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Let {ui}zO be a sequence of continuous functions on [0, l] such that (uO ,..., uk) 
is a Tchebycheff system on [O, l] for all k 2 0 and let C(u, ,.,., uk) denote the 
corresponding generalized convexity cone. It is proved that if f  belongs to 
C(uLl ,...I 4-l ) then its distance from the linear space spanned by (uO ,..., u,,) is , 
strictly smaller than its distance from the linear space spanned by (z+, ,..., u,-,). 
Other properties of the best approximants to such functions are also given. 

It is shown, by a general category argument, that no direct converse can exit. 
It is then established that if strict decrease of distances (or one of a number of 
other properties of the best approximants) holds for all subintervals of [0, 11, then 
f~ C(u, ,..., unml) for all of these. 

I. DIRECT THEOREMS 

Let {ui}r be an infinite sequence of continuous functions on [O, I] such 
thatforalln,n > l,(u,, ,..., u,J is a positive Tchebycheff system (T-system), 
i.e., 

%(X1) ... %c4 
U&l> ..* aGa> > 0 (1.1) 

k1bJ . . . un-;(xn) 

forallO\<~,<x~<*~*<x,<l. 
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DEFINITION 1. A function f for which 

%-1(X1) *** K&n+1) 20 

f (Xl) --* f (Xn+J 

for all 0 < x1 < x2 < **a < xn+l , < 1, is said to be convex with respect to 
(% ,**a, u,-~). The cone of these functions is denoted by C(U, ,..., u,-~) and 
is called a generalized convexity cone. 

Properties of such cones have been recently investigated in several papers 
[I, 7, 81, and in the monograph [5]. 

Notation. We denote by cl(u,, ,..., u,-b the n-dimensional linear space 
spanned by (u,, ,..., u,-~). When no ambiguity exists, we abbreviate this to 
A-1 * 

We further denote by 

T,-db, bl;f) = ~n-~W 
the best approximant, in the uniform norm on [a, b], from II,-, tof. There 
exists a unique best approximant since {ui}t--l was assumed to be a T-system 
(see, e.g., [31). 

Finally, we let 

Kd17 = Ll(b, bl; f> = IV - Tn-dC4 bl;f)ll 
be the distance from II,-, tof (in the uniform norm, which is the only one 
we use). 

DEFINITION 2. Let g(x) be a continuous function on [a, b]. A point x 
for which 1 g(x)] = 11 g [I is called an extremalpoint for g. An extremal point x 
is called a (+) point if g(x) > 0; otherwise it is called a (-) point. A 
sequence of extremal points for g which are (+) points and (-) points 
alternatingly, is called an “alternance” of g. 

In this section we shall establish properties of the best approximants from 
/I,..., to generalized convex functions. We take as [a, b] the fixed interval 
P, 11. 

THEOREM 1. Let f be a function belonging to C(u,, ,.,., u,-~)\ A,-, . Then 

G%(f) < LlW (1.3) 

Proof. Let P E A,, be such that 

-uf) = II p --Al. 
The theorem will follow once we prove that P $ A,-, . 
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We note first that if En(f) = 0, then (1.3) follows immediately, since, by 
assumption, f $ (1,-r . Hence, we may assume that En(f) > 0. 

Since (uO ,..., u,) is a T-system, the well-known characterization of best 
approximants (see, e.g., [3]) provides for the existence of an n + 2-term 
“alternance” off - P, i.e., of n + 2 points 0 < x1 < xZ < ... < x,+~ < 1, 
such that 

f(xi) - PW = + l)i En(f) i = 1, 2 ,..., n + 2, (1.4) 

where CJ is 1 or - 1. 
We now take one of the sequences {xi};+l, {x~):+~ for which the value 

---En(f) is attained at the last point. Renaming the selected sequence 
bW1h < y2 ... < JL+A we have 

f(Yn+1-i) - P(Y,+,-j) = (-lYfl Mf) j = 0, 19-9 n. (1.5) 

