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0. INTRODUCTION

How can a real algebraic curve of a given degree be deposed on the plane up to an ambient
isotopy? This is one of the questions posed by Hilbert in the 16th problem almost 100 yr
ago. There are few chances of obtaining a complete answer to this question in the near
future. However, a lot of partial results in this direction are obtained (see surveys [9, 21, 31,
30, 25]). All the activity around this question can by roughly divided into two more or less
independent parts: Constructions (how to realize isotopy types which exist) and prohibitions
(how to prove that some isotopy types do not exist). In this paper we discuss only the
prohibitions.

Let ½ be the double covering of CP2 ramified along the complexification CA of a real
curve RA. Almost all of the most powerful modern methods to obtain restrictions on the
topology of plane real curves are based on the construction of 2-cycles in ½ and the
computation of their intersections. On one hand, ½ is a standard complex object whose
topology is well studied and, on the other hand, a lot of 2-cycles are ‘‘visible’’ on the real
plane. This idea appeared in the remarkable paper of Arnold [1] and then it was exploited
and developed by different authors. In particular, Ya. Viro [30, (4.12); 12, eqs (5.1) and (5.2)]
suggested a method to construct 2-cycles which are not visible on the real plane but which
are visible on the 3-manifold CL

p
consisting of all complex points of the real lines of some

pencil L
p
. This method was further developed in [23, 24]. (First, the idea to consider CL

p
was proposed by Fiedler [6] as a tool to obtain topological restrictions from the Rokhlin’s
complex orientations formula [20].)

In this paper we propose a method of prohibitions based on the consideration of CL
p
as

the boundary of one of the two parts into which it cuts CP2. If we push CL
p
a little into the

interior of this 4-manifold then the singularities of CL
p
WCA will be smoothed in a control-

led way and we obtain a link ¸ in a 3-sphere S3 bounding an embedded surface NLB4 (N
is a piece of CA; see Sections 3 and 4 for details). The topological type of N can be found by
Riemann—Hurwitz formula. Thus, we reduce the problem to a classical problem of link
theory, that is, what surfaces in B4 can be bounded by a given link in S3. A rather strong
necessary condition for N in terms of the Seifert form of ¸ is provided by the
Murasugi—Tristram inequality [13, 26] (see Section 2.2 below). Most of the results of this

sPartially supported by Grants RFFI-96-01-01218 and DGICYT SAB95-0502.
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paper are obtained using this inequality. However, even elementary arguments based on the
linking numbers of components of ¸ sometimes enables to obtain some new restrictions (see
Sections 4.3, 4.4, 5.3.5).

In fact, the method based on the Murasugi—Tristram inequality is very close to those
based on 2-cycles on the double covering. For instance, it is shown in [27] that the signature
of the double covering of B4 branched along N is equal to the signature of the Seifert form.
However, the construction of the cycles in our approach is hidden in the proof of this fact.
Thus, the art of cycles construction is replaced with a well algorithmized computation of
a Seifert matrix.

The Murasugi—Tristram inequality was already used in the context of real curves (in
a different way) by Gilmer [8].

1. STATEMENTS OF THE RESULTS

1.1. Classification of flexible affine M-sextics

Let C
1

be the infinite line RP2CR2 and C
m
LRP2 a curve of degree m. We shall say that

the affine curve C
m
CC

1
is an affine M-curve if it has the maximal possible number

(m2!m#2)/2 of connected components. This is equivalent to the fact that C
m

is a
projective M-curve, i.e. it has the maximal possible number of connected components
1#(m!1) (m!2)/2 and it cuts C

1
transversally at m distinct real points which all lie on

the same connected component of C
m
. This definition differs from that given in [12, 23] but

it seems to be more natural.
According to Gudkov’s [9] isotopy classification of real projective sextics, a projective

M-sextic has 11 ovals 10 of which are emptys and one surrounds 1, 5, or 9 others. Choosing
in different ways a line passing through 2 empty ovals and using the fact that it cuts C

6
at

most in 6 points, one can easily check that each affine M-sextic belongs to one of the isotopy
types depicted in Fig. 1 where a priori a, b, a

i
, b

i
are arbitrary integers providing one of the

three possible isotopy types of C
6

(cutting RP2 along C
1

one obtain a disk; these disks are
depicted in Fig. 1).

THEOREM 1. All the isotopy types not listed in the tables in Fig. 1 are not realizable by
affine M-sextics.

The 33 isotopy types corresponding to the lines not marked by ‘‘(f )’’ are realized in [12].
Other constructions (exposed with more details) of these 33 curves can be found in [11]. It is
also announced in [12] that only 19 of the remaining isotopy types may exist. Later, it was
announced in [23] that 10 more cases of these 19 ones were also prohibited. However, the
proofs of at least 3 of these prohibitions (namely, A

3
(0, 5, 5), A

4
(1, 4, 5), C

2
(1, 3, 6)) are

wrong because these isotopy types in principle cannot be prohibited by methods used in
[12, 23] (see Section 7.2).

Moreover, the configuration A
3
(0, 5, 5) is realizable by a suitable smoothing of the real

rational sextic that has 5 singular points of types A
8
, E

6
, A

2
, A

1
, A

1
, the line through E

6
and

A
2
being tangent to the curve at A

2
. There exists a unique (up to S¸

3
(R)) real sextic with this

configuration of singularities. Similarly (see [15]), a curve realizing B
2
(1, 8, 1) can be

constructed by smoothing of a rational sextic with A
16

, A
2
, A

1
. The realizability of

sAn oval is said to be empty if its interiority does not contain other ovals (it is not 0!)
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Fig. 1.

A
4
(1, 4, 5), B

2
(1, 4, 5), and C

2
(1, 3, 6) is still unknown, but we construct in Section 7.2 flexible

curves (see the definition in [28] or in Section 3.1 below) realizing these three isotopy types
as well as all the others marked by ‘‘(f )’’ in Fig. 1. Theorem 1.1 is proved in Section 5.

1.2. Reducible curves of degree 7

As another illustration of applicability of the link-theoretical methods to the study of the
topology of reducible curves we prove in Section 6 the following two results.

THEOREM 1.2A. ¹here does not exist M-quintic C
5

whose odd component is deposed with
respect to a conic C

2
as it is depicted in Fig. 2.

It is easy to derive from Bézout theorem that the ovals of C
5

must be distributed
between the regions marked by Sa

1
T , Sa

2
T , SbT . The complex orientation formulas allow

only 13 possible distributions (see Section 6.1). Using some other methods it is possible to
prohibit 3 of them (see [19, eq. (2.1.2)]). The realizability of the other 10 cases was unknown.

Now let us consider mutual arrangements of a quartic and a cubic. Suppose that an oval
O

4
of an M-quartic C

4
is deposed with respect to an M-cubic C

3
as it is shown in Fig. 3.

Denote by kSaT (ka"1, 2, 3) the arrangement where the kth outer (with respect to O
4
)

digon contains a ovals of C
4

and the other 3!a ovals are deposed in the non-bounded
component of RP2C(C

3
XC

4
). Let 0S0T be the arrangement where all the 3 free ovals of

C
4

are outside. It follows from Bézout theorem that all the other distributions of free ovals
of C

4
are impossible (or can be reduced to these 10 by reversing the order of digons).

THEOREM 1.2B. All the arrangements kSaT except 0S0T and 2S1T are not realizable.

These two arrangements are realizable by flexible curves (see Section 7.3).
Some open questions in the classification of reducible 7th degree curves (in particular,

those answered in Theorems 1.2A and 1.2B) were kindly communicated to me by
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Fig. 2.
Fig. 3.

Fig. 4.

G. M. Polotovskii. Using the methods of this paper we have obtained with him [17] an
isotopy classification of all mutual arrangements of an M-cubic and an M-quartic such that
two ovals intersect in 12 points.

