
J. Symbolic Computation (1998) 25, 285–293

The Geobucket Data Structure for Polynomials†

THOMAS YAN‡

Department of Computer Science, Cornell University, Ithaca, New York 14853, U.S.A.

The geobucket data structure is a suitable intermediate representation of polynomials
for performing large numbers of polynomial additions in the face of interspersed lead-
term extractions. A sum involving N terms has worst-case running time O(N logN),
matching or surpassing the performance of lists and binomial heaps. This makes the
geobucket a good choice for performing reductions in Gröbner basis computations.

c© 1998 Academic Press Limited

1. Introduction

A common representation of polynomials is a sorted list of terms; this structure sup-
ports linear-time binary addition of polynomials and constant-time extraction of lead
terms. Although adequate for small calculations, the list representation usually behaves
poorly for large aggregate sums, such as those arising during Gröbner basis computations
(Buchberger, 1965, 1985), whose inner loop reduces a polynomial p as follows:

while p 6= 0 and not done do
Extract the lead term of p
Perhaps add another polynomial summand to p

where the polynomial summands added to p depend on the extracted lead terms but are
not known initially. A frequent feature of reductions is for partial sums (accumulated in p)
to be(come) much larger than summands; to avoid poor performance in such situations,
an appropriate representation must be chosen for partial sums.

In November 1992, using geobuckets (defined in Section 3) instead of lists for partial
sums allowed us to compute a Gröbner basis for commuting 4-by-4 matrices (“the 4-by-4
example”, henceforth; see Appendix) at least 32 times faster—under 43 hours instead
of over 8 weeks.§ This dramatic speedup is due to better treatment of large size ratios
between summands and the corresponding partial sums: one reduction had 1.7 × 105

† NDSEG fellowship DAAL03-90-G-0158, ONR grant N00014-92-J-1973, and NSF grant CCR-
9503319.
‡ E-mail: tyan@cs.cornell.edu
§ With some guidance from Mike Stillman, we did the computation attributed to him in Remark 2 of

Hreinsdóttir (1994); we were perhaps the first to compute such a basis.

0747–7171/98/030285 + 09 $25.00/0 sy970176 c© 1998 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82008137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

286 T. Yan

summands, with partial sums of at least 1.2 × 105 terms, but the average size of sum-
mands was only 46 terms. By adding only polynomials of comparably bounded size, the
geobucket data structure achieves O(N logN) worst-case asymptotic running time for a
sum containing N terms interspersed with up to N lead-term extractions (each term be-
ing extracted at most once). Although binomial heaps have the same worst-case running
time (Vuillemin, 1978; Brown, 1978), our experiments indicate geobuckets are a better
choice.

The paper is organized as follows: terminology and cost model (Section 2), definition of
geobuckets (Section 3), worst-case time and space analysis (Section 4), empirical results
and conclusions (Section 5), and benchmark specifications (Appendix).

2. Preliminaries

Fix a polynomial ring. A monomial is a product of indeterminates. A term a · α is a
product of non-zero coefficient a and monomial α. Like terms have the same monomial.
A polynomial f is a finite sum of non-like terms; its size #f is the number of terms.
Polynomial addition is done by combining like terms, as expected; we refer to combination
of like terms as cancelation since it eliminates at least one term from the sum.

Fix a (total) monomial order ; this induces a partial order on terms: like terms are
incomparable. A non-zero polynomial f whose largest term is a ·α has lead term LT(f) =
a · α, lead coefficient LC(f) = a, and lead monomial LM(f) = α. Lead-term extraction
removes the lead term, leaving the remaining terms in polynomial tail(f) = f − LT(f).

Note: for polynomials, “large” and “small” refer solely to size and never to lead terms.
We are interested in the time and space complexity of adding n polynomials f1, . . . , fn

interspersed with up to N lead-term extractions performed on the partial sums, where
N = #f1 + · · ·+ #fn is the total number of terms.† With no extractions, the ith partial
sum pi = f1 + · · ·+fi is the intermediate sum up to and including fi; with extractions, pi
includes the effects of all extractions performed before adding fi. For simplicity, assume
all fi are non-zero, so n ≤ N and hence n is O(N).

We measure space in the number of terms and time in the number of monomial oper-
ations, primarily monomial comparisons. We ignore the number of coefficient additions
because it is dominated by the number of monomial operations and is the same, up to a
factor of two, for all algorithms considered.‡

A standard polynomial representation is a list of terms, sorted in decreasing order:
space usage is optimal space since cancelation eliminates as many like terms as possible,
lead-term extraction takes constant-time, and binary addition f1 + f2 essentially merges
the two lists, taking at most #f1 + #f2 comparisons. So a sum f1 + · · · + fn with
no cancelation where all summands are of size 1 is therefore essentially insertion sort,
which has O(N2) worst-case behavior. Geobuckets are partly motivated by the superior
O(N logN) performance of merge sort, which merges lists of comparable size. To see
how this pays off, consider the worst-case cost of computing a sum f1 + f2 + f3 with

† Spatial locality of memory accesses is important for large calculations. Although our analysis and
experimental data do not address this, geobuckets should have good spatial locality because they are
built upon lists, which can be implemented as arrays, and because the lists are sequentially accessed and
are fairly large for the most part.
‡ This justification suffices for coefficients of fixed size. Otherwise, although the number of coefficient

additions is bounded, we do not know of bounds on the number of primitive (machine) operations.

The Geobucket Data Structure for Polynomials 287

B

1 → −5 · x71y → −13 · 1→•
2 →•

3 → 1 · y24 → 3 · x4y6 → 5 · x71y → −2 · x2 → 17 · 1→•
m = 4 → 1 · x2 →•

= (−5 · x71y − 13 · 1) + 0 + (1 · y24 + 3 · x4y6 + 5 · x71y − 2 · x2 + 17 · 1) + (1 · x2)

= y24 + 3 · x4y6 + (−5 + 5) · x71y + (−2 + 1) · x2 + (−13 + 17)

= y24 + 3 · x4y6 − x2 + 4

Figure 1. Sample geobucket (d = 2, m = 4). Coefficients are integers, and monomials xiyj are ordered

by xiyj > xi
′
yj
′

if j > j′ or both j = j′ and i > i′.

#f1 � #f2 = #f3 = 1. Computing left-to-right takes 2#f1 + 1 comparisons, but right-
to-left takes only #f1 + 2 comparisons: after f2 and f3 are cheaply combined, the sorted
terms in their sum share the cost of merging with f1 in a single pass. Thus, the key to
geobuckets is (re)grouping summands.

Note: unless we specify otherwise, a polynomial f is represented as a list.

3. Geobucket Data Structure and Operations

We define the geobucket and give implementations for creation, addition, canonical-
ization, and lead-term extraction, which simultaneously tests for zero. See Figure 2 for
pseudo-code.

Fix a constant d, 1 < d ∈ <; a good choice is determined in Section 4. For the rest of
the paper, logarithms log(·) are base d.

Definition 3.1. A geobucket is an array B[1..m] of buckets B[i] of capacity di: bucket
B[i] is a polynomial of size #(B[i]) ≤ di. The canonical polynomial represented by
geobucket B is the sum B[1] + · · ·+B[m] of its buckets.

See Figure 1 for an example and note the following: there is some “internal cancelation”
of terms; bucket B[1] is full with d1 = 21 = 2 terms; bucket B[2] is empty; bucket B[3] is
only partly full, but its contents of five terms exceeds the capacity d2 = 22 = 4 of B[2];
and bucket B[4] is way under capacity.

To create the resizable array B[1..m] of buckets, allocate enough room from the start
and maintain the number m of buckets in use. Below we show that m ≤ dlogNe. Since N
is bounded by the amount of memory available and at most dlogNe buckets are needed
(see below), one can effectively compute a small constant upper bound on the space
required. For example, given 232−2 = 230 addressable words, if d = 4, then at most
1 + log 230 = 16 buckets are needed.†

To add a polynomial f to geobucket B, add it into the smallest bucket allowed. The

† This approach treats N as bounded, which violates the spirit of asymptotic analysis and can waste
excessive space if numerous small geobuckets are in use. These are unlikely to be practical concerns:
logN is small, and in Gröbner basis computations, reductions are done sequentially, so it suffices to pre-
allocate a single geobucket. However, this nitpick is easily addressed using the simple “array doubling”
approach Hopgood (1968) suggested for hash table overflow.

288 T. Yan

Creation of B = 0

Allocate array B
Initialize B’s entries to 0
m := 0

Addition of B[1..m] with polynomial f

(We assume f may be modified.)
i := max(1, dlog(#f)e)
if i ≤ m then

f := f +B[i]
while i ≤ m and #f > di do

f := f +B[i+ 1]
B[i] := 0
i := i+ 1

m := max(m, i)
B[i] := f

Canonicalization of B[1..m] into polynomial f

f := 0; for i := 1 to m do f := f +B[i]

Extraction of Lead Term from B[1..m]

repeat
j := 0
for i := 1 to m do if B[i] 6= 0 then

if j = 0 or LM[i] > LM[j] then j := i
else if LM[i] = LM[j] then

LC[j] := LC[j] + LC[i]; B[i] := tail[i]
until j = 0 or LC[j] 6= 0
if j = 0 then B = 0, so there is no lead term
else lt := LT[j]; B[j] := tail[j]; return lt

where LT[i] = LT(B[i]).
LM[i], LC[i], and tail[i] are similarly defined.

Figure 2. Geobucket code.

size of f and the contents of the bucket are both bounded by the bucket’s capacity, so in
this way only polynomials of comparably bounded size are added. When the contents of
a bucket exceeds its capacity, it overflows: its contents are added into the next bucket,
which may also overflow, etc.; a sequence of overflows is called a cascade. Note that when
the code shown in Figure 2 adds a polynomial f into a bucket B[i]—both during the
initial addition into a bucket and during cascades—the following condition holds:

#f > di−1 and #(B[i]) ≤ di. (3.1)

New buckets are created only when f exceeds the capacity of the largest bucket. Since a
bucket capable of holding all N ≤ ddlogNe terms cannot have its capacity exceeded, the
largest bucket ever used has index at most dlogNe, i.e.

m ≤ dlogNe < 1 + logN. (3.2)

To obtain the canonical polynomial represented by B, return the sum B[1]+ · · ·+B[m]
of the buckets, computed from small to large buckets.

To extract the lead term, linearly search through the lead terms of non-empty buckets,
canceling like terms as they are discovered, so at least one term is always removed from
a non-empty geobucket. Note that the code continues to search for like or larger terms
LT[i] if cancelation yields a zero coefficient LC[j] = 0. The choice of whether to stop or
continue this loop on i is somewhat arbitrary, and both choices are encompassed in our
analysis in Section 4.

The name geobucket comes from the use of buckets with capacities in a geometric
series, an arrangement reminiscent of other data structures and algorithms, including
binomial heaps and other tree structures (Vuillemin, 1978; Brown, 1978), memory allo-
cation (Knuth, 1973), and doubling a hash table when it overflows (Hopgood, 1968).

4. Worst-Case Analysis

Theorem 4.1. (Space complexity) In the worst case, O(N) space is used, even if
only O(1) space is required for the list representation.

Proof. Let f1, . . . , fn−1 be polynomials of sizes d, d2, . . . , dn−1 with distinct monomials.

The Geobucket Data Structure for Polynomials 289

Set fn = −(f1 + · · ·+ fn−1). Summing these places each fi into a distinct bucket, so no
cascades and hence no cancelation is performed, although the canonical polynomial is 0.

Theorem 4.2. (Cost of addition) The total number of monomial comparisons in-
curred by additions is at most (d+ 1)(1 + logN)N .

Proof. The cost (#f + #(B[i]))/#f per term in f of adding a polynomial f into a
bucket B[i] is at most 1 + d comparisons because #(B[i]) < d · #f by (3.1). Cascades
move terms only from smaller to larger buckets, so each term can be added into each
bucket at most once, and by (3.2) there at most 1 + logN buckets.

Theorem 4.3. (Cost of canonicalization) The cost of canonicalization is at most
N monomial comparisons beyond the cost of addition.

Proof. The contents of bucket B[m− i] are added at most i+ 1 times, so each term is
compared at most i + 1 times, but the analysis of addition already provides for moving
a term in bucket B[m − i] by i places up to bucket B[m] and performing d + 1 > 2
comparisons at each step along the way. When i ≥ 1, this more than covers the i+ 1 ≤
2i < (d+1)i comparisons required for canonicalization. This leaves us with just the costs
of inspecting the terms in B[m− i] when i = 0; this is obviously at most N .

Theorem 4.4. (Cost of lead-term extraction) Lead-term extractions perform at
most N logN monomial comparisons.

Proof. Since there are at most 1 + logN buckets, each linear search performs at most
logN comparisons. Each linear search of a non-empty geobucket removes at least one
term, so at most N non-trivial linear searches can be performed.

Corollary 4.5. (Time complexity) The number of monomial comparisons incurred
from performing addition, interspersed with up to N lead-term extractions and terminated
by at most one canonicalization, is at most

(d+ 1)(1 + logN)N +N logN +N = (d+ 2)N logN + (d+ 2)N,

so the worst-case asymptotic time complexity is O(N logN).

Proof. During lead-term extraction and polynomial addition, each coefficient sum is
preceded by a monomial comparison. Creating and resizing the resizable array are con-
stant time operations. The linear cost of polynomial addition dominates the cost of array
access—both the cost of sequential access and the cost of computing dlog(x)e. Thus,
monomial comparisons asymptotically dominate all other costs.

4.1. choice of d

When N is large, the worst-case cost as measured by monomial comparisons is domi-
nated by the term (d+ 2)N logN , which is basically the cost of cascades. Applying the
identity log x = lnx/ ln d and pulling out the N lnN factor leaves us with (d + 2)/ ln d
to minimize. The minimum occurs at d ' 4.3. If we attempt to minimize just the cost of
cascades, then we get d ' 3.6. Empirically searching for d as a power of 2, we found that

290 T. Yan

Table 1. Profiles of benchmarks.

No. Ave. Max sum
GB red’s #f ΣN Σn N n Penetration (%)

u5 114 12 19 435 1 595 460 34 77–97
u6 389 26 432 756 16 408 3 454 109 73–89
u7 2220 107 58 494 253 544 550 146 213 986 75–87
f5 981 20 579 311 29 554 3 456 226 60–63
f6 1982 25 3 900 731 156 736 25 691 1 173 71–73
f7 3199 29 17 601 842 598 145 99 399 3 838 75–75
f8 4057 35 48 500 006 1 403 807 314 996 10 207 75–75

d = 4 worked best for the 4-by-4 example; this is a gratifying correspondence between
an actual run and our worst-case analysis.

5. Empirical Results

We computed various Gröbner bases using different polynomial representations and
collected time and space data: total number of monomial comparisons, total time spent
on polynomial manipulation, cumulative space usage, and amount of “penetration”. We
now give more detailed descriptions and explain how data were collected.

5.1. explanation of data

The benchmarks are cyclic roots of unity of degrees 5 through 7 (u5, u6, u7) and
partial runs of the 4-by-4 example (f5, f6, f7, f8). See Appendix for definitions of
the ideals. Bases for these homogeneous ideals are computed monotonically, from lower
to higher degrees; run fd is the 4-by-4 example stopped after degree d is completed.
For each benchmark, we computed the total number

∑
N of terms, the number

∑
n

of summands, the average size
∑
N/
∑
n of summands, total number of reductions,

the maximum number N of terms in any reduction and the corresponding number n of
summands, and lower and upper bounds on penetration (see below). See Table 1.

We took measurements for lists (L), geobuckets (G), and binomial heaps of polyno-
mials (H ′P) with “aggressive cancelation”; see Yan (1996) for descriptions and data for
this and other heap variants. We include binomial heaps because they are an obvious
alternative: their O(1) lazy meld (heap union) and O(logN) deletemin (maximal el-
ement extraction) give them an O(N logN) worst-case running time, too (Vuillemin,
1978; Brown, 1978).

Monomial comparisons are counted using a global counter.
Runs were on a Sun 4/670 under Solaris 2.5 with 256 Mb of real memory, so paging

was not a major concern. Repeated runs indicate that times in Table 3 are accurate to
about two significant digits. To estimate the time P spent on polynomial operations, we
consider the total time to be the sum O + P of P with the time O spent on everything
else. An underestimate of O gives a conservative overestimate P that is better than just
using O + P . Suppose we have total times O + L, O + G, O + H ′P , and O′ + L+ G for
lists, geobuckets, heaps, and a dual run duplicating the same computation on both lists
and geobuckets, respectively. We expect O′ > O due to poorer cache behavior and higher
runtime costs, e.g. memory management, so the difference (O+L)+(O+G)−(O′+L+G)

The Geobucket Data Structure for Polynomials 291

Table 2. Monomial comparisons (millions). The parenthesized numbers are the
corresponding ratios with respect to geobuckets.

Rep u5 u6 u7 f5 f6 f7 f8

G 0.035 0.78 115 1.82 16.1 89 277
L 0.037 (1.0) 0.90 (1.2) 164 (1.4) 4.43 (2.4) 79.5 (4.9) 800 (9.0) 4330 (15.6)
H′P 0.056 (1.6) 1.32 (1.7) 188 (1.6) 3.84 (2.1) 33.2 (2.1) 180 (2.0) 552 (2.0)

Table 3. Estimated time (seconds) for polynomial operations. The parenthesized
numbers are the corresponding ratios with respect to geobuckets. At the bottom is a

line O of estimated overheads; see the text for an explanation about f8.

Rep u5 u6 u7 f5 f6 f7 f8

G 0.18 5.2 1016 12.2 132 907 3 368
L 0.15 (0.8) 3.6 (0.7) 1100 (1.1) 19.7 (1.6) 376 (2.8) 4481 (4.9) 29 523 (8.8)
H′P 0.44 (2.4) 11.7 (2.2) 2546 (2.5) 30.4 (2.5) 286 (2.2) 1713 (1.9) 6 774 (2.0)
O 0.54 9.8 1084 19.4 97 235 235∗

gives us an underestimate of O. For f8, since this gives O < 0 and f7 is a subcomputation,
we use f7’s estimate, but using O = 0 would not change the numbers much.

Fix a representation and let #pi be the number of terms used to represent the ith
partial sum pi. We measure cumulative space usage as the cumulative number S =∑n
i=1 #pi of terms surviving each addition. The ratio of the cumulative space used by

two different representations shows how much more/less space is used on average.
When using lists for partial sums, we can measure how deeply the terms of summands

“penetrate” into the partial sums as the ratio C/W of the number C of actual compar-
isons and the number W of comparisons theoretically performed in the worst case. In the
worst case, addition inspects all terms. The resulting comparisons are those performed on
terms surviving each addition—i.e. cumulative space S—and those performed on terms
canceling to 0—at most N/2 comparisons because each cancelation/comparison deletes
two terms. Since S and S +N/2 bound W , we can bound the amount C/W of penetra-
tion by C/(S +N/2) and C/S, which we use instead of measuring W because the lower
bound already exhibits substantial penetration.

5.2. conclusions

Table 1 shows “penetration” of at least 60% in all benchmarks when using lists, so we
expect geobuckets to perform at least comparably fast to lists, if not much better. This
is indeed the case, as can be seen in both Table 2 and also Table 3. These tables mostly
agree on relative performance among the data structures, and the ratios for time and
the ratios for number of comparisons are somewhat related. This validates our decision
to count monomial operations as a measure of time. Note that heaps have disappoint-
ing performance. While they do perform better than lists on partial runs of the 4-by-4
example, they perform rather worse than lists on cyclic roots of unity.

The increased speed of geobuckets over lists is at the cost of about 70% extra space
in our benchmarks (Table 4). Heaps, however, again perform much worse, using almost

292 T. Yan

Table 4. Cumulative space usage (millions of terms). The bracketed numbers are the
corresponding ratios with respect to lists—not geobuckets.

Rep u5 u6 u7 f5 f6 f7 f8

L 0.038 1.0 189 7.1 109 1059 5 781
G 0.053 [1.4] 1.5 [1.4] 374 [2.0] 10.6 [1.5] 170 [1.6] 1756 [1.7] 9 751 [1.7]
H′P 0.184 [4.9] 10.7 [10.6] 8 974 [47.4] 17.6 [2.5] 308 [2.8] 3622 [3.4] 22 888 [4.0]

50 times extra space for u7. This suggests that geobuckets tend to use considerably
less space than heaps, especially in the cases that lists work well. Yan (1996) describes
geobucket variations that might further decrease space usage.

The data from our experiments show that while heaps might have some speed ad-
vantages over lists, their profligate use of space is a concern. Geobuckets, however, offer
significant speedups over both lists and heaps, at a reasonably modest cost in space, so
they are the best choice of the three.

Acknowledgements

Many thanks to David Gries, Ben Keller, Greg Morrisett, Mike Stillman, Tim Teitel-
baum, Todd Wilson, Rich Zippel, and two anonymous referees for many useful comments.

Appendix. Polynomial Ideals used for Benchmarks

The field of coefficients for all benchmarks is the set of integers modulo 17.
The generators for the 4-by-4 example are the 16 entries of AB −BA, where

A =

a b c d
e f g h
i j k l
m n o p

 and B =

q r s t
u v w x
y z A B
C D E F

 .
The monomial order used is lexicographic on F > · · · > A > z > · · · > a. This is better
than graded reverse lexicographic, but not as good as the orders used in Hreinsdóttir
(1994). (We tried using the first order given in Hreinsdóttir (1994) and found that using
geobuckets gave speedups of roughly two or three times over lists.)

The generators for the (homogenized) cyclic roots of unity of degree d are pd =
x[0] · · ·x[d − 1] − x[d]d and the d polynomials pk =

∑d−1
i=0

∏k
j=0 x[(i + j) mod d], for k,

0 ≤ k < d. The monomial order used is graded reverse lexicographic on x[0] > · · · > x[d].

References

——Brown, M. R. (1978). Implementation and analysis of binomial queue algorithms. SIAM Journal of
Computing 7, 298–319.

——Buchberger, B. (1965). An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-
Dimensional Polynomial Ideal. PhD thesis, Universitat Innsbruck, Institut fur Mathematik, Ger-
man.

——Buchberger, B. (1985). Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N. K.
(ed.), Multidimensional Systems Theory, chap. 6, pp. 184–232. Dordrecht: Reidel.

——Hopgood, F. (1968). A solution to the table overflow problem for hash tables. Computer Bulletin 11(4),
297–300.

The Geobucket Data Structure for Polynomials 293

——Hreinsdóttir, F. (1994). A case where choosing a product order makes the calculations of a Groebner basis
much faster. J. Symbolic Comput. 18, 373–378.

——Knuth, D. E. (1973). The Art of Computer Programming, volume I: Fundamental Algorithms, chap. 2
(2nd edn). Reading, MA: Addison-Wesley.

——Vuillemin, J. (1978). A data structure for manipulating priority queues. Communications of the ACM
21(4), 309–315.

——Yan, T. (1996). The geobucket data structure for polynomials. Tech. Rep. CUCS TR96-1607, Department
of Computer Science, Cornell University. Available electronically at http://cs-tr.cs.cornell.edu/
Dienst/UI/2.0/Describe/ncstrl.cornell%2fTR96-1607.

Originally received 18 September 1996
Accepted 20 May 1997