Assuming now that P EA,-~ , we also have f - P E C(u, ,..., u,-~), i.e., 

I, ... %(Yn+J 

Ll(Yl) ... Un-dYn+J 
f(Yl) - ml) ... en+1) - P(Yn+1) 

3 0. U-6) 

On the other hand, substituting from (1.5) and expanding by the last row, 
we see that the determinant is negative, since the elements of the last row 
are nonzero and of alternating signs, and all corresponding minors are 
positive by (1.1). This contradiction proves the theorem. 

THEOREM 2. Let f belong to C(u, ,..., u,-J \ A,-, . Then the maximal 
length of an “alternance” of f - TnMl(f) is n + 1. 

Proof. Assuming that there is an n + 2-term “alternance” {xi}Ff2, we 
may repeat the selection process used in the proof of Theorem 1 and arrive 
at a contradiction. 

THEOREM 3. Let f be a function belonging to C(u,, ,..., u,,-~), and let 
P = & aiui = T,(f); then a, 3 0. If, further, f # (1,-, , then a,, > 0. 

Proof. If f E A, , then clearly f = P, and since, for all 

0 < x1 < *-. <x,+1 < 1, 

%(X1) .‘. %(Xn+d %(X1) ... %(Xn+1) 

o< i 
LlW %1h+1) 

=a, . 
. . . %1(X1) ... wd&z+1) ’ 

P(Xl) *.. fYxn+d %z(Xl) *I* &,+1) 

it follows that a, > 0. Furthermore, if f $flnel , then obviously a, > 0. 
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Assuming next thatf$ (1, , it follows that I&(f) > 0 and we may proceed 
as in the proof of the previous theorem, securing a sequence (y$+l for 
which (1.6) holds. Assuming that a, < 0, we have f - P E C(u, ,..., u,J. 
Hence a contradiction is reached in the same way as in the proof of Theo- 
rem 1. 

Combining both parts, the theorem follows. 
A similar method establishes also 

THEOREM 4. If f is an n-times continuously dlxerentiable function of 

C(%J ,***, unpl), and {ui}z is an Extended Complete Tchebycheff system con- 
structed on (wi}i (for the relevant definitions and properties see [8] or [5]), 
then 

a, > mjn D,-1 *a* Doftt) 
w,(t) ’ 

where Dig = d[g(t)/wi(t)]/dt, i = 0, l,..., n. 
In particular if u$(t) = ti/i!, we have 

a, > min f (n)(t). (18 

For generalized absolutely monotone functions (see [6] and [2]) we easily 
derive from Theorem 4 the following 

THEOREM 5. Let f be a generalized absolutely monotone function on (0, 1) 
and let, for k 3 0, 

Tk(f) = P, = i aiui. 
i=O 

Then 

Dk-1 *.- Dof (O+) < a 
w,(O) ’ k ’ 

k = 0, I,... . (1.9) 

In particular, iff (t) = cf, bktklk!, with bk >, 0 for all k, then 

bk < ak k = 0, l,... . (1.10) 

For the special case of ordinary convexity of order n we have, further, the 
following: 

THEOREM 6. Let f e C(1, x ,..., P--l) \ (1(l) x ,..., xn-l) and set 

g(t) = f(t) - Tn-df N). 
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Then 

(a) Both endpoints of [0, l] are extremalpoints for g; explicitly, 

g(l) = C-W1 g(O) = II g II = En . 

(b) For n > 2, the only (+) point greater than the last (-) point is 
t = 1. Similarly, the only (-1),-l point smaller than the jirst (--I)” point is 
t = 0. 

Proof. We prove the theorem only for t = 1, the proof for the other end 
point being identical. 

By the characterization theorem for best approximants, there exists an 
n + l-term “alternance”. By using an argument similar to that of the proof 
of Theorem 1, we conclude that in such a sequence of n + 1 points the last 
one must be a (+) point. 

