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The effects of TGF-b1 and IGF-I on the biomechanics
and cytoskeleton of single chondrocytes
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Summary

Objective: Ascertaining how mechanical forces and growth factors mediate normal and pathologic processes in single chondrocytes can aid in
developing strategies for the repair and replacement of articular cartilage destroyed by injury or disease. This study examined effects of trans-
forming growth factor-b1 (TGF-b1) and insulin-like growth factor-I (IGF-I) on the biomechanics and cytoskeleton of single zonal chondrocytes.

Method: Superficial and middle/deep bovine articular chondrocytes were seeded on tissue culture treated plastic for 3 and 18 h and treated
with TGF-b1 (5 ng/mL), IGF-I (100 ng/mL), or a combination of TGF-b1 (5 ng/mL)þ IGF-I (100 ng/mL). Single chondrocytes from all treatments
were individually studied using viscoelastic creep testing and stained with rhodamine phalloidin for the F-actin cytoskeleton. Lastly, real-time
RT-PCR was performed for b-actin.

Results: Creep testing demonstrated that all growth factor treatments stiffened cells. Image analysis of rhodamine phalloidin stained chondro-
cytes showed that cells from all growth factor groups had significantly higher fluorescence than controls, mirroring creep testing results.
Growth factors altered cell morphology, since chondrocytes exposed to growth factors remained more rounded, exhibited greater cell heights,
and were less spread. Finally, real-time RT-PCR revealed no significant effect of growth factor exposure on b-actin mRNA abundance. How-
ever, b-actin expression varied zonally, suggesting that this gene would be unsuitable as a PCR housekeeping gene.

Conclusions: These results indicate that TGF-b1 and IGF-I increase F-actin levels in single chondrocytes leading to stiffening of cells; how-
ever, there does not appear to be direct transcriptional regulation of unpolymerized b-actin. This suggests that the observed response is most
likely due to signaling cross-talk between growth factor receptors and integrin/focal adhesion complexes.
ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Existing research has highlighted the need for the complete
characterization of cellular milieus, especially toward under-
standing the processes of mechanotransduction in native
and engineered tissues. Such knowledge would foster un-
derstanding of mechanical forces and their role in cell and
tissue function. It would also be vital to elucidating disease
etiologies, as well as the processes of formation and regen-
eration in tissues. In terms of tissue engineering, this knowl-
edge would provide insight into the forces required for
directing cells toward growing functional tissues in vitro.

Articular cartilage has been chosen as a leading target for
tissue engineering for the simple fact that one in five adults
experience significant morbidity due to cartilage injury and
disease. Furthermore, articular cartilage engineering may
appear to be an easy problem to tackle, considering that
the tissue is avascular and contains very few cells. How-
ever, the tissue has a complex structure, exhibits a high de-
gree of heterogeneity, and functions under an intensely
strenuous environment. Articular cartilage is normally di-
vided into four zones: superficial, middle, deep, and calci-
fied. As reviewed1, each zone has distinct differences in
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extracellular matrix (ECM) distribution, biosynthesis, gene
expression, cell morphology, and physical properties.

Tissue engineering of cartilage thus far has proven un-
successful in terms of replicating a fully functional tissue
capable of withstanding the strenuous biomechanical envi-
ronment within synovial joints. So far researchers have
revealed that two stimuli, mechanical forces and chemical
signals, seem to be important for influencing cartilage tissue
formation, as well as its disease pathways. Studies with ex-
plants and chondrocytes have demonstrated that specific
regimens of hydrostatic pressure, compression, and fluid
forces can induce positive changes in gene expression
and matrix synthesis2e7, while other regimens, namely
static loads, can induce degenerative changes3,6. However,
the precise levels of mechanical stimulation necessary to
elicit chondrocyte response to mechanical loading are not
clearly understood. A variety of growth factors and cyto-
kines have been studied for their potential use in stimulating
articular cartilage regeneration. Two growth factors have
shown the most promise as demonstrated by stimulation
of matrix synthesis, increased proliferation, and main-
tenance of phenotype: transforming growth factor-b1
(TGF-b1)8e12 and insulin-like growth factor-I (IGF-I)13e18.
It has also been shown that these growth factors can
have synergistic effects when treating chondrocytes19.

Previous research demonstrates the tremendous prom-
ise growth factors have shown for influencing cells toward
tissue formation8e19. Most cartilage or chondrocyte based
studies have analyzed the response of explants or large
7
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populations of cells. These studies are important for under-
standing physiological responses of cartilage, but they ne-
glect to account for variations among either single cells or
subpopulations of cells. Thus, it is necessary to take a re-
ductionist approach by first studying single chondrocyte
physiology to fully understand how cell responses translate
to overall cartilage responses20. We are specifically inter-
ested in examining how growth factors influence single
chondrocytes and how mechanical forces can modify these
responses.