1.3. Curves of degree 8 with a 5-fold point

(Compare with [18, 3]).

THEOREM 1.3. ¹here do not exist curves of degree 8 shown in Fig. 4 with a#b"11.

Originally, this theorem was proved in the same way as Theorem 1.1 (using the pencil
of lines through the 5-fold point). However, it follows from the results of [16] (see also
Section 4.1). So, we do not present the proof here.

1.4. A singularity without M-perturbations

Let C
0
3R2 be a real analytic curve which has three analytic branches at the origin, each

branch having an ordinary cusp A
2
. Let º be a small disk with the center in the origin and

let C be a perturbation of C
0
. A local version of the Harnack inequality implies that CWº

has not more than 16 components: three components with the boundaries on Lº and 13
ovals. Such a perturbation is called an M-perturbation. In the case when C

0
is arranged as in

Fig. 5(left), an M-perturbation exists (simplify the singularity into an ordinary 6-fold
point and then perturb it gluing any affine M-sextic of the series A). However, if C

0
is like in

Fig. 5(middle), all the attempts to construct it fail.
V. Kharlamov and E. Shustin have prohibited all the possible arrangements of ovals for

the perturbation in the latter case except two very particular arrangements shown in
Fig. 5(right). Using the local version of the method 4.2, the author proved that the last
possibility also is not realizable. An outline of the proof is presented in 8.1. The details are
planned to be published in the joint paper [10].

1.5. A new formula for complex orientations for a projective M-curve with a deep nest

Let RALRP2 be a real projective M-curve of degree m. Recall (see [20, 21], or [30,
Section 2]) that CACRA"A`\A~ and the complex orientation of RA is the boundary
orientation coming from A`. Two ovals O, O@ bounding an annulus form a positive (resp.
negative ) injective pair if their complex orientations do (resp. do not) coincide with the
boundary orientation of the annulus; we write this as [O : O@]"1 (resp. [O :O@]"!1).

In the case when m is odd, an oval O is called positive (resp. negative) if
[O]"!2[N]3H

1
(RP2CIntO) (resp. [O]"2[N]) where N is the odd component of RA.

In the case when m is even and O is not outer, O is said to be positive if [O :O@]"1 (or,
equivalently, [O]"![O@]3H

1
(RP2CIntO)) where O@ is the outer oval surrounding O.

782 S. Yu. Orevkov



Fig. 5.

Otherwise O is called negative. If m is even, we assume also (this is not so in [21, 30]) that any
outer non-empty oval is negative by definition.

Suppose RA has a nest (O
1
, 2 , O

k~1
) of depth k!1 where k"[m/2]. This means that

the oval O
j
is surrounded by O

k
for j'k. It follows from Bézout theorem that all the other

ovals are empty. In Section 4.4 we prove the following

THEOREM 1.4A. ¸et k` (resp. k~) be the number of positive (resp. negative) non-empty
ovals, j

`
(resp. j

~
) the number of positive (resp. negative) empty ovals, and let nS

s
,

S, s3M#,!N be the number of pairs (O, o) where o is an empty oval surrounded by O and (S, s)
are the signs of (O, o) . ¹hen

n`
~
!n`

`
"(k`)2, n~

`
!n~

~
"(k~)2 (m is even)

n`
~
!n`

`
"(k`)2, n~

`
!n~

~
#(j

`
!j

~
)/2"(k~)2#k~ (m is odd).

COROLLARY 1.5. If a real schemes of an M-curve of degree 7 is SJ\b\1SaTT with a'0,
and the non-empty oval is positive then

(a) a and b are odd,
(b) the complex scheme is SJ\(b`1

2
)
`\(b~1

2
)
~\1

`
S(a~1

2
)
`\(a`1

2
)
~

TT.

COROLLARY 1.6. If a real scheme of an M curve of degree 8 is Sc\1Sb\1SaTTT with a'0,
and the non-empty ovals form a positive injective pair then

(a) a and c are odd,
(b) the complex scheme is Sc\1S(b

2
#1)

`\( b
2
!1)

~\1
`

S(a~1
2

)
`\(a`1

2
)
~
TTT.

COROLLARY 1.7. If a real scheme of an M-curve of degree 8 is Sc\1S2\1SaTTT where
a and c are even and a'0 then the complex scheme is

Sc\1S1
`\1

~\1
~
S( a

2
#1)

`\( a
2
!1)

~
TTT.

COROLLARY 1.8. ¹here do not exist M-curves of degree 9 with the following 9 real schemes:
SJ\2\1S1\1S23TTT, SJ\3\1S1\1S22TTT, and SJ\c\1S1SaTTT where a#c"26,
c3M2, 3, 4, 5, 6, 8, 10N.

Proof. None of the corresponding complex schemes satisfy Theorem 1.4A, Corol-
lary 1.9, and Lemma 1.9, overleaf. h

sSee the definition and notation of real and complex schemes in [30].
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LEMMA 1.9. In the complex 9th degree M-scheme SJ\c\1Sb
`\b

~\1Sa#\a
~

TTT
with c'0, one has a

`
)a

~
#b

~
#1 and a

~
)a

`
#b

`
#1.

Proof. Consider the pencil of lines through one of ScT. It follows from Bézout theorem
that the ovals SaT cannot be separated by a line of the pencil through another one of ScT.
So, the lemma follows from [6]. h

Remarks 1.10. 1. Two independent formulas for complex orientations are known for
smoothings of singularities (see [25, 10]).

2. We listed in Corollary 1.8 only the prohibitions which were not known according
to [11].

3. Some of the complex 7 degree schemes prohibited in Corollary 1.8 were earlier
prohibited in [5] by another method as well as some other complex schemes not covered by
Corollary 1.5.

1.6. A flexible realization of the scheme S1\1S1T\1S18TT of degree 8

This is one of the 9 real M-schemes of degree 8 whose realizability is still unknown (1997;
see [4]). In Section 8.2 we realize it by a flexible curve (see [30]). This curve is compatible
with the pencil of lines through the nest 1S1T (see Section 3.1). Moreover, all the known
methods of constructions 2-cycles on the double covering work for this curve.

We also prove some topological properties of such curves and possibilities for their
degenerations.

2. PRELIMINARIES. LINKS AND BRAIDS

In this section we recall some definitions and known facts (mostly, to fix the notation)
and perform some elementary calculations with Seifert matrices.

2.1. Seifert matrix

Recall some definitions. Let ¸ be a link in the 3-sphere S3, i.e. several disjoint circles
smoothly embedded into S3. A Seifert surface of a link ¸ is a connecteds oriented 2-manifold
X smoothly embedded into S3 such that LX"¸ (taking into account the orientations).
A Seifert form of a link ¸ is the bilinear (non-symmetric) form on H

1
(X;Z) whose value on

x, y equals the linking number of the cycles x` and y where x` is the result of a small shift of
x along a positive normal vector field to X. A Seifert matrix is the Gramm matrix of a Seifert
form with respect to some base of H

1
(X;Z).

Let A be an Hermitian matrix and B"QAQ* its diagonalization. The signature p (A) is
the sum of the signs of the diagonal entries of B and the nullity n (A) is the number of zeros
on the diagonal of B.

Let » be a Seifert matrix of a link ¸ and f3C, Df D"1. The higher signature and nullity of
¸ are said to be pf(¸) :"p (»f) and nf(¸) :"n (»f)#1 where »f"(1!f) »#(1!fM )»*.
For f"!1 they are called the signature and the nullity of ¸. The Alexander polynomial of
¸ is defined as det (»!t»*) and det ¸ as its value at !1. Though the Seifert matrix is not
unique, pf(¸) , nf(¸) and Ddet¸D are link invariants. The Alexander polynomial is invariant
up to multiplication by$tk.

sSometimes the connectedness is not claimed, but this condition is important for the definition of the nullity given
below.
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LEMMA 2.1. If the Alexander polynomial of a link ¸ has a simple root t
0
, Dt

0
D"1 then for

a prime p and a primitive p-root of unity f one has nf (¸)"1 and Dpf (¸) D'0.