Let t* be the last (-) point. Then there exist points tl < a.* t,-, < t* < s 
which are (-) and (+) points alternatingly. We shall show that s = 1. 

Indeed, assume s < 1. Since g E C(l, x ,..., x”-l), we have, for the sequence 
t2 < t, < . .. < t* < s, the inequality 

1 . . . 1 1 1 
tz . . . t* S 1 

. . . (f*)n-1 p-1 

(-I)"-lg . . . -llgll Ilgll g(l) 

3 0. 

By subtracting I/ g 11 times the first row from the last and expanding by the 
last row, we have 

[n/21 

(g(l) - II g II) v2 >...Y t*, s) 2 2 II g II c V(t2 ,--., fn-‘a , L2j+2 ,“., $7 I), 
j-1 

(1.11) 

where V(*, *,..., .) is the Vandermonde of its arguments. Inequality (1.11) 
can hold only if g(l) = 11 g 11 and 

V(t, ,..., t*-2j ) t&j+2 )...) s, 1) = 0 for all j. 

Since the arguments are distinct, this is clearly impossible. Q.E.D. 

Theorem 6 is not valid for general T-systems, as evidenced by the following 
example: 

Consider the interval [-l/5, I], and let u,,(t) = 2 - t2 > 0, f(t) = 3tS. 
Since (d/dt)lf(t)/q,(t)] = 3[(6t2 - t*)/(2 - t2)2] > 0 on [-l/5, 11, f E C&J. 
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It is easy to see that T,(f) = h(t). Indeed, f(t) - uO(t) = 3t3 + t2 - 2 
decreases on [-l/5, 0] from -1.936 to -2, and increases on [0, l] from 
-2 to +2. 

Hence, 0 and 1 are the points of alternance, E,,(f) = 2, and the left end 
point is not an extremal point. 

II. NONEXISTENCE OF A DIRECT CONVERSE 

We analyze in this section the question of finding a converse to the 
theorems of the previous section. We would like to know, for example, 
whether, for ui = t”, i = 0, l,..., the inequalities 

En-dP, 11; f) > &W, 11; f) n = 1, 2,... (2.1) 

imply that all derivatives off have constant signs (not necessarily the same) 
on (0, 1). The answer turns out to be negative; a simple counterexample: 
take f(x) E eZ - e% (0 > 0). The following observation shows that (2.1) 
tells us very little about f : 

THEOREM 7. Let A be the set of functions for which E,J[O, 11; f) > 
E,,([O, 11; f) for all n. Then A”, the complement of A, is a set of the first 
category in CIO, 11. 

Proof. Note that 

AC = (j tf; En-04 ll;f) = CzW, 1l;fN. 
7kl 

Let 

-@,a = U-i J%-dP-4 ll;f) = &([O, ll;fN. 

We shall prove that SY’, has an empty interior. 
Let fO belong to 8, , and let Q E A,-, be such that 

Il.& - Q II = &z-df,) = En(h). 

There exist then n + 2alternance points x1 < x2 < a** < x,+~, and with 
no loss of generality we may assume that x1 is a (+) point. 

Construct a function P,(t) E& which has the same sign as fO - Q at 
Xl 9***3 x,+1 [this can be accomplished by prescribing the zeros of Pa(t) at 
intermediate points]. 

Given any q > 0, the function f(t) = fo(t) + (q/11 P, 11) P,(t) satisfies 
II f -fo ]I < r]. We now claim that E&f) > E,(f). 
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Indeed, 

since the difference T,(f) -f has n + 2 alternance points. 
Thus, 

On the other hand, f - Q = Jo - Q + (q/j/ P, 11) P, takes on at 
Xl, x2 ,...> &il values which are greater in absolute value than &cf) (and 
are of alternating sign). Let the minimal of these absolute values be 
K, K > En(f). Then de la VallCe Poussin’s theorem [3] implies E&f) 3 K. 