To date, several groups have attempted to describe cell
signaling after TGF-b1 and IGF-I treatment. These studies
have focused on signaling between TGF-b1 and IGF-I
growth factor receptors and integrins21e23. The process
of integrin activation in conjunction with IGF-I stimulation
has been linked to the activation of signaling intermediates
in several cell types. One such study demonstrated that
chondrocytes plated on type I or type II collagen followed
by IGF-I stimulation resulted in association of focal adhe-
sion kinase (FAK) with b1 integrins, vinculin, and paxillin,
as well as induction of greater Shc (adaptor protein)
expression23. It was postulated that IGF-I receptors coop-
erate with integrins to regulate focal adhesion proteins and
are linked to the mitogen-activated protein kinase (MAPK)
signaling pathway by a common Shc-growth factor bound
protein 2 (GRB2) intermediate. TGF-b1 stimulation has
also been tied to integrin activation in chondrocytic cells.
For example, one study has shown that TGF-b1 stimula-
tion and a2b1 integrin activation (by type II collagen stim-
ulation) led to synergistic increases in the phosphorylation
of Smad2 and Smad322. The signaling between TGF-b1
and integrins was demonstrated to occur before Smad
phosphorylation. It has also been demonstrated that inhib-
iting FAK decreases cell attachment and blocks integrin
signaling21.

Before one can hope to describe the mechanotransduc-
tive processes occurring in vivo and in vitro in native and
engineered cartilage, a better understanding of individual
chondrocyte behavior is necessary. We have previously de-
scribed the development of devices able to mechanically
test single adherent chondrocytes and osteoblasts24e26

for determining their mechanical properties. The most re-
cent setup of our device utilizes unconfined creep compres-
sion on single cells26.

The overall objective of this study was to determine what
effects TGF-b1 and IGF-I would have on the mechanical
properties of single articular chondrocytes, temporally and
as a function of zone. The primary goal of this study was to
quantify biomechanical alterations in single chondrocytes
pertinent toward tissue regeneration or the etiology of dis-
ease states. Understanding a single chondrocyte’s biome-
chanical response to static compression has implications
toward understanding the forces responsible for initiating
both anabolic and catabolic changes in cartilage. Based on
the known actions of TGF-b1 and IGF-I8e19,21e23, our
hypothesis was that these growth factors would lead to pres-
ervation of a more rounded chondrocytic phenotype. Based
on previous work, we expected to observe differences
between zones27, growth factor treatments8e19,21e23, and
possible synergistic effects between TGF-b1 and IGF-I19.
For this study we used single cell unconfined creep com-
pression, fluorescence microscopy, and real-time reverse
transcriptase-polymerase chain reaction (RT-PCR) to deter-
mine what effects the growth factors TGF-b1 (5 ng/mL),
IGF-I (100 ng/mL), and a combination of TGF-b1 (5 ng/
mL) and IGF-I (100 ng/mL), would have on zonal chondro-
cytes after 3 and 18 h of attachment.
Method

CELL CULTURE

Articular cartilage was obtained from the distal metatarsal
joint of approximately 18-month-old steers obtained from
local abattoirs. Chondrocyte harvest, isolation, and culture
followed previously described protocols26. Briefly, the su-
perficial and middle/deep zones were separated and
digested overnight at 37(C and 10% CO2 in a solution of
2 mg/mL collagenase type 2 (Worthington Biochemical,
Lakewood, NJ) in supplemented Dulbecco’s modified Eagle
medium (DMEM) containing 10% fetal bovine serum (FBS),
100 U/mL penicillinestreptomycin, 0.25 mg/mL fungizone,
and 0.1 mM non-essential amino acids (NEAA) (Invitrogen
Life Technologies, Carlsbad, CA). After digestion, the cell
mixture was centrifuged and resuspended in supplemented
DMEM. The cell suspension was seeded onto a tissue
culture treated plastic (TCP) 150� 20 mm dish (plasma
treated by Techno Plastic Products, Trasadingen, Switzer-
land) and confined to a 2 cm diameter area using silicone iso-
lators (PGC Scientifics, Gaithersburg, MD) to yield an areal
cell density of approximately 3.3� 104 cells/cm2. The plates
were incubated for either 3 or 18 h at 37(C and 10% CO2

prior to compression testing. These seeding times were se-
lected such that we could characterize cellular events occur-
ring immediately after attachment. Three hours is usually the
approximate time that cells begin attaching. Cells are more
firmly attached by the overnight, 18 h time point.