Proof. When f passes t
0

moving along the unit circle, pf changes by $2. h

2.2. Murasugi—Tristram inequality

Let ¸ be a link in S3 regarded as the boundary of the 4-ball B4. Let N be a surface of
genus g smoothly embedded into B4 such that LN"¸. If N is not connected then its genus
by definition is equal to the sum of the genera of the connected components. Following
[26], denote by k ( ) ) the number of connected components. Then for each prime p and for
each primitive p-root of unity f one has [13, 26]

2g*k(N)!k (¸)#D pf (¸) D#D nf (¸)!k (N) D. (1)

2.3. Braids

As usual, we call a braid on m strings the graph of a smooth m-valued function F:
[0, 1]PC whose values are pairwise disjoint at each point and the real parts of its values
are pairwise disjoint at 0 as well as at 1. The projection used for picturing braids (and for
definition of the standard generators of the braid group) is supposed to be (t, z)>(t, Rez).

By p
1
, 2, p

m~1
we shall denote the standard generators of the braid group B

m
and by

* (or *
m
) the Garside element (see Fig. 6)

*"*
m
"(p

1
p
22

p
m~1

) )2 ) (p
1
p
2
p
3
) ) (p

1
p
2
) ) p

1
.

The directions of the twists are defined by the convention that p
1
3B

2
is the function

w"Jz along the path z"e2p*t.
The closure of a braid b is defined as the link bK which is the image of b under the standard

embedding of the solid torus ([0, 1]]C)/
(0,z)F(1,z)

into S3. The orientation of bK is induced
by the projection [0, 1]]CP[0, 1].

2.4. Quasipositive braids

A braid b is called quasipositive if b"<
j
w

j
p
ij
w~1
j

.
Rudolph [22] showed that a braid b3B

m
is quasipositive if and only if it is the boundary

braid of an m-valued algebraic function on a disk w"F(z) implicitly defined by
wn#a

1
(z)wn~1#2#a

n
(z)"0 where a

i
(z) are polynomials in z. Perturbing, if necessary,

the coefficients, we may assume that all the singularities of F are ordinary ramifications.
Then the number of the branching points is equal to e(b) where e :B

m
PZ is the homomor-

phism ‘‘exponent sum’’: e (p
i
)"1 for all i.

Hence, by the Riemann—Hurwitz formula, the Euler characteristic of N :"graph(F)
equals

m!e (b)"s (N)"2k(N)!2g(N)!k (bK ). (2)

Combining this with (1), we obtain immediately the following necessary condition for the
quasipositivity of a braid b3B

m

nf(bK )*D pf(bK ) D#m!e(b). (3)

COROLLARY 2.2. If a braid b3B
m

is quasipositive and e (b)(m!1 then the Alexander
polynomial of bK is identically equal to zero, in particular, det bK "0.
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Fig. 6.

2.5. Seifert matrix of a closed braid

Fix a presentation of a braid b3B
m

b"pe1
i1
pe2
i22

pe/
i/
, e

j
"$1. (4)

To construct a Seifert surface of bK , one can take m parallel, equally oriented disks and
connect them with n once-twisted ribbons as it is shown in Fig. 7. This surface (denote it by
X) is connected if and only if

All the indices 1 , 2 ,m!1 appear among i
1
, 2 , i

n
. (5)

Multiplying if necessary the right-hand side of (4) by expressions of the form p
k
p~1
k

, we can
always assume that (5) is satisfied.

As a base of H
1
(X;Z) let us choose the s"n!m#1 cycles x

1
, 2 , x

s
which correspond

to circuits in the positive direction around the bounded regions of the projection of the
braid onto the plane (see Fig. 7).

This construction leads to the following algorithm for computing a Seifert matrix
starting with a braid. Denote by I the set M1,2 , nN. The multi-index i"(i

1
, 2, i

n
) defines

the partition I"I
1
XI

2
X2XI

m~1
where I

h
"Mj D i

j
"hN. Let S

h
be the set of pairs of

successive (in ascending order) elements of I
h
, and put Si :"S

1
X2XS

m~1
.

Let Si"M(a
1
, b

1
), 2, (a

s
, b

s
)N where (al, bl) corresponds to xl (see Fig. 7). Denote

hl :"i
al
"i

bl
, l"1, 2 , s. Then the Seifert matrix »"DD vkl DD sk,l/1

and its symmetrization
»#»*"DD vJ kl DDsk,l/1

can be computed as follows.

vkl"G
!e, if k"l and e

ak
"e

bk
"e

1, if hk"hl, bk"al, ebk"1 or hl"hk#1, al(ak(bl(bk
!1, if hk"hl, ak"bl, eak"!1 or hl"hk#1, ak(al(bk(bl

0, otherwise

vJ kl"G
!e

ak
!e

bk
, if k"l

e
j
, if hk"hl and aj"bi"j

e, if hj"hi#e and aj(ai(bj(bi for e"$1

0, otherwise

where (j, i) denotes some permutation of (k, l) . All the mutual positions of xk and xl which
provide vklO0 are shown schematically in Fig. 8.

Examples 2.3. (Trefoil). m"2, b"p
1
p
1
p
1
, S"M(1, 2), (2, 3)N,

»"A
!1 1

0 !1B.

786 S. Yu. Orevkov



Fig. 7.

Fig. 8.

2. (Braid in Fig. 7). b"p
2
p~1
1

p
2
p
2
p
1
,

»"A
!1 1 0

0 !1 0
1 0 0B , »#»*"A

!2 1 1
1 !2 0
1 0 0B .

2.6. Signature of a braid as a function of generator exponents

Now let us fix m'1, a multi-index i"(i
1
, 2, i

n
) satisfying (5) and consider the family

Mpe
iNLB

m
of braids

pe
i"pe1

i1
pe2
i22

pen
in
, e"(e

1
, 2 , e

n
)3Zn. (6)

To avoid a misunderstanding with the notation of braid generators, we denote in this
section the signature and the nullity of a matrix and those of a link by Sign and Null.

Define S"Si"MalNl/1,2,s
and hl’s the same way as in Section 2.5. If all e

j
O0, put

º"ºi(e)"DD ukl DDsk,l/1
where (compare it with the formula for vJ kl in Section 2.5):

ukl"G
!e~1

ak
!e~1

bk
, if k"l

e~1
j

, if hk"hl and aj"bi"j
e, if hj"hi#e and aj(ai(bj(bi for e"$1
0, otherwise

as above, (j, i) denotes some permutation of (k, l).
Denote by »"»i (e) the Seifert matrix of bK (where b"pe

i ) constructed in Section 2.5
starting with the presentation of b in the form (4) obtained from (6) by replacing each
pej
ij

with the product of D e
j
D copies of p4*'/ej

ij
. Denote by sN the dimension of » (clearly,

sN"1!m#+ D e
j
D).