Q.E.D. 

On the other hand, a well-known result (see [4, p. 2601) implies that 
D = {f,,f~ C[O, I], the right-hand derivative off exists and is finite at some 
x E [0, l]}, is of the first category in C[O, 11. 

Since if fE C(1, x,..., Y--l), n 3 2, the right-hand derivative off exists 
everywhere, it follows that the class C(l,..., x@), n 2 2, is of the first 
category, and hence much smaller than A. Furthermore, there is a simple 
example of a nonmonotone function for which En-1(f) > E,,(f), for all n. 
Thus, we have proved that (2.1) does not imply even that f (or -f) belongs 
to one generalized convexity cone, let alone to an infinite intersection of 
such cones. 

Remark. Suppose 

for all n and all rationals a, p. The same arguments show that even this does 
not imply that f is absolutely monotone. For the converse to be true we 
need more inequalities. 

III. CONVERSE THEOREMS 

We shall prove in this section that properties of the type considered in 
Theorems l-3 can be used to provide a characterization of generalized 
convexity cones. 

The converse theorems of this section are easy to establish if f has n 
continuous derivatives. The standard limit processes do not work, however, 
and this is the reason for necessity of the following elaborate argumentation. 

We start by proving two lemmas. 
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LEMMA 3.1. If f $ C(u, ,..., u,,J on [a, b], then there exist an interval 
[01, /I] C [a, b] and n + 1 points in [01, fl], y,, , y1 ,..., yn , such that 

Tn-la% kkf)(Yn-i) -f(Yn-$1 = (-lji KL-A% Bl;f) i = 0, 1 ,..., n. 
(3.1) 

Proof. Assume that f $ C(u, ,..., u+~). Then there exist IZ + 1 points, 
a S zn < z1 < ... < z, < b, for which 

%l(zcl) ... u&n) 
&d **. %(Z?J 

(1) < 0. 
%-dzn) *. . &&n) 
f (zo> **. fh) 

Let P(x) be the best approximant from II,-, tofon the set (.zO , z1 ,..., z,). 
It is well known [3] that such a P(x) exists, is unique, and that z0 ,..., z, 
satisfy 

(P - f)(z,-i) = u( - l)i 6, i = 0, I,..., n, 

where 6, > 0, and u is 1 or -1. 
Note next that since P ELI,-, , we also have 

(3.2) 

I %(Zn) ... %(4 I 

&L-l(%) < 0. . . * &L&a) 
(f - mzLJ ... (f - PhJ 

Substituting from (3.2) and expanding by the last row, we conclude that 
u = 1. 

Define now 

C = set of all positive constants 6 such that there exist a function 
Ps E (1,-, and an (n + I)-tuple z,,~, z16,,.., zns satisfying 

(Pa - f)(zi-i) = (- l)i 6, i = 0, l,..., n. (3.3) 

Observe that C is a bounded set. In fact, CC (0, llfll], since for 6 > Ilfll, 
(3.3) implies that P8 has to change sign n times and therefore to have at 
least n zeros. Since P6 EA,-~ , this is impossible. 

Let now C, = C n [S, , ]]fl]]. Then C, is a bounded nonempty set, since 
6, E C, . We next show that it is closed. 

Let @kL be a convergent sequence in C, , and let 8 be its limit. We 
know that 8 E [a,, , Ijfl]]. 
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Let I& = {zlcO, zkl ,..., z&j, k = 1, 2 ,..., be the corresponding (n + I)- 
tuples whose existence is assured by (3.3). Considering these as points in 
E”+l-the (n + I)-dimensional Euclidean space-and noting that a < zii < b 
for all i and j, we conclude that {&}& has a convergent subsequence. 

Note next that, for all k, i, 

vl, -f)hi) - (Pa - f>h+d = 2&s 3 aI 3 (3.4) 

where Pk is the function of A,-, corresponding to {zkO ,..., .zkn}. Hence the 
limit of the convergent subsequence is an (n + I)-tuple (2, , Z1 ,..., Z,) with 
distinct Zj’s. Observe finally that considering 

n-1 

P(z,J + (-l)i+l6 = 1 ag4j(z,-i) + (-l)i+l 6 = f(z& i = 0, l,..., n 
j=o 

as a linear system of n + 1 equations in the n + 1 unknowns al ,..., a,, 6, 
it follows that 6, as well as the corresponding polynomial, are continuous 
functions of the zi ‘s. Hence, there exists a polynomial Pa such that 

(Pa -f)(Zn-i) = (-1)iS. 

Thus, C, is closed. 
Let 

S* = max(6; 6 E C,) (3.5) 

and let Pa*, {zo*,..., z,*} be the corresponding polynomial of A,-, and the 
(n + I)-tuple of points, respectively. 

Define now 

Yo = max 
Zlj*<Y9Z1* 

{Y; (& -f>(v) = (-1)” a*}, 

Yn = zz-p& * {Yi (Ps: -f)(Y) = s*>, 
n 

yi = zi*, i = 1, 2,.. ,, n - 1. 

(3.6) 

We claim now that on [01, /I] = [y. , yn], 

Pa* = Tn-la% Bl;f>. (3.7) 

Noting the definition of the yls, we observe that (3.7) implies (3.1). 
We assume that 

llf - pa* IIG,Pl > a*, (3.8) 

and proceed to show that this violates the definition (3.5) of 6*. 
With no loss of generality we may assume that there exists a point J in 

[a, /3] such that 

PdJ) >f(J) + a*. (3.9) 
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We also assume that n is odd. A very similar proof, with only slight modi- 
fications, establishes the theorem for n even. 

By the construction (3.6) and continuity, we find that p < ynel . Hence 
there exists an r, 1 < r < (n - 1)/2, such that 

Yn-l-2? < u < Yn+1-27 * 

Let now xi, i = l,..., n - 1, be the yi’s with Y,+~~ , Y~+~-~,. excluded, and 
choose wi , i = l,..., n - 1, satisfying 

Wl = Xl , xi-1 < wi < xi ) i = 2,..., n - 1. 

Define the function Q E A,-, by 

1 %@l) ... %h-1) %(t> 1 
Q(t) E : 

%2W *-I %I-2(%-l) %a-20) . 
%lW * * - %a-dwn-1) %-l(t) 

Clearly Q(f) changes sign at the wis and only there. Furthermore, at the 
right end point Q(t) > 0. Hence, for a sufhciently small positive 7, and for 
all j, on (xj - q, xi + 7) the signs of Q(t) and (P,, -f)(t) are identical. 
Note also that Q(y) > 0. Hence, there exists a 6 > 0 such that 

V’s* - aQ>(J) -f(F) = (Pa- -f>(l) - 6Q(Y) > a*, 

(Ps* - aQ)(yo> --f(~o) = --6*, 

(Pa* - i3Q)(ypa-24 --f(yn-2J > a* i = 0, l,..., (n - 1)/2; i # r, 

(Ps* - ~Q)(Y,-24 -f(~n-zi-1) d --6* i = 0, l,..., (n - 1)/2. 

Choosing a** = mini ((pa: - SQ>(J -fU% (Pa* - aQ>(~,-~d -f(~,+~d, 
i = 0, l,..., (n - 1)/2), and making use of the continuity of all the functions 
involved, we conclude that there exists a s”, S* < 8 < S**, such that 
8 E C, , contradicting (3.5). Q.E.D. 

LEMMA 3.2. Iff$ C(u, ,..., u,-~) on [a, b], then there exists an interual 
[a, p] c [u, b] such th a a, = db, Bl;f) c 0, where Tn(b, Bl;f) = CL, ai24 . t 

Proof. Consider the interval [ y0 , y,J secured in the proof of Lemma 3.1. 
Starting from jjn = yn which is a (+) point for T,-,([y, , y,J;f) -f, we 
take the largest (-) point smaller than yn , and call it jjnml . We next let 
jjra2 be the largest (+) point preceding $,-l , etc. 

In this manner we obtain an n + 1 “alternance” (y,, ,..., jj,J such that, 
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on [yO , y,J, the maximal length of an “alternance” of 7’,Jy,, , y,]; f) -f 
is IZ + 1. Therefore, the function 

is not equal to Tn([& , $J; f). 
Let [01, /3] = [g, , y,J, and denote Tk = Tk([ol, /3];f), k = n - 1, n. We 

have 

Krf’n -fun-J d IKL -fun-J i = 0,l ,*.-, n, 

since Tn is the best approximant from the wider class (1, . The construction 
of the points implies that 

(-w-n -f>(3n-91 d (-oY~n-1 -fuL> i = 0, l,..., y1, 

or 
WNR - L)W-$1 < 0 i = 0, 1 ,..., n. (3.10) 

Strict inequality must prevail for at least one i, since, otherwise, the functions 
p, and T,+, would agree on n + 1 points and would therefore be identical, 
contrary to the definition of the interval. 

Expanding the determinant 

by the last row, we conclude that it is negative. Since its sign is clearly equal 
to that of a, , the lemma is proved. 

We come now to the first “converse” theorem. 

THEOREM 8. Let f be a continuous function on [a, b]. Assume that, for all 
[a, PI, a < a -c B < 6, 

deg Tn([a, PI;.0 = n. (3.11) 

Then either f or -f belongs to C(u, , u1 ,..., u,-~) \ A,-, (for all [ar, p]). 

Proof. Note first that f $(1,-1 for all [OI, /3]; this is a direct consequence 
of (3.11). 

Assume f $ C(u, ,..., u&. By Lemma 3.2, there exists an interval [CQ , &J 
such that 

a,([ol, , PJ;f) = coefficient of 24, in T,([arI , /3J;f) < 0. 
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If, further, -f $ C(U, ,..., u&, then there exists another interval [o/~ , &] 
such that 

G&? 7 ,&I; f) = -4% T &I; -4 > 0. 

Since T, is a continuous function of the interval, continuity arguments 
show the existence of an interval [o/~, /3J such that 

a?%([% 3 B3l;f) = 0, 

contradicting (3.11). Hence, either f or -f must belong to C(U, ,..., u,-3. 
Similarly, Lemma 3.2 implies the following: 

THEOREM 9. Let f be a continuous function on [a, b]. Assume that for all 
[a, j?], a < (y. < fl < b, we have 

a, = a,@, PI; f) > 0; (3.12) 

then f E C(u, ,..., ~~-~)\4-~ (ford b, BIG ia, WI. 
Zf a weak inequality holds in (3.12) for all [(u, /3] C [a, b], then 

f E C(u, ,.-a, K-1). 

THEOREM 10. Let f be a continuous function on [u, b]. Assume that, for 
all [01, /3], a < cy < /3 < b, the maximal length of an “alternance” of 
f - Tn-l([a> B); f) is n + 1; then f E C(u, ,. . ., u,-J \ A,-, (for all such [OL, PI). 

Conclusion 

Let f belong to C[a, b]. Then the following statements are equivalent: 

(a) %,([a, Bl;f) > -Us, Bl;f>, for all [a, Bl, a < 01 < if3 < b. 
(b) f E C(U, ,..., u,-~) \ A,-, for all such [01, p]. 

(c) a,([a, /3];f) > 0, for all such [01, /3], where Q, is the “leading 
coefficient” of the best approximant from A, tof. 

(d) For each such [(Y, /3], the maximal length of an “alternance” of 
f - T,&[a, Bl;f) is n + 1. 
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