GROWTH FACTOR TREATMENT

The growth factors TGF-b1 and IGF-I were selected for
this study. These growth factors were used at a single con-
centration each, based on high or saturation values found in
the literature8e19. For TGF-b1 and IGF-I, concentrations of
5 ng/mL and 100 ng/mL, respectively, were selected for ex-
perimentation. A third growth factor treatment was selected
using a combination of TGF-b1 and IGF-I at a concentration
of 5 ng/mL and 100 ng/mL, respectively. Both growth fac-
tors were obtained from PeproTech Inc. (Rocky Hill, NJ).
For both cell seeding times (3 and 18 h), cells were exposed
to the appropriate growth factor for the final 3 h of attach-
ment. The design of this experiment is presented in Table I.

SINGLE CELL CREEP TESTING

Unconfined creep compression tests were performed us-
ing a system developed in our laboratory, originally de-
signed for displacement-controlled indentation testing of
single cells24. Since its original design, this device has
been modified first for indentation creep testing25 and finally
for the purpose of unconfined creep testing26. This device is
designed to apply a constant stress on adherent cells while
employing cantilever beam theory to track the resulting cel-
lular deformation. Single cell unconfined compression is
achieved by the application of a 50.8 mm diameter tungsten
probe (Advanced Probing, Boulder, CO).

After cell attachment, the media were removed from the
culture dish and replaced with supplemented media con-
taining 30 mM 4-(2-hydroxyethyl)-1-piperazineethanesul-
fonic acid (HEPES) buffer (Fisher Scientific, Pittsburgh,
PA) warmed to 37(C to buffer pH changes when moving
to ambient conditions. TGF-b1, IGF-I, or the combination
of TGF-b1 and IGF-I was included in the fresh media for
the corresponding treatment group. The dish was then
placed into the apparatus and maintained at ambient condi-
tions for creep testing.
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Creep testing was performed as described previously26.
Briefly, single cells were creep tested using a test load of
50 nN. This test load was lower than what was previously
used and resulted in cellular strains at or below 30% to con-
form to continuum model assumptions. The contact stress
for each cell was determined via reticle measurement (Ni-
kon USA, Melville, NY) of the cell diameter before compres-
sion. Contact stress was calculated by dividing the test load
by the area of the cell. Cell height was determined by com-
paring probe contact with the cell to the measured distance
to the dish.

DETERMINATION OF SINGLE CHONDROCYTE MATERIAL

PROPERTIES

The creep response of single chondrocytes to unconfined
compression was modeled using a closed-form continuum
mechanics model presented earlier26. Briefly, to model the
creep response, a solid disc geometry was used to describe
a chondrocyte attached to a substrate. Studies in our labo-
ratory using interferometry suggested this to be an appropri-
ate approximation for the shape of a single chondrocyte28.
With this geometry in mind, we considered the cell as
a disc, under small deformation exposed to an instanta-
neous and constant load.

From the standard linear solid (Kelvin) model, and as-
suming the cell to be isotropic, incompressible, and homo-
geneous, the following solution was formulated to describe
the viscoelastic creep response of a cell:
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where uz is the deformation, s is the contact stress, EN is
the relaxed modulus, z is the height of the cell, ts is the
creep time constant, t3 is the stress relaxation time

Table I
Experimental design showing all treatments yielding a total of 16

groups

Attachment time Zone Growth factor treatment

3 h

Superficial Control
TGF-b1
IGF-I
TGF-b1þ IGF-I

Middle/deep Control
TGF-b1
IGF-I
TGF-b1þ IGF-I

Growth factor exposure for entire 3 h of seeding
(except for control)

18 h

Superficial Control
TGF-b1
IGF-I
TGF-b1þ IGF-I

Middle/deep Control
TGF-b1
IGF-I
TGF-b1þ IGF-I

15 h seeding followed by 3 h of growth factor exposure
(except for control)
constant, H(t) is the unit step function, E0 is the instanta-
neous modulus, and m is the intrinsic viscosity.

Creep experimentation generated three sets of data for
each cell: displacement vs time, force vs time, and force
vs displacement. The force vs time data were used to con-
firm constant force during testing, while the force vs dis-
placement data were used to determine contact with the
cell. The resulting creep curves were fitted and material
properties were generated for the viscoelastic model via
the non-linear LevenburgeMarquardt method, using MAT-
LAB 6.5 (The MathWorks Inc., Natick, MA).

FLUORESCENCE MICROSCOPY: F-ACTIN STAINING

To compare the filamentous actin (F-actin) distribution
and organization, all treatment groups (Table I) were stained
with rhodamine phalloidin. Fluorescent derivatives of phallo-
toxins have been demonstrated to specifically bind to fila-
mentous, but not to globular actin (G-actin)29. A number of
studies have used fluorescently modified phallotoxins to
quantify the amount of F-actin through fluorescent measure-
ments, including image analysis30e33. Chondrocytes were
seeded using the protocol above, except they were cultured
on 24� 30 mm tissue culture treated Thermanox plastic
coverslips (Nalge Nunc International, Naperville, IL). Silicon
isolators and the same cell density were used for seeding.
After the culture period, cells were washed twice with phos-
phate buffered saline (PBS) warmed to 37(C. The cells
were then fixed with fresh 3.7% paraformaldehyde for
10 min at room temperature, washed three times with
PBS, and then permeablized in 0.1% Triton X-100 in PBS
for 5 min. After three more PBS washes, the fixed cells
were incubated in rhodamine phalloidin (2 U per coverslip;
Molecular Probes, Eugene, OR) in 1% bovine serum albu-
min (BSA) in PBS for 20 min, followed by three final washes
with PBS. Each Thermanox coverslip was mounted between
a microscope slide and glass coverslip using ProLong Gold
with 4-6-diamidino-2-phenylindole (Molecular Probes, Eu-
gene, OR). These samples were viewed with an Axioplan
2 microscope (Carl Zeiss, Oberkochen, Germany) and
a CoolSNAPHQ CCD camera (Photometrics, Tucson, AZ).
Images were acquired and analyzed using Metamorph
4.15 (Universal Imaging Corp., Downingtown, PA). All im-
ages were acquired in grayscale and colorized for presenta-
tion using Metamorph. For comparison of staining intensity,
light exposure was kept to a minimum, and exposure time for
digital photographs was kept at 30 ms. Overlaying and im-
age processing were accomplished with Adobe Photoshop
7.0 (Adobe Systems, Inc., San Jose, CA).

The relative intensity of F-actin was determined for multi-
ple cells in each treatment group using Metamorph to ana-
lyze the raw images. A region of interest was selected
around a single cell and from this an average intensity
(gray value) was obtained. The same size region was
also selected over a nearby area without any cells to obtain
a reading for the background fluorescence. The difference
of these numbers was the cell’s relative staining intensity.
Average gray value (AGV) in a region of interest was deter-
mined with the following equation: AGV¼ total of all gray
values/the total number of pixels. No threshold was set in
the measurement of AGV for this analysis.

GENE EXPRESSION OF b-ACTIN

Generally speaking, in healthy non-muscle tissue two iso-
forms (b- and g-) of actin exist within a cell. Although little is
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known about the exact functions of each isoform, b-actin
and g-actin have been associated with numerous microfila-
ment structures and b-actin has been implicated in cell
migration and cell motility. Previous studies have demon-
strated higher densities of b- as compared to g-isoform in
cells, especially at the cell periphery and in lamella and filo-
podia34e37. Based on these findings, analysis of b-actin
gene expression was selected for study due to its possible
involvement in cell attachment and spreading.

Populations of 2� 105 chondrocytes were seeded in 24
well TCP plates. Each treatment group was represented
in triplicate, yielding 48 samples. After 3 and 18 h of attach-
ment, samples were lysed and their RNA was isolated using
the RNAqueous kit (Ambion, Austin, TX). Total RNA
concentration and purity were measured by a NanoDrop
ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE), which allowed standardization by total
RNA for the reverse transcription (RT) reaction. Before
the RT reaction, RNA was subjected to DNase treatment.
For the RT reaction, 38 mL of RNA was incubated with oli-
go(dT) primer at 65(C for 5 min. After cooling to room tem-
perature, a 50 mL reaction product was incubated with the
RNA-oligo(dT) mix, buffer, 4 mM dNTPs (1 mM each
dNTP), 40 U RNase inhibitor, and 50 U Stratagene Strata-
Script RT enzyme (La Jolla, CA) for 60 min at 42(C. After
cDNA synthesis, real-time PCR amplification for b-actin
was performed using a RotorGene 3000 machine (Corbett
Research, Sydney, Australia). A forward primer, reverse
primer, and gene-specific probe were used. The 50 to 30

sequences for the forward primer (GACCAGATCATGTTC
GAGA), reverse primer (CCAGAGGCGTACAGAGAC), and
probe (ACTCCTGCCATGTATGTGGCCATC) were designed
from bovine and human mRNA sequences from the
National Center for Biotechnology Information (NCBI). The
probe chemistry used in PCR reactions was 50 FAM and 30

BHQ-1. For real-time PCR analysis of each sample, 1 mL
of DNA sample, buffer, 3.5 mM MgCl2, 0.2 mM dNTPs,
100 nM of each forward and reverse primer, 100 nM probe,
and 0.625 U HotStarTaq (Qiagen, Valencia, CA) were pre-
pared in a 25 mL reaction volume. The real-time analysis in-
volved a 15 min activation step, followed by 50 cycles of 15 s
at 95(C, 30 s at 60(C, and a fluorescence measurement.