PROPOSITION 2.4. ¸et e3(ZC0)n, »"»i (e), »I "»#»*. ¹hen there exists Q3S¸(sN , Q)
such that Q»I Q*"ºi(e) =D

U
where D

U
is a diagonal matrix with Sign(D

U
)"

!+(e
j
!sign e

j
) and DdetD

U
D"<D e

j
D .
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Proof. Denote by SM the set which was denoted by S in the construction of ». Let pe
i
be

one of the factors in the right-hand side of (6) and e"sign e. Let a, a#1, 2, a#e!1 be
the indices of the corresponding part in the developing of (6) into the form (4). Denote the
1-cycles corresponding to (a, a#1), 2 , (a#e!2, a#e!1)3SM by x

1
, 2 , x

e~1
and

those corresponding to (a
0
, a) and (a#e!1, a

1
) (if they exist) by x

0
and x

e
. We shall write

the symmetrized Seifert form as x ) y. According to the computations of Section 2.5 we have

x
k
)x

j
"!2e if k"j, x

k
)x

j
"e if D k!j D"1, x

k
) x

j
"0 if Dk!j D'1,

and x
k
) x"0 for x3SM CMx

0
, 2, x

e
N, k"1, 2, e!1. Put y

k
"+ k

j/1
jx

j
/k for k"1, 2, e

and y
0
"+e~1

j/0
(e!j) x

j
/e. This is an easy exercise to check that for k'0 one has

y
k
) y

k
"x

k
) x

k
#e!(e/e), (k"0, e); y

0
) y

e
"e/e; y

k
) y

k
"!(k#1)e/k (k"1, 2, e!1),

y
k
) y

l
"0 (k"1, 2 , e!1; lOk), and y

k
)x"x

k
)x for any x3SM CMx

0
, 2, x

e
N and

k"0, 2, e. Thus, if we change the base SM of H
1
(X, Q) replacing x

k
with y

k
(k"0, 2, e)

then y
1
, 2 , y

e~1
generate a diagonal direct summand and e is replaced with e/e in the four

entries of the Seifert matrix corresponding to y
0

and y
e
.

We write this change of the base in the matrix form for e"5, e"!1:

QA
2#1 !1

!1 2 !1 0
!1 2 !1

!1 2 !1
0 !1 2 !1

!1 2#1B
Q*"A

2#1/5 0 0 0 0 !1/5
!1 2 !1 0 0 0

!1/2 0 3/2 !1 0 0
!1/3 0 0 4/3 !1 0
!1/4 0 0 0 5/4 !1
!1/5 0 0 0 0 2#1/5B Q*

"A
2#1/5 0 0 0 0 !1/5

0 2 0 0 0 0
0 0 3/2 0 0 0
0 0 0 4/3 0 0
0 0 0 0 5/4 0

!1/5 0 0 0 0 2#1/5B ,

where

Q"A
1 0 0 0 0 0

4/5 1 1/2 1/3 1/4 1/5
3/5 0 1 2/3 2/4 2/5
2/5 0 0 1 3/4 3/5
1/5 0 0 0 1 4/5

0 0 0 0 0 1B .

Repeating this procedure for each factor of (6) we obtain the desired result. h

Example 2.5. (Trefoil). b"p3
1
. º is the empty matrix;

D"A
!2 0

0 !3/2B .
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2. (Braid in Fig. 7). b"p
2
p~1
1

p2
2
p
1
.

º"A
!3/2 1

1 0B ; D"(!2).

Now we are going to modify the above matrices to avoid the denominators and hence,
to have a possibility to use the same formulas in the case when some of the exponents
e
j
vanish.
Recall that we have fixed a multi-index i"(i

1
, 2, i

n
) satisfying (5). Given any e3Zn, we

define the matrix ¼i(e) as follows. Let S"Si"M(a
1
, b

1
), 2 , (a

s
, b

s
)N and hl be as in Section

2.5. Consider a vector space over Q with a base y
1
, 2 , y

s
, z

1
, 2 , z

n
endowed with the

symmetric bilinear form defined by

z
j
) z

j
"e

j
; z

j
) yk"1 if bk"j; z

j
) yl"!1 if al"j;

yk ) yl"e if hj"hi#e and aj(ai(bj(bi for e"$1
(7)

where (j, i) is some permutation of (k, l) and the value of the form on any other pair of the
base elements is zero.

¼i (e) is defined as the Gramm matrix of the base My
1
, 2 , y

n
, z

1
, 2, z

n
N. Note, that n of

diagonal entries of ¼i (e) are e
12

, e
n

but the size of the matrix and all the other entries
depend only on i and do not depend on e.

PROPOSITION 2.6. ¸et e3Zn, »"»i (e) , »I "»#»*. ¹hen there exists Q3

S¸(sN#2n, Q) such that Q(»I =Ze) Q*"¼i(e)=D
W

where Ze"an
j/1

Z
ej
,

Z
e
"A

e 0
0 !1/eB for eO0,

Z
0
"A

0 1
1 0B,

and D
W

is a diagonal matrix with Sign(D
W

)"!+e
j
and DdetD

W
D"1.

Proof.
Step 1. If all e

j
O0 then ¼i (e) is congruent to ºi (e)=De where De is the diagonal matrix

with e
1
, 2, e

n
on the diagonal. Perform for each j the following change of the base:

(yk , zj , yl)P(yk!z
j
/e

j
, z

j
, yl#z

j
/e

j
) where bk"j"al

A
a 1 0
1 e !1
0 !1 b BPA

a!e~1 0 e~1

0 e 0
e~1 0 b!e~1B , e"e

j
.

Step 2. ¼i (e) is congruent to (a
ej/0

Z
0
)=¼i@ (e@) where i@ and e@ are obtained from i and

e by removing all i
j
and e

j
such that e

j
"0. The latter matrix can be obtained from the

former one by the following sequence of elementary transformations performed for each
j with e

j
"0

A
* A* 0 0 *
A a 1 0 0
0 1 0 !1 0
0 0 !1 b B

* 0 0 B* *
BPA

* A* 0 A* *
A a 1 a 0
0 1 0 0 0
A a 0 a#b B

* 0 0 B* *
BPA

* 0 0 A* *
0 0 1 0 0
0 1 0 0 0
A 0 0 a#b B

* 0 0 B* *
B
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where the three central rows and columns correspond to yk , zj , yl (bk"j"al) and the first
(resp. last) row and column correspond to all the base elements which are ‘‘to the left (resp.
right) of yk’’, this means the elements z

k
with k(j (resp. 'j) and yj with aj(ak (resp.

bl(bj). h

COROLLARY 2.7. For any b"pe
i , e3Zn one has Sign(bK )"Sign(¼i (e))!+e

j
, Null(bK )"

1#Null(¼i (e)), det(bK )"$det¼i(e).

Example 2.8. If m"2, b"pe
1

then ¼"(e) and Sign(bK )"!e#sign e.

For the needs of practical computation it is convenient to use a ‘‘mixture’’ of º and ¼.
Namely, let JLI"M1, 2 , nN be some subset of indices such that Me

j
N
j|J

are really
indeterminate for which it is not known a priori if they are zeros or not, and Me

j
N
jNJ

are some
fixed non-zero constants.

Then we define ¼Ji as the Gramm matrix of the symmetric bilinear form on y
1
, 2, y

s
and Mz

j
N
j|J

whose all non-zero values on the base elements are (7) and

yk ) yl"G
!e~1

ak
s (ak)!e~1

bk
s (bk), if k"l

e~1
j

, if hk"hl and aj"bi"jNJ

where s is the characteristic function of ICJ, that means s( j )"1 if j NJ and s ( j )"0 if j3J
(in this formula we assume that 0~1 ) 0"0). As above, (i, j) is some permutation of (k, l).
Clearly, ¼Ii (e)"¼i(e) and ¼

+
i (e)"ºi (e).

PROPOSITION 2.9. ¸et e3Zn be such that e
j
O0 for j NJ. ¸et »"»i(e), »I "»#»*.

¹hen there exists Q3S¸(sN#2 DJ D , Q) such that Q (»I =ZJe )Q*"¼Ji (e)=DJ
W

where
ZJe"a

j|J
Z

ej
(Z

e
are like in Proposition 2.6), and DJ

W
is a diagonal matrix with

Sign(DJ
W
)"!+e

j
#+

j N J
sign e

j
and detDJ

W
"$<

j N J
e
j
.

Example 2.10. m"3, b"p2
1
pe
2
p3
1
p~1
2

. S"M(1, 3), (2, 4)N,

¼K2L"A
!1

3
!1

2
!1 0

!1 1 !1
0 !1 eB .

COROLLARY 2.11. ¸et b"pe
i be such that e

j
O0 for j NJ. Put ¼"¼Ji (e). ¹hen

SignbK "Sign¼!+e
j
#+

j N J
sign e

j
; Null bK "1#Null¼; det bK "$det¼<

j N J
e
j
.

2.7. Double covering of S3 branched along a string of a braid

Let b3B
m

and ¸"bK . Suppose that the kth string is a fixed point of the image of b in the
symmetric group, i.e. its closure ¸

k
is a component of ¸. Consider the double covering

o : XPS3 branched along ¸
k
. Clearly, ¸

k
is unknoted, hence, X"S3. We give here an

algorithm for writing down a braid whose closure is o~1(¸).
Step 1. Construct a braid b@ of the form (b@

1
p2e1
m~1

) (b@
2
p2e2
m~1

)2 where b@
j
3B

m~1
and

e
j
"$1 such that ¸ is isotopic to bK @ and ¸

k
corresponds to the mth string of b@. We omit the

formal description of this procedure. Note only that geometrically this means that we move
¸
k
in the direction Im z (see Section 2.3) pulling the strings which are linked with it and then

do the same in the direction Re z (see Fig. 9).
Step 2. Let r be the homomorphism B

m~1
PB

2m~1
defined by rp

k
"p

2m~k~1
. The

required braid is (b@
1
rb@

1
pe1
m
pe1
m~1

pe1
m
) (b@

2
rb@

2
pe2
m
pe2
m~1

pe2
m
)2 (see Fig. 9).
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Fig. 9.

3. BRAIDS CORRESPONDING TO REAL ALGEBRAIC CURVES

3.1. Flexible curves compatible with a pencil of lines

All the prohibitions of this paper are valid for the following topological objects
generalizing real algebraic curves. For a point p3RP2 we denote by n

p
the projection

CP2CMpNPCP1 from p and by L
p
"Ml

t
D t3CP1N the pencil of lines l

t
"n~1

p
(t).

Let A be a compact oriented 2-submanifold of CP2 and RA :"AWRP2. We shall say that
A is a flexible irreducible curve of degree m compatible with L

p
(we shall use also the shorter

version of this term: L
p
-flexible irreducible curve of degree m) if

(i) A is invariant under the complex conjugation.
(ii) n

p
D
A

is an orientation preserving ramified covering of degree m.
(iii) All the ramifications are positive. This means that for each ramification point

q there exists an orientation preserving diffeomorphism of some neighborhood of
q to C2 which defines local coordinates (z, w) near q such that L

t
and A take form

z"const and z"w2 (but not zN"w2).

It can be easily shown that an L
p
-flexible curve of degree m in the sense of this definition

is a flexible curve in the sense of [30], in particular, the genus of A is g"(m!1) (m!2) /2,
the number c of connected components of RA is)g#1 and if A is an L

p
-flexible M-curve

(i.e. c"g#1) then the genus of ACRA is zero. We shall always suppose also that the
following conditions of general position hold.

(iv) Projections of ramification points of nD
A

are distinct (i.e. no line of L
p
is bitangent

to A).
(v) If a point q3A is not a ramification point of nD

A
then A is a transversal to n~1(RP1)

at q.

We shall call reducible L
p
-flexible curve a union of several L

p
-flexible irreducible curves,

all whose intersections are transversal and positive. Its degree is the sum of degrees of the
irreducible components. As we pointed out above, an irreducible L

p
-flexible curve A of

degree m is a flexible curve in the sense of [30], in particular, (ii) implies
[A]"m[CP1]3H

2
(CP2, Z) , hence, the Bézout theorem is valid for irreducible compo-

nents of a reducible L
p
-flexible curve. The generality condition for a reducible curve A of

degree m is

(vi) Each line l
t
3L

p
has at least m!1 distinct intersection points with A.

3.2. Definition of the link ¸ (A, p) and its cobordism N (A, p)

Fix a point p3RP2 and let ALCP2 be anL
p
-flexible curve generic with respect to p (all

the conditions (i) — (vi) of Section 3.1 are satisfied). Fix an orientation on RP1 and let H
`

be
the half of CP1CRP1 that induces the chosen orientation of RP1.

Since n~1
p

(H
`

) is fibered over H
`

with the fiber C, it can be mapped diffeomorphically
onto R4. Fix such a diffeomorphism and denote by B

r
the preimage of the ball of radius
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r and by S
r
the boundary of B

r
. For r<1 the link S

r
WA and the surface B

r
WA do not

depend on r up to an isotopy, and we denote them by ¸"¸ (A, p) and N"N(A, p)
(assuming that B

r
and S

r
are identified with standard ball B4 and sphere S3). N is oriented as

a part of A (recall that A is oriented by definition of a flexible curve). Orient ¸ as the
boundary of N.

3.3. Link ¸ (A, p) as a perturbation of AWn~1
p

(RP1)
Let A be as above. Clearly, AWn~1

p
(RP1) is the union of RA and a closed one-

dimensional manifold S (A, p) which meets RA at the points where A is tangent to the lines
of L

p
. It is clear also that ¸(A, p) is obtained from AWn~1

p
(RP1) by smoothing of the

double points according to Fig. 10. Near S (A, p)WRA, the smoothing looks like replacing
a cross by a hyperbola and near the double points of RA, like replacing a cross by a pair of
skew lines.

ORIENTATION RULE. ¸et q be a double point of AWn~1
p

(RP1) and (t, w), w"u#iv be the
local coordinates on n~1

p
(RP1) near q where t is a coordinate on RP1 with L/Lt defining the

chosen orientation, and w compatible with the real structure on the fibers.

(a) ¸et q3S (A, p)WRA. ¹hen the branch of RA at q in the direction of L/Lu is joined after
the smoothing with the branch of S (A, p) at q in the direction of L/Lv (resp. !L/Lv) if t DRA has
a minimum (resp. maximum) at q.

(b) ¸et q be a double point of RA and B
a
, B

b
the branches of RA at q with tangents

respectively u"at, u"bt, a(b. ¹hen, after the smoothing, B
b
passes higher (with respect to

the v-coordinate) than B
a
.

Remark 3.1. (a) yields one more proof of the Fiedler’s theorem [6] (see also [28, Section
1.4]).

Recall (see Section 2.2) that k ()) is the number of connected components and g( ) ) is the
sum of their genera. A non-singular real projective curve A is said to be of the type I if ACRA
is not connected (denote in this case the connected components by A$). In particular, all
M-curves are of the type I.

PROPOSITION 3.2. If A is a real non-singular projective curve of the type I then
2g(N))2g(A`)"(m!1)(m!2)/2#1!k (RA) where m"degA.

Proof. Let CP1CRP1"H
`\H

~
. Put As1

s2
"As1Wn~1

p
(H

s2
), s

i
3M#,!N. Clearly,

conj(As1
s2
)"A~s1

~s2
and AsCS (A, p)"As

`\As
~

. Hence, g (N)"g (A`
`

XA~
`
)"g(A`

`
XA`

~
)

)g (A`). h

3.4. Link ¸ (A, p) as a closed braid

Let p and A be as above. Choose an affine coordinates (z, w) on C23CP2 so that p is the
infinite point of the axes z"0 and the infinite line l

=
is transversal to A. We shall suppose

also that

All the intersections of l
=

and A are real. (8)

If necessary, all the constructions below can be modified to avoid the condition (8) but in all
the applications considered in this paper such a line exists, so we shall suppose for simplicity
that (8) is satisfied.
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Fig. 10.

In the coordinates (z, w), the projection n
p

takes form (z, w)>z and H
`

is the upper
half-plane Im z'0. Denote by D

1
the intersection of a disk D z D)R

1
and a half-plane

Im z*e. Choose R
1
<1 and e;1 so that each line z"z

0
with z

0
3H

`
CD

1
has m distinct

intersections with A. Denote by D
2

the ball D w D)R
2

where R
2

is so big that
n~1
p

(D
1
)WALB4 where B4 :"D

1
]D

2
. Put S3 :"LB4.

Let w"F (z) be the multi-valued function whose graph is A. Let c: [0, 1]PH
`

be the
parametrization of LD

1
and let b"b

A,p
be the braid F ° c (see Section 2.3). Thus,

¸(A, p)"bK . Denote by cR the part of the path c which is a segment of a line and by c
=

that
which is an arc of a circle. Let b"bR b

=
be the corresponding decomposition of b. Clearly

b
=
"*

m
(see Section 2.3) and bR in some cases can be reconstructed from the topology

of RA.
According to Section 3.2, the link ¸ (A, p) is defined by the set RAXS (A, p). Clearly,

S(A, p) is determined up to an isotopy by RA when the condition

(H
i
) Each line l

t
3L

p
has at least m!i intersections with RA

holds with i"2. If (H
4
) holds but (H

2
) does not then the isotopy type of S (A, p) is

determined by RA only up to some unknown integer parameters e
j
, one parameter for each

interval of the pencil where (H
2
) does not hold. These parameters are the numbers of twists

which have two branches of S (A, p) with Imw'0.
More precisely, put

q
k, l
"G

(p~1
k`1

p
k
) (p~1

k`2
p
k`1

)2(p~1
l

p
l~1

), if l'k

(p1
k~1

p~1
k

) (p~1
k~2

p
k~1

)2(p~1
l

p
l`1

), if l(k

1 if l"k .

(9)

Clearly q
k, l
"q~1

l,k
. Suppose that A satisfies (8) and (H

4
). Choose a point q

j
3R2CRA in each

interval of the pencil L
p
where (H

2
) does not hold. Join the points q

j
and the critical points

of Re z (the points of RA with vertical tangent) by non-intersecting paths u
1
, u

2
, 2 so that

each generic vertical line cuts RA#2+u
i
in m points (this notation means that the points of

u
i
are counted twice; see Fig. 11, left). To construct the braid (see Fig. 11, right), one has to

move a vertical rule from the left to the right and to write

p~1
k

if the rule meets a double point of RA or if the rule is tangent to RA at
a point where Re z has maximum on RA;

q$1
k,k`1

(see the sign in Fig. 11) if the rule meets an intersection of some u
i
with

RA;
p~1
k`1

p~ej
k

pej
k`2

p
k`1

if the rule meets q
j
.

In all the cases k!1 equals the number of intersections of the rule with RA#2+u
i
which

are strictly beneath the critical point.

Remark 3.3. If A satisfies (H
i
) with i'4 then pairs of symmetric unknown braids on i/2

strings appear instead of p~ej
k

pej
k`2

.
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Fig. 11.

PROPOSITION 3.4. ¸et A be an L
p
-flexible curve (maybe, reducible) of degree m satisfying

(i)— (vi) of 3.1. Denote by dR the number of real double points and by cR the number of points
where the tangent belongs to L

p
. ¹hen

2e (b
A,p

)"m(m!1)!2dR!cR .

Proof. e (bR)"!dR!cR/2 because the unknown parts of bR corresponding to S
A,p

are
symmetric with respect to the complex conjugation and their contributions to e(b) cancel
each other. Clearly, e (b

=
)"m (m!1)/2. h

3.5. Arrangements of real schemes with respect to a pencil of lines

Following [30], we say that a real scheme is the isotopy class of smooth real curve (maybe
with self-intersections) on RP2. A scheme is realizable by an algebraic (resp. flexible) curve if
there exists a real algebraic (resp. flexible) curve whose set of real points belongs to the given
scheme. By analogy, we define an L

p
-scheme as a smooth curve on RP2CMpN up to an

isotopy u
s
which commutes with n

p
, i.e. u

s
(l
t
) is a line of L

p
for all s, t. An affine L

p
-scheme is

an L
p
-scheme with some fixed line l

=
3L

p
.

We shall consider only L
p
-schemes in general position. Namely, each line l

t
has at most

one non-generic intersection point with the curve, and this point is either an ordinary
tangency or a transversal intersection of two branches, non-tangent to l

t
. We shall use the

following code to describe L
p
-schemes.

First, we define the code for affine L
p
-schemes. Let (x, y) be coordinates on R2 such that

p is the infinite point of the line x"0. Let p
1
"(x

1
, y

1
), 2 , p

n
"(x

n
, y

n
), x

1
(2(x

n
be

all the points where a curve B is not transversal to the pencil. The L
p
-scheme of B will be

described by a pair [m
=

;w] where m
=

:"K(l
=

WB) and w is a word s
12

s
n
where

s
j
"G

]
k

if p
i

is a double point of B

L
k

if the x-coordinate has a minimum at p
j

M
k

if the x-coordinate has a maximum at p
j
.

In all the three cases k"1#dMy D (x
j
, y)3B and y(y

j
N. Projective L

p
-schemes are coded

by the same words considered up to cyclic permutation followed by the change of m
=

and
reversing the indices. The subword L

k
M

k
will be abbreviated to o

k
(oval). If a curve is

denoted by a word w without m
=
, this means that m

=
"m.

Examples 3.5. 1. The affine curve (x2#y2!4) (y!1)"0 is coded by
[1;L

1
]

2
]

2
M

1
]. The projectivization provides [1;L

1
]

2
]

2
M

1
]&[M

2
L

1
]

2
]

2
]\

[]
1
M

2
L

1
]

2
]\2

2. The projection of a braid (6) on the plane is coded by []@e1@
i1

2]@en@
in

]
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Fig. 12.

PROPOSITION 3.6. Suppose that an L
p
-scheme B@ is obtained from B by one of the following

elementary substitutions:

]
j
M

jB1
P]

jB1
M

j
]

j
L

jB1
P]

jB1
L

j
]

j
u
k
Pu

k
]

j
(10)

L
j
M

jB1
P0 L

j
M

k
PM

k
L

j
(11)

where Dk!j D'1 and ‘‘u’’ stands for one of the symbols ‘‘]’’, ‘‘L’’, or ‘‘M’’.
If B is realizable by a L

p
-flexible curve then B@ is also realizable.

Proof. The only non-trivial case isL
j
M

j$1
P0. By means of an equivariant diffeomor-

phism we can choose complex coordinates (z, w) such that the above (x, y) are (Re z, Rew)
and the piece of B corresponding toL

j
M

j$1
is locally defined by z"w3!ew (0(e;1).

Replace it with z"w3#ew and glue it together with the rest of the curve by a partition of
unity. h

Remark 3.7. Similar statements were used in [6, 12, 28].

The construction of the braid in (3.4) can be reformulated now as the following replacing
rules.

PROPOSITION 3.8. If an L
p
-flexible curve A of degree m satisfies (H

2
) and (8) then

¸(A, p)"bK where b"bR*m
and the braid bR can be obtained from the RA"[s

12
s
n
] by the

following procedure (see Fig. 12):

replace each symbol]
i
which appears betweenL

k
and M

l
with p

i
;

replace each subword [M
k
]

i1
2]

ir
L

l
] with p~1

k
u
1
2u

r
q
k, l

where

u
j
"G

p~1
ij

if i
j
(k!1

p~1
ij`2

if i
j
'k!1

q
k,k`1

p
k~1

q
k`1,k

if i
j
"k!1.

Similar replacing rules can be formulated also in the (H
4
)-case.

4. THE METHODS OF PROHIBITIONS

The considerations of Section 3 show that there are certain necessary conditions for
a given L

p
-scheme B to be realizable by an L

p
-flexible curve A of a given degree m.
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4.1. Quasipositivity

It follows from [22] (see Section 2.4) that the braid b"b
A,p

is quasipositive. This is
a very restrictive condition on b. Unfortunately, I do not know if for any m there exists an
algorithm to decide if a given braid is quasipositive or not.

However, for m"3 this problem is easily resolvable using the Garside normal form [7]
(see also [2] ) which is very elementary in this case. The results obtained by this method will
be exposed in [16]. As an example, we formulate without a proof one of them. Let ¹

k
be the

triangle with vertices (0, 0), (3k, 0), (0, 3). An M-curve on ¹
k

is said to be a real (3k!1)-
component curve with Newton polygon ¹

k
. An L

p
-isotopy class is a connected component

of the space of all L
p
-flexible curves.

THEOREM 4.1. ¹here exist exactly 2k~1 L
p
-isotopy classes of M-curves on ¹

k
; each class

contains an algebraic curve glued by »iro [29] from k projective M-cubics.

4.2. Application of Murasugi—Tristram inequality

Though necessary and sufficient conditions are unknown, Murasugi—Tristram inequal-
ity provides a test for the quasipositivity (see Section 2.4). Most of new results here are
obtained in this way.

If one can choose a point p such that (H
2
) holds then the braid is determined by the real

L
p
-scheme and one can compute all the ingredients of (3). Since the computations are rather

messy, I have written a computer program whose input is a real L
p
-scheme B encoded by

3.5 and the output is the number h"h (B), equal to the difference between the right- and
left-hand sides of (3). If h'0 then B is not realizable. The program implements the
algorithms of Sections 2.5, 3.4, and Proposition 3.8.

Now, suppose (H
4
) does hold and (H

2
) does not. Let e

1
, e

2
, 2 be the numbers of twists

(see Section 3.4). Each possible distribution of connected components of ¸ between those of
N provides a system of simultaneous linear equations (inequalities) for the e

i
’s (see Section

4.3 below). If each system has a unique solution then we have a finite number of explicit
braids and we can apply the same arguments (and the same programs) as in the (H

2
)-case

(see Section 8.2). Otherwise one can compute det¸ in terms of the e
i
’s (see Section 2.6) and

apply Corollary 2.4. (see Section 8.1).

Remark 4.2. Analyzing the cases when (3) gave prohibitions, I have found that most of
them could be obtained ignoring the signature, using only Corollary 2.4.

4.3. Rokhlin’s formula for complex orientations and its generalization

The methods based on the Seifert matrix require a lot of computations. However, some
necessary conditions can be extracted from the braid b

A,p
without them. In the rest of the

section we suppose that all the double points are real.
According to (2), the number of the connected components of N is

k(N)"g (N)#(k (¸)#m!e(b))/2 (12)

(in the M-case g (N)"0). Let N"N
1\2\N

k
be some partition of N. It is known that the

intersection number N
i
)N

j
is equal to the linking number of LN

i
and LN

j
. Thus, if we know

how the components of ¸ are distributed between the links LN
i
(for instance, one can try all

the possibilities) then a simple test for realizability of a real L
p
-scheme is to check that the

linking numbers are zero.
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Let A
1
, 2, A

r
be the irreducible components of A. Since each A

i
is an M-curve, A

i
CRA

i
consists of two connected components, denote them by A`

i
and A~

i
(of course, the pluses

and minuses may be arbitrarily swapped). Put A$

"ZA$

i
, N$

"NWA$, and ¸
$

"LN$.
Sometimes one can find the distribution of connected components of ¸ between ¸

$ using
the following simple observation.

PROPOSITION 4.3. ¸et l
t
3L

p
be tangent to RA at q and ¸

1
, ¸

2
be the two branches of

¸ which pass near q (see Fig. 10). If ¸
1
L¸` then ¸

2
L¸~. h

The fact that the linking number of ¸` and ¸~ is zero, yields nothing new because it is
equivalent to the Rokhlin’s formula for complex orientations [20, 21] (compare with [8]).
However, dividing N into more than 2 parts, one can obtain additional information (see
Lemma 5.11).

When a link ¸ is presented in the form of a closed braid, the linking number of two
components ¸

i
)¸

j
, iOj is the half-sum of the exponents of the braid group generators

corresponding to the twists involving ¸
i
and ¸

j
. Forgetting the condition iOj, we get

something like ‘‘self-linking number’’ (of course, it is not a link invariant). In the next
subsection we show that it can serve also as a source of restrictions.

4.4. Proof of Theorem 1.5A

We consider in details the case of even degree m"2k. Odd degree can be treated
similarly. Let the notation be as in Section 1.5. We shall say the ovals O

1
, 2 , O

k~1
are big

and all the other ovals are small (the last big oval is empty). Denote by K$ the number of
positive/negative big ovals and by %S

s
the number of injective pairs (O, o) of the signs (S, s)

where O is big and o is small. Choose a point p inside the most inner big oval O
k~1

and let ¸,
N, ¸$, N$ be as in Section 4.3. Let b$3B

1`2K
$ be the braid corresponding to ¸

$.
By Proposition 3.8 we may suppose the big ovals have no vertical tangents (i.e., tangents

belonging to L
p
) and each small oval has only two vertical tangents. Then we have

k(¸$)"1#K$ and ¸
$

"¸
$

0\
¸

$

1\2\¸
$

K
$ where ¸

$

i
(i*1) is a perturbation of a big

oval of the same sign and ¸`
0 \¸~

0
is a perturbation of the union of S (A, p) (see Section 3.3)

and all the small ovals. n
p
D
Li
$ is one-to-one for i"0 and a double covering for i*1.

LEMMA 4.4. e(b`)"2%`
`
!2%`

~
#K`(1#2K`); e(b~)"2%~

~
!2%~

`
#K~(1#2K~).

Proof. If all the small ovals are outside O
1

then all %S
s

are zero and
e(b$)"e(b$

=
)"e(*

1`2K
$)"K$(1#2K$). Hence, the required equality holds. If we move

a small oval through one big oval then both sides are changed by the same quantity
(consider 8 cases: 4 combinations of the signs]2 branches of the big oval). h

Since A is an M-curve, we have (m!1) (m!2) /2!k#2 small ovals. Hence, by
Proposition 3.4 we have e(b)"3k!3 and by (12), k (N)"2. Therefore, k (N$)"1. Each
N$ has only positive ramifications, hence, (12) is applicable. Putting k (N$)"1,
k(¸$)"1#K$, m$

"1#2K$, and e(b$) from the Lemma into (12), we obtain

%`
~
!%`

`
"K`(K`!1), %~

`
!%~

~
"K~(K~!1).

It remains to note that Ks"ks#1, K~s"k~s, %S
s
"nS

s
!kS, %S

~s
"nS

~s
, S3M#,!N

where s is the sign of the empty big oval O
k~1

.
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5. PROHIBITIONS OF AFFINE M-SEXTICS

In this section we prove Theorem 1.1. We consider separately several groups of possible
arrangements but almost all the proofs follow the same scheme:

(i) choose the base point of the pencil (the point p) so that (H
2
) holds;

(ii) write down a set of words such that all the other words coding the possible
L

p
-schemes can be reduced to them using Proposition 3.6;

(iii) select the words which do not contradict the Bézout theorem and the complex
orientations formula.

Then for each word:

(iv) compute the braid b according to Proposition 3.8;
(v) compute e(b) to ensure that Corollary 2.4 is applicable;
(vi) compute det bK O0; if det bK "0 then compute p (bK ) and n (bK );
(vii) if (4) holds then check if the Alexander polynomial is zero.

The only exceptions is the curve B
1
(9, 0) (see Section 5.5) where we use Lemma 2.1. Also,

we apply to the series A
3

the generalization of the complex orientation formulas to prohibit
some real schemes and to reduce the number of words to be checked for the others. The
steps (iv) — (vii) (and partially (iii)) were performed with a computer. In Section 5.8 we show
how sometimes the step (vii) can be replaced by the considering of the double covering of
S3 ramified along the infinite line.

5.1. Common preliminaries

C
6

and C
1

will denote the set of real points of an M-sextic and the infinite line;
RA"C

6
XC

1
will be the curve whose arrangements we study in this section; the non-empty

oval of C
6

will be denoted by O
11

. The pencil L
p

on all the pictures will be the pencil of
vertical lines.

LEMMA 5.1. No inner oval of C
6

can be inside a triangle with vertices on three other inner
ovals.

We say that inner ovals O
1
, O

2
of C

6
are separated by a line l if l does not intersect them

and they lie in different components of RP2C(O
11

Xl ).

LEMMA 5.2. (Korchagin and Shustin [12]). A line through two outer ovals cannot separate
two inner ovals.

LEMMA 5.3. ¸et points p, p
1
, p

2
lie inside 3 different inner ovals of C

6
. ¹hen any two outer

ovals lie in the same connected component of RP2C((pp
1
)X (pp

2
)).

Proof of ¸emmas 5.1—5.3. Otherwise the conic passing through the 4 given ovals and one
more empty oval (resp. through the 5 given ovals in 5.3) meets C

6
in 14 points (see the

elegant proof of [28, Lemma 3.3]). h

The schemes A
1
(1, 8), A

1
(5, 4) are realized and A

1
(9, 0) is prohibited by complex

orientations [12]. Therefore, we shall not consider the series A
1
.
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5.2. The series A2(a1, a2, b) and Bl (a1, a2, b), l"2, 3

Here we consider only the case a
2
O0 because the curves A

2
(1, 0, 9), A

2
(5, 0, 5),

B
2
(1, 0, 9), B

2
(5, 0, 5) exist, A

2
(9, 0, 1) can be prohibited by the complex orientations formula

[12], and B
3
(a, 0, b)"B

2
(0, a, b) . The case B

2
(9, 0, 1) will be considered in Section 5.5. In

the series B
3

we assume that a
2
*a

1
'0 because B

3
(0, a, b)"B

2
(0, a, b) and B

3
(a

1
, a

2
, b)

"B
3
(a

2
, a

1
, b) .

Choose the point p inside the oval O
10

, the furthest from C
1

among the ovals Sa
2
T if we

look from an empty digon (for the series B from the empty digon which has only one
common point with the region containing Sa

2
T).

Using Proposition 3.6, all possible L
p
-schemes can be reduced to the schemes coded by

a word w"[M
3
w
1
]

2
w
2
L

3
]

2
]

3
]

3
]

3
]

3
] in the case A

2
, w"[M

4
w
1
]

2
w

2
]

2
]

2
L

2
]

3
]

3
]

4
] in the case B

2
, and w"[M

4
w
1
]

2
]

2
]

2
w
2
L

2
]

3
]

3
]

4
] in the case B

3
where

w
1
"o

i12
o
i$
, w

2
"o

i$`12
o
i9
, 0)d)9, 2)i

j
)4 and a

1
"d( j'd, i

j
"3),

a
2
"1#d(i

j
"2), b

1
"d(i

j
"4), b

2
"d( j)d, i

j
"3), b"b

1
#b

2
(see Fig. 13). By (10)

we may assume also that either d"0 or i
d
"3. The fact that all i

j
O5 is provided by the

extremal choice of O
10

. Denote the empty ovals by O
1
, 2, O

9
where O

j
matches o

ij
.

LEMMA 5.4. (a) ¹he word w
2

cannot contain ...o
3
...o

2
...o

3
...;

(b) if j(k(l, d(k, i
k
"3, i

l
"2 then O

j
is above C

1
(i.e. either i

j
"4 or j'd and

i
j
"3).

(c) If a
1
'0 then each oval of Sb

1
T is to the right of each oval of Sb

2
T.

(d) ¹he sequence O
1
, ..., O

9
can be divided into 3 or less intervals, each interval containing

either only inner ovals or only outer ones.

Proof. (a) Follows from Lemma 5.1. (b) Suppose that a conic passing through O
k
, O

l
,

p and the point q (see Fig 13) meets O
11

in not more than 4 points (by Bézout theorem this is
the case if it passes through O

j
) . There are only two possibilities for the order of

its intersections with the given objects: O
11

, O
k
, C

1
, O

l
, p, O

11
, O

11
, q, O

11
and O

11
, O

k
,

O
11

, O
11

, p, O
l
, C

1
, q , O

11
. In both cases the piece of the conic to the left of O

k
is above

C
1
. (c) Apply Lemma 5.2. to the line through these ovals, O

10
, and one of Sa

1
T. (d) See

Lemma 5.3. h

It follows from the Fiedler’s orientations alternating rule [6] that if O
j
is an inner oval

then [O
j
: O

11
]"(!1) j (see Section 1.5).

Put e
10
"[O

10
:O

11
], da

1
"+

j;d, ij/3
(!1)j, da

2
"e

10
#+

ij/2
(!1) j, db

1
"+

j*d,ij/3
(!1) j, db

2
"+

ij/4
(!1) j, and da"da

1
#da

2
, db"db

1
#db

2
.

LEMMA 5.5. (a) da#db"e
10
!1; (b) da"1; (c) db

1
!db

2
#2da

1
"e where e"!1

for the series A
2

and e"1 for the series B
2
, B

3
.

Proof. (a) is trivial, (b) is the complex orientations formula (see [20] ) for C
6
, and (c) is

that for a perturbation of C
6
XC

1
(see [28] ) combined with (b). h

COROLLARY 5.6. (Combine Lemmas 5.4(d), 5.5(a) and 5.5(b). e
10
"1.)

Restrictions of Lemmas 5.4—5.6 are satisfied for 296 pairs of sequences [i
1
...i

d
][i

d`1
...i

9
]

in the series A
2

(resp. 272 and 34 in B
2
and B

3
). 227 of them (resp. 196 and 28) correspond to

the 6 (resp. 2 and 3) real schemes realized in [12]. Let b be the braid corresponding to the
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Fig. 13.

reducible 7th degree curve C
6
XC

1
. In all the cases we have e(b)"5, hence, we can apply

Corollary 2.2. The computation shows that det bK "0 only in 27 (resp. 11 and 3) cases. This
prohibits the schemes A

2
(0, 9, 1), A

2
(3, 6, 1), A

2
(5, 4, 1), A

2
(7, 2, 1), A

2
(3, 2, 5), B

2
(2, 3, 5),

B
2
(4, 1, 5), B

3
(1, 8, 1), B

3
(2, 7, 1), B

3
(4, 5, 1), and B

2
(a, 9!a, 1) with aO1, 7. The Alexander

polynomial is zero only for

A
2
(1, 8, 1): [2222223] [23]

[3] [22222223] *
A

2
(1, 4, 5): [2233333] [23]

[33333] [2223] *
B
2
(1, 8, 1): [] [432222222] **

B
2
(1, 4, 5): [] [432224444] **

B
3
(3, 6, 1): [] [222223433] *

A
2
(8, 1, 1): [] [333333433] *

[] [433333333] *
A

2
(4, 1, 5): [] [334444433] *

[] [444443333]
B
2
(0, 5, 5): [443] [422224] *

[443] [442222]
B
3
(1, 4, 5): [223] [444433] *

A
2
(0, 5, 5): [433] [422224] *

[433] [442222]
A

2
(0, 1, 9): [433333333] []

[433] [444444] *
B

2
(0, 1, 9): [443333333] []

[443] [444444] *
B

3
(2, 3, 5): [223] [444433] *

This prohibits A
2
(2, 7, 1), A

2
(4, 5, 1), A

2
(6, 3, 1), A

2
(0, 5, 5), A

2
(2, 3, 5), B

2
(7, 2, 1), and

B
2
(3, 2, 5) . One can check that the constructions [12, 11] realize the cases marked by *. The

sequences marked by ** are realizable by L
p
-flexible curