — 0 weakly
in X, asn — oo. Then, the sequende, } satisfies either

(@) w, — Ostrongly inX, asn — oo, or
(b) there existp,n > 0, {y,} ¢ RY and a subsequence ¢®,}, still denoted
by {w,}, such that either

lim inf / 2?4 >n or lim inf / |wh|? >

n—o0
Bp(‘n) Bp(}n)

Proof. Sincec > 0, situation (a) does not occur. Suppose that (b) does not hold.
Then

lim | sup / |37 | = lim | sup / w3?? | =0, VR>o0,
n—o00 yERN n—00 ye]RN

Br(y) Br(y) ©)

As in the proof of Lemma 2(a), sincg;, (w,)n — 0, € X, we can assume
that

(g+D)/q

loc (RY) asn — oo

w] —> w1 inL
and
wy — w2 N Ll(gchl)/p(RN) asn — oo.

Thus, from (5) and (6), we conclude that

lim | sup / lun? | = lim | sup / loal?| =0, VR=>O.
n—00 yERN n—00 }’ERN

BRr(») BRr(»)

Since{u,} € w2w+D/P(RN) and{v,} € W2@+tD/4(RN), using a version of the
result by [14] or [6], which is found in [13, Lemme 8.4], it follows that

/|un|q+l,/|vn|p+l—> 0 asn— oo.
From (5), we infer that

/‘wﬂwﬂvq, /’wg‘(pw/p .0 asn— oo,
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that is
lws|| — 0 asn — oo,

which is a contradictionte > 0. O

Remark. It is easy to check that sequengg} obtained in the last lemma can be
taken inZ".

4. Proof of Theorem 1—The periodic case

Existence. Note thatwy, verifies the assumptions of Lemma 1; then applying
the Mountain Pass Theorem due to Ambrosetti and Rabinowitz [2] wittleHt
condition, there exists a sequer{ag } C X such that

Yw(wy) — ¢ and ¥y (w,) -0, asn— oo,
where

= inf max ¥ t 0. 7
e= int max w(y (@) > @)

From Lemma 2, there exists € X such thatw, — » weakly in X andw is a
weak solution of Py). If w # 0 the proof is finished. Now, ib = 0, define
af(x)zwf(x-f‘yn)a ag(x):a)g(x_’_yn)v Yn EZN7

with y, given in Lemma 3(b). Using the fact thé;, i = 1, 2, are 1-periodic
functions, it follows thatF* and G* are 1-periodic functions and consequently

that

/(6,1,1(@,,):/(60,,,1@,1), /F*(x af) = /F*(x,wg)
and

[orwap) = [ 6 (xap).
Therefore

Uy (@n) = Yw(w,) — ¢ asn — oo. (8)
SinceF* is 1-periodic,

Uiy (@n)g = Wiy (@n)Pn,  Ga(X) =@(x —yn), @€X,
and it follows that

Wy (@,) — 0 inX*asn — oco. 9)
Hence,{,} is a(PS. sequence witlr > 0 and it can be assumed that

w, — o weaklyinX asn — oo.
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As in the proof of Lemma 2(a), we have

o] —»> o1 in Ll(gng)/q (RV) asn — oo

and
wy —> @ in Ll(é’c+l)/p(RN) asn — oo.

From Lemma 3(b), we have either

/ ‘aﬂ(ﬁl)/q>n>0 or / ’62’(p+1)/p>n>0.
Bry1(yn) Br+1(yn)
Theno = 0. Therefore by Lemma 2(bj, is a weak nontrivial solution ofPy ).
Moreover, ifw is the solution obtained, we have

1
c=¥y(w) — E‘I’{V(a))w + 0, (1)

so, by Fatou lemma and the last equality we @&t ¥w (w). On the other hand,
Lemma 2 implies that < ¥y (w), thusc = ¥y (w).

Positivity. Let (x,v) € W2P+tD/p(RN) x w2@+D/a(RN) be a nontrivial
solution of problem(Py ). Then from (2), letw = (w1, w2) € X be a nontrivial
critical point of the functionally satisfying@w (w) = ¢, where, by Lemma 2,
¢ is the mountain pass level characterized by

c= inf sup¥y(tz) > 0.
2€X\(0} ;>0

First of all observe that sinae> 0, and by definition ofn, Kw), we infer that if
w = (w1, w2) # (0, 0) implies thatw1 # 0 andwy # 0.

Claim 1. Eitherw™ = (], @) = (0,0) or 0™~ = (w; , w,) = (0, 0), wherew;®
=maxXtw;, 0} (i =1, 2).

Using the equalitiesn = o] — w; andw, = ws —w,, and using the linearity
of operatork , we have the inequality

/<w,1<w> < /<w+, Ko™) +/<wi Koo).

This inequality implies that

Uy (w) = m>a0xww(zw) > Uy (tw) =Py (tot) + Yy (o) V>0, (10)
t

=

Suppose by contradiction that™ # 0 andw™ # 0; then

/(a)+,Kw+) >0 and /(af,Kaf) > 0. (12)
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We recall that ifo™ # 0 thenw; # 0 andw; # 0. On the contrary, if one of the
functions were null we have

/(aﬁ, Kot)=0.
Therefore
Uy (twT) — 400, ast — oo,
which is a contradiction to (10). From (11), it € R be such that

Wy (15 0™) = maxy (to™).
0 >0

From the definition of mountain pass levelgiven in (7), we infer that

Yy (tarer) >c and Yy (tofaf) >c. (12)
Substituting; in (10) and using (12) we obtain

Uy (w)=c> lI/W(tara)J“) + Yy (taraf) >c+ llfw(taraf),
that is,

Uy (tg'a)_) <0.
This implies that

tg >1g - (13)
Similarly, we have

g <ty (14)

From (13) and (14) we reach a contradiction, which implies that= 0 or
w~ =0.
We can assume without loss of generality that

Claim 2. o #0.

Suppose thair™ # 0 (o' = 0). Define the vectob> = —w = (—w1, —w?).
In this case, in view ofv; < 0 andw; < 0 we havew™ #£ 0 anda~ = 0. Also,
observe that
Yy (w) =¥y (@) and ¥y (0)o =¥ (0)o.

Thereforew e N = {z € X \ {0}; ¥y, (z)z =0}.
Next we will prove thaty, (@) = 0. Since¥w (®) = ¢, there exist®d e RN
(Lagrange multiplier) such that

v, (@) =060J @), (15)
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where
J(2) =¥y (2)z.
Note that by (15), we have
0=0J (0o,
which implies that® = 0, sinceJ’(w)@ # 0. Therefore
¥, @) =0
and® is a nontrivial critical point offy, with nonnegative entries. Hence from (2),

since w # (0,0), w1, w2 > 0 and wy, w2 # 0, we infer that(u, v) # (0, 0),
u,v > 0 andu, v # 0. Moreovery andv verify the system

—Au+u=Wox)v? inRV,
—Av4+v=Wix)u? inRY,
u>0, v=0 inRV, N>2
Sinceu, v € C3(R) (see, e.g., [17]), and satisfies
—Au+u=Wo(x)v” >0 inR"Y,

by using the weak maximum principle (see, e.g., [11, Theorem 3.1]) we conclude
thatu > 0inRR". Similarly we havev > 0in R . So, the solution is positive. 0

5. Proof of Theorem 2—The perturbed case

Note that applying Theorem 1, the system
—Au—4u=Vox)|v|P v inRV,
—Av+v= Vl(x)|u|‘1’1u in RV,
u(x),v(x) > 0 asjx| —> oo,
u>0, v>0 inRM, N>2

possesses at least one positive dual solutian X, which is a critical point of
functional¥y defined by

— _a \_ 1 o G+vsa P 1 (p+D)/p
Wv(w)—/((q+1) Vll/q |1 + b+l Vzl/p ||

= K
_5/(w’ 0)),

with ¥y (@) = c1 and¥y, (@)n =0, n € X, wherec; was given in Lemma 2.
By Lemma 1 and the Mountain Pass Theorem, there exists a sequgice
X such that

(Pv)

Yw(wy) —> ¢ and ¥y (w,) — 0, asn— oo,
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where

c,= Inf max ¥ 1)) >0
@ el te0.1] w(r ()

and
Iy ={y € C([0,1], X): ¥w(y(0)) =0, ¥w(y(1) <0}.

From Lemma 2, we infer thab, — » weakly in X asn — oo and also thaw

is a weak solution of Py ). Since the proof of positivity as well as the decay at
infinity follows as in the proof of Theorem 1, it is sufficient to show theg 0.
Supposing by contradiction that= 0, we claim that

Claim 3.

@ |y (wn) — Pw(wp)| —> 0 asn — oo,
) ¥y — ¥ (@)] = sup (¥ — @) (@a))n| — 0
nex, |nl=1
asn — o0.
Assuming Claim 3 for a while, we have
Yy (o) = ¢ and ¥y (w,) — 0 asn — oco.

Then

0 < ¢, < SUPYPy (tw) = Yy (t*w) for somer™* e R.
t>0

In view of @; >0 (i =1, 2), by (A1), (A3) and Lemma 2, we obtain

Uy (1*@) < Wy (t*®) < sup¥y (td) = c1,
>0

which implies that
Cw < C1. (16)

We will prove the reverse inequality < ¢, thereby obtaining a contradiction.
From

Wy (wn)wn =0, (1)  asn — oo,
we have

/<|a)’{|(‘1+1)/q |wg|(p+l)/p
1/q 1/p
Vi V2

):/(wn,Kwn)—i-on(l) asn — 0.
17)

Since{w,} is bounded inX, assume that
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|| @tD/a
/(#) — L1 asn — o0, (18)
Vi
|w2|(PHD/P
/(72 7 )—> Ly, asn— o0 (19)
Vs
and
/(a)n,Ka)n)—>L=L1+L2 asn — oo. (20)
If L =0, then

lonll >0 asn — oo,

which is a contradiction to,, > 0. SOL > 0. Then there exist > 0, ng € N such
that

/(wn,Ka)n)25>O, n > no. (21)

Thus, there exists, € R such that

Py (thowy) = Maxwy (tw,), n = no,
>0

that is,

1 / |wg|(q+l)/q 1 / |wg|(p+l)/p /
— + — = (wnv Kwn) (22)
ti 1/q Vll/q ti 1/p Vzl/p

From (22), we observe that is bounded from above. Also, sinée> 0, we can
assume without loss of generality that

n|(@+D/q
1] ig+2y7q > 50> 0.

Note that,, A 0. Hence,
/(wn, Kwp) — 0o asn — oo,

which is a contradiction to the boundedness{af,}. Now, using arguments
similar to those in [1], we obtain that

t, > 1 asn— oo.

Therefore,

c1 < Yy (thwy)

(g+D/q
2 (¢+D/qy_4 ||
:wv(wn)+(1—tn)/<wn,Kwn>—(1—r,ﬂ ")QH/ Vi

(= vy P [ s o
! p+1) yr
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Observing thal. > 0 and:, — 1, passing to the limit ag — oo in the inequality
above, we obtain that

c1 < Cy.

Proof of Claim 3. First, we observe that the inequality

1/q 1/q

Wyl —v. _
1t 1 W L_<o(w/d - v/ <cwy
v wle o (awyle

holds for some positive constafit Similarly

Lot <CW
Up — iy X2
VZ WZ

As in the proof of Lemma 2(a) and sinae= 0, we can assume that

wi—0 in Ll(gng)/q(RN), asn — oo, (23)
and

oy — 0 in Ll(gchl)/p(RN), asn — oo. (24)
The proof of Claim 3 follows by showing that

/|a)g|(q+l)/qW1 — 0, asn— oo, 0]

/|w§|(p+l)/pW2 — 0, asn— oo, (n

sup /}wﬁ(lmflw’{nlwl —0, asn— 00, n=(n1,7m2) € X,
neX, n|=1

(1)

and
sup /|a)§|(l/p)7lwgn2W2 — 0, asn— o0, n=1,n2) € X.
neX, n|=1

(V)

Verification of (I). Splitting the integral, we have

/g /g /g

/‘wﬂ(tfr a3, — /]w’{](‘” a1, 4 / oD/, (25)

Bgr RNfBR

From (23), we have

, Vg _ Vg
lim sup [ || 7W, <lim sup / || TP
n—oo n—oo
RN —Bp

g C|W1|00,RN—BR'
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Now for R large enough, usingA») we conclude the proof of (1).
Verification of (II). Analogous to the proof of (I).
Verification of (I1l). Splitting the integral, we obtain

J1081 0 oy = [ o] o7
Bgr

+ / @} |l W
RN—Bg
=J1+ Jo.
By the Holder inequality, we obtain

1/(g+1) (g+1)/q
— 1
Jl<|W1|oo</\wﬂ<‘” W) (/mlw“) ,
Bg B

R

and by(A») we have

(g+1)/q
Jo < ellwn||< / Irlll‘”l) , Ve>D0.

RN —Bg

Then from (23) follows the verification of (l11).
The proof of (V) is similar to proof of (1ll). O

6. Final comments

Our results still hold when the functio& (x)|v|?~1v and Wy (x)|u|?1u are
replaced by two functiong andg satisfying the following conditions:

(F1) f,g:RN xR — R are measurable in the first variable and continuous in the
second variable.

(F2) f.8 F(x,0)= [y f(x,5)ds andG(x, ) = [y g(x,s)ds are increasing and
strictly convex ins.

(F3) There exist€ > 0 such that f(x,#)| < C|t|? and|g(x, )| < C|t|?, t € R,
wherep,g>1(N>2)andY(p+1)+1/(¢g+21) > (N—-2)/N (N = 3).

(Fs) There exist constanis, 8 > 2 such that O< a F(x,t) < tf(x,t) and O<
BG(x,1) <tg(x,1),1#0,x e RV,

(F5) 1f(x,1) — f(x,0)| <elt] and|g(x,1) — g(x,0)| < €lt], |x| > R, [t] <3,
f — f andg — g uniformly for r bounded, a$x| — oo, wheref, g are
periodic inx.

(Fe) F(x,t) > F(x,0) = [5 f(x,s)ds and G(x,1) > G(x,1) = [y §(x,s)ds,
meagx € RV: f(x,1) = f(x,1)} >0 or meagr € RV: g(x,1) = 3(x,1)}
> 0.

(F7) f(x,1)/t,8(x,1)/t are strictly increasing in, x € RV.
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In this generalization, in addition to the properties
F¥(x,8) =[x, 9)
and
F*(x,s)=st — F(x,t) withr=F/(x,s), s= f(x,1),

we have:

(1) From(Fy), we have
k 1 */ N
Ff(x,s) 21— —)sF*(x,s), se€R, xeR".
o
(2) From(F3), there exists a constaatsuch that
N ;011 N
F*(x,s) > C|s|?, —+—=1s€R, xeR".
q9 4

(8) From(F7), we obtain that
F¥(x,s)/s, s#0, x eR",

is strictly decreasing for all.

Finally, and most importantly,

Claim 4. If w} — w1 weakly in L@*+Y/4(RN) such thatF* (x, w}) is bounded
in L1t1(RY), then

/F*’(x, w?)n1—>/F*/(x, wy)n1 asn — oo, n=(n1,72) € X.
Proof. The claim follows noticing that, sincE* (x, s) is strictly increasing,

wi — wy  ae.inRY, asn — oo.

From this fact and a result of Brezis and Lieb (see [13, Lemme 4.6]), we have the
convergence desired. Similar statements holdior O
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