The calculation of mRNA abundance of b-actin for all
sample groups was facilitated by normalization with respect
to total RNA concentration into the RT reaction. Abundance
(A) was calculated from the take-off cycle (Ct) of b-actin and
the efficiency (E ) of the reaction determined from a standard
curve. The abundance equation used (adapted from
Pfaffl)38 is:

A¼ 1

ð1þEÞCt
ð2Þ

The abundance was used to compare the expression of
b-actin in all treatment groups.

DATA/STATISTICAL ANALYSIS

All results are reported as mean� standard deviation.
A priori power analysis calculated a sample size of n¼ 22
for the unconfined compression portion of this study. For
the power analysis, a significance level of 0.05, a power
of 0.8, and a difference of 30% were used. Estimates of
cell mechanical properties and standard deviations
were made using previous results. After sample sizes
reached appreciable numbers, it became apparent that
the instantaneous and relaxed moduli were showing a differ-
ence of 40e50% between treated groups and, thus, a sam-
ple size of n¼ 11 was chosen for the creep testing.
Statistical analysis of the data was performed using JMP
IN 5.1 (SAS Institute Inc., Cary, NC). The effects of zone,
attachment time, and growth factor treatment were tested
with three-factor ANOVA. The significance of these factors
was determined for single cell mechanical properties,
cell morphology (height and diameter) measurements,
fluorescent intensity, and gene abundance. Where ANOVA
revealed differences, a Tukey’s Honestly Significant Differ-
ence (HSD) post hoc test was performed to make pair-wise
comparisons among means.

Results

VISCOELASTIC PROPERTIES

An example of a typical creep curve from a single cell is
presented in Fig. 1. This viscoelastic response was demon-
strated by all 240 cells that were tested. These creep data
were separately curve fit using Eq. (1) such that the instan-
taneous modulus, relaxed modulus, and apparent viscosity
were determined for each treatment. A summary of the
mean material properties (EN, E0, m) is presented in
Fig. 2. Compression with a test load of 50 nN did not appear
to change cell area during testing or the calculation of con-
tact stress. Experimentation required 15 animals and statis-
tical analysis showed that animal was not a significant
factor for any cell property (EN, E0, m, cell diameter, and
cell height).

Three-factor ANOVA with post hoc analysis showed that
each growth factor treatment (TGF-b1, IGF-I, and TGF-
b1þ IGF-I) was a significant factor compared to no growth
factor treatment for both the relaxed modulus [Fig. 2(A),
P< 0.0001] and instantaneous modulus [Fig. 2(B),
P< 0.0001]. Individual growth factor treatments were not
statistically different from each other, and synergism was
not observed from the combination of TGF-b1þ IGF-I.
Growth factor treatment increased the relaxed modulus by
86% over controls and increased the instantaneous modu-
lus by 136%. Furthermore, the combination of TGF-b1 and
IGF-I significantly increased the apparent viscosity
[Fig. 2(C)] by 45% over controls (P¼ 0.01). Attachment
time did not have a significant effect on instantaneous

Fig. 1. Creep curve from a single chondrocyte, representing a typi-
cal viscoelastic response. The viscoelastic curve fit is included

(dashed gray line).
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modulus (P¼ 0.57), relaxed modulus (P¼ 0.17), or appar-
ent viscosity (P¼ 0.06). ANOVA also revealed that zone
was a significant factor on the relaxed modulus
(P¼ 0.0025), with superficial cells having a total mean re-
laxed modulus (0.91� 0.28 kPa) that was 11% larger than
middle/deep cells (0.82� 0.25 kPa). The interaction of zone
and growth factor treatment was significant for the relaxed
modulus (P< 0.0001) and post hoc analysis revealed that
superficial� (TGF-b1þ IGF-I) resulted in significantly higher
relaxed moduli than middle/deep� (TGF-b1þ IGF-I) and

Fig. 2. Viscoelastic properties of single articular chondrocytes as
a function of growth factor treatment, zone, and seeding time.
The relaxed modulus (A) and instantaneous modulus (B) were
significantly greater for growth factor treated chondrocytes as com-
pared to controls (*P< 0.0001). The combination of TGF-b1þ IGF-I
significantly increased the apparent viscosity (C) over controls
(#P¼ 0.01) but not compared to other growth factor treatments.

Values of n ranged from 13 to 20.
all other interactions [Fig. 2(A), P< 0.05]. This zone
� growth factor interaction may have leveraged the effect
of zone in the statistical analysis of the relaxed modulus.

Cells appeared more spread at 18 h, as demonstrated by
smaller heights and greater diameters than cells at 3 h.
After 3 h of attachment, cells had an average height of
7.40� 2.15 mm and an average diameter of 11.94�
1.21 mm. In comparison, after 18 h attachment cell height
was 6.09� 1.93 mm and cell diameter was 13.00�
1.34 mm. ANOVA showed significant effects of attach-
ment time with cell height decreasing from 3 to 18 h
(P< 0.0001) and cell diameter increasing from 3 to 18 h
(P< 0.0001). Additionally, chondrocytes treated with growth
factors (TGF-b1, IGF-I, and TGF-b1þ IGF-I) had signifi-
cantly greater cell heights as compared to control cells
(P< 0.0001) but were not significantly different from each
other. At 3 h, growth factor treatment led to an average
cell height of 7.86� 2.07 mm compared to control cells at
6.00� 1.76 mm. For growth factor treatment at 18 h of
attachment, cell height was 6.60� 1.84 mm, whereas that
of controls was 4.42� 1.11 mm. Three-factor ANOVA re-
vealed that growth factor treatment was a significant factor
on cell diameter (P¼ 0.003). Growth factor treatment led to
smaller cell diameters (12.22� 1.24 mm) compared to con-
trol cells (12.50� 1.54 mm). Zone was not a significant
factor for cell height or diameter.

ACTIN STAINING/FLUORESCENT INTENSITY

The results of cell staining with rhodamine phalloidin and
DAPI for all treatment groups are presented in Fig. 3. Cell
spreading increased from 3 to 18 h of seeding time as did
the degree of actin organization. A majority of chondrocytes
from the growth factor treatment groups [Fig. 3(EeP)] ex-
hibited a brighter halo at the periphery of the cell as com-
pared to control cells [Fig. 3(AeD)]. Images taken after
18 h of seeding (Fig. 3, left eight panels) showed larger cells
with discernable stress fibers, which were not visible at 3 h
(Fig. 3, right eight panels).

Seven to 10 fluorescent images of cells were taken from
each treatment group at 100� magnification. Collectively,
the images contained an average of 51 cells for each treat-
ment group. Average relative intensity values were deter-
mined for each treatment. The average relative intensity
values mirrored the creep compression results (Fig. 4)
and post hoc analysis showed an 86% increase for each
growth factor treatment over controls (P< 0.0001). The
TGF-b1 group also exhibited a significant decrease in fluo-
rescent intensity in comparison to IGF-I and in comparison
to TGF-b1þ IGF-I (P< 0.0001). Fluorescence intensity de-
creased by 24% at 18 h attachment as compared to 3 h
(P¼ 0.0004).

b-ACTIN GENE EXPRESSION

Real-time PCR analysis was completed in duplicate on
48 samples, a standard dilution curve (serial dilutions of
stock DNA: 10�, 100�, 1,000�, 10,000�), and no-template
controls (NTCs), requiring two runs on the RotorGene. NTC
amplification was not observed and reaction efficiency for
each run was 96% and 97%, respectively. The results of
b-actin abundance (Fig. 5) did not show a significant effect
for any growth factor treatment (P¼ 0.70), attachment
time (P¼ 0.09), or zone (P¼ 0.54). However, a significant
interaction was seen for zone and attachment time
(P< 0.0001). This is due to the fact that superficial zone
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Fig. 3. Fluorescence images of each treatment group (100�). F-actin is stained with rhodamine phalloidin (red) and the nucleus is stained with
DAPI (blue). Cells have more intense F-actin staining in growth factor groups and are less spread than control cells. Also, all groups show

increased cell spreading from 3 to 18 h.
chondrocytes had a significantly lower (P< 0.0001) abun-
dance (2.80� 0.76� 10�7) at 3 h as compared to 18 h
(4.63� 1.80� 10�7).

Discussion

The unconfined creep compression results of this study
demonstrate for the first time that the growth factors TGF-
b1 and IGF-I, alone and in combination, significantly in-
crease the stiffness of single zonal chondrocytes without
synergistic effects observed between the two growth fac-
tors. Measurements of cell dimensions also demonstrate
that these growth factor treatments alter the morphology
of chondrocytes. The creep testing results further confirm
that a viscoelastic model, assuming simple disc geometry,
is suitable for modeling the response of a single chondro-
cyte to unconfined creep compression. This model also
serves as a valuable tool for distinguishing the effects of
growth factors on the mechanical properties of single cells.
These findings yield important information toward under-
standing the process of mechanotransduction, which is
gaining prominence as a crucial actor in tissue homeostasis
and disease, as well as in the formation and maintenance of
cell phenotypes. Determination of single cell mechanical
properties fosters understanding of a cell’s local mechanical
environment and that environment’s role in shaping cellular
physiology. Specifically for chondrocytes, it is important to
understand the precise forces germane to tissue formation,
and the etiopathogenesis of osteoarthritis, and how growth
factors can modify these responses. Examination of single
chondrocytes has already revealed important information
in terms of relating mechanical properties to disease
states39,40, cytoskeletal composition41, and the actions of
growth factors21e23. This study adds to the current knowl-
edge of growth factor effects on the cytoskeleton of single
chondrocytes and provides insight to the study of basic
cell functions.

The findings of this study demonstrate that separate tech-
niques can be utilized to obtain similar information on the
biomechanical nature of single chondrocytes. Creep com-
pression of single chondrocytes showed mechanical stiffen-
ing induced by growth factors that corresponded with higher
relative intensity measurements of chondrocytes stained
with rhodamine phalloidin. These concomitant increases
suggest that treatment with TGF-b1 and/or IGF-I increases
the levels of F-actin within chondrocytes. This further im-
plies that treatment with TGF-b1 and/or IGF-I leads to an
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increase in the number of actin filaments with concomitant
or subsequent cellular stiffening. Previous work has shown
that actin microfilaments and possibly intermediate fila-
ments contribute significantly to the biomechanical proper-
ties of single chondrocytes as measured by micropipette
aspiration41. Also, TGF-b1 and IGF-I have previously
been shown to increase the attachment of chondrocytes
when compared to serum free controls23,42, suggesting in-
creased focal adhesions and greater actin organization
due to growth factor exposure. The growth factor treatments
used in this study appear to affect cell stiffening in a similar
manner, since analogous results were seen in all growth
factor groups. Growth factor stimulation seems to be neces-
sary for increases in F-actin as well as for cell stiffening to
occur, since cells seeded for 3 and 18 h that were not ex-
posed to growth factors did not show increased levels of
F-actin or any cell stiffening. Further, synergistic effects
were not observed when chondrocytes were stimulated
with both TGF-b1 and IGF-I. These observations suggest
the possibility of a common, yet currently unknown,
mechanism.

The cell stiffening and increased F-actin that chondro-
cytes exhibited after TGF-b1 and IGF-I exposures most
likely involve a gene and/or protein response within
single cells. These growth factors have a well documented
effect on gene expression8,10,19; therefore, the stiffening
mechanism may involve transcriptional changes of

Fig. 4. Average fluorescence intensity of F-actin determined by
fluorescent microscopy for superficial zone chondrocytes (A) and
middle/deep zone chondrocytes (B). Results are presented as
average� standard deviation. Plus (+) indicates significance over
controls (P< 0.0001), while # indicates significant over TGF-b1
and controls (P < 0.0001). In general, there is agreement

between the compressive modulus and F-actin intensity.
 cytoskeletal and cytoskeletal related proteins. However,
this does not appear to be the case since the expression
of b-actin, as measured by real-time RT-PCR, demon-
strates that TGF-b1 and IGF-I do not significantly increase
mRNA levels for b-actin. We speculate that this may indi-
cate that the pool of monomeric actin (G-actin) available
for polymerization may not be increasing from direct tran-
scription of the actin gene. Even though b-actin gene ex-
pression does not increase with growth factor treatment,
translational regulation of G-actin levels may be occurring.
A likely candidate could include eukaryotic initiation factor
2A (eIF2A) which has been demonstrated to regulate pro-
tein translation and is important in actin cytoskeletal organi-
zation in yeast43. These findings suggest that the observed
response of chondrocytes to TGF-b1 and IGF-I is most
likely occurring somewhere at the protein level. Previous re-
search concerning chondrocytes, integrin activation, and
stimulation by TGF-b1 or IGF-I has shown that signaling be-
tween focal adhesion complexes and growth factor recep-
tors may occur21e23. For IGF-I it is clear that an Shc and
ShceGRB2 complex are important intermediates for linking
to the MAPK pathway23. Current research has not yet re-
vealed intermediate proteins connecting TGF-b1 and integ-
rins to cell signaling or specifically Smad signaling. The
increases in F-actin and cell stiffening seen in this study
most likely involve intracellular signaling proteins that local-
ize at focal adhesions as well as adaptor proteins.

Zonal differences in articular cartilage and isolated chon-
drocytes have been well characterized, not only in gene ex-
pression and synthesis44e46, but also in mechanical

Fig. 5. b-Actin mRNA abundance in superficial (A) and middle/deep
(B) chondrocytes. Results are presented as average� standard
deviation. Asterisk (*) indicates significance of 3 h as compared

to 18 h for superficial zone (P< 0.0001).
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properties. Several findings in this study further confirm that
superficial chondrocytes differ physiologically from middle/
deep chondrocytes. These data are in agreement with re-
sults from a recent study in our laboratory27 that showed
biomechanical differences between superficial and middle/
deep chondrocytes. The real-time PCR results for expres-
sion of b-actin also illustrate differential responses of super-
ficial and middle/deep cells during cell attachment. These
results suggest that b-actin does not serve as a desirable
housekeeping gene for chondrocytes, since expression is
not constant across all treatments. As Fig. 5 shows, mid-
dle/deep chondrocytes maintain a relatively constant level
of b-actin expression from 3 to 18 h of attachment time,
while superficial chondrocytes have a lower level of b-actin
expression at 3 h. By 18 h b-actin expression increases to
a level equal to that of middle/deep chondrocytes at both
3 and 18 h attachment. This may be due to a differential re-
sponse of superficial cells as compared to middle/deep
cells when cells are digested from tissue and plated. The
lower abundance of b-actin mRNA at 3 h does not seem
sufficient to affect either the mechanical properties or the
amount of F-actin in superficial chondrocytes. Some expla-
nation can be garnered from previous work that has demon-
strated that differences exist in the organization and the
quantities of both actin and vimentin in zonal chondrocytes.
Zonal differences have been observed in actin microfila-
ment organization in vivo and in cells grown in mono-
layer47e49 as well as in vimentin filament assembly and
disassembly during organ culture47. It is interesting to
note that zonal differences in cell morphology were not ob-
served in this study. If chondrocytes exhibited similar mor-
phologies to what is seen in situ, one would expect
superficial cells to exhibit smaller cell heights and larger
cell diameters than middle/deep zone cells. It appears
that collagenase digestion followed by seeding in mono-
layer may alter the cytoskeleton such that morphologic dif-
ferences between zonal cells no longer exist.
In contrast to studies with other cell types, attachment
time did not play a factor in increasing chondrocyte stiffness
as measured by single cell creep compression. The me-
chanical testing results of this study confirm a previous
study from our group that demonstrated no significant effect
of attachment time on any of the material properties of sin-
gle chondrocytes as determined with the same creep test-
ing device27. In contrast, fluorescence intensity of F-actin
decreased from 3 to 18 h (Fig. 4). Decreased intensity mea-
surements most likely are due to a diminished actin poly-
merization front, since less of a bright halo was seen in
fluorescent staining of single cells at 18 h of attachment
(Fig. 3). This may suggest that chondrocytes at 3 h have
a denser network of actin microfilaments at the cell periph-
ery where the cell is actively attaching and spreading. Pre-
vious research has correlated increases in cell stiffness with
increased cell spreading and ECM contacts in bovine endo-
thelial cells tested by twisting attached magnetic beads on
the cell surface50,51. These differing behaviors can be attrib-
uted to cell type. Bovine articular chondrocytes do not ad-
here as easily as endothelial cells; at 3 h of attachment,
chondrocytes remain round and are not firmly attached.
Many of these cells can be detached by prodding with the
compression probe or by a harsh PBS wash. At 18 h, chon-
drocytes are just starting to spread; however, a large
percentage of rounded cells remain. There may be a thresh-
old number of focal adhesions required to significantly
stiffen a cell; therefore, attachment times greater than
18 h could show increased chondrocyte spreading and pos-
sibly increased cell stiffening.

We propose that the combination of integrin activation
from cellular attachment and stimulation with TGF-b1 and
IGF-I leads to increased actin polymerization as character-
ized by increases in F-actin and stiffening of the cytoskele-
ton. The increased polymerization is most likely due to
signaling between integrins and growth factor receptors.
These findings offer important information for cartilage
Fig. 6. Mechanical and growth factor stimulation in single cells. Growth factors have been shown to affect nuclear and integrin/focal adhesion
signaling (right side of figure). Mechanical forces can be sensed by a variety of cellular proteins, such as mechanosensitive ion channels and
integrins. These forces have also been shown to affect nuclear and integrin/focal adhesion signaling (left side of figure). Our group hopes to

determine the interplay that may exist when cells are exposed to both stimuli.
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physiology, tissue engineering of articular cartilage, and
osteoarthritis. The activation of integrins through ECM bind-
ing and cross-talk with growth factor receptors might be
a crucial process in vivo, especially for cartilage regenera-
tion. The results of this study demonstrate that 3 h of TGF-
b1 and IGF-I exposures cause significant changes to the
actin cytoskeleton of single chondrocytes. This response
may be short term or may continue with prolonged growth
factor exposure. It is possible that cytoskeletal stiffening
is part of a chondrocyte’s preparation for the increased
synthetic or proliferative activities that have been observed
previously in populations of these cells. Our group is partic-
ularly interested in understanding how mechanical forces
and growth factors affect processes in single chondrocytes
(Fig. 6). This study establishes that by administering a
characterized mechanical testing environment to single
chondrocytes, their biomechanical response to external
stimuli, such as growth factors, can be determined. The
next step is to use this knowledge to correlate changes in
gene expression and signaling with the direct compression
of single chondrocytes. Growth factor stimulation surely
plays a role in this response and may offer synergistic
effects with certain modalities of mechanical stimulation.
For cartilage, such synergism may influence tissue regener-
ation or inhibit damage/disease states caused by injurious
mechanical loading. Connecting the application of force to
changes in cell gene expression and signaling has broad
implications; not only for the study of mechanotransduction,
but for understanding disease etiologies and the formation
or regeneration of tissues.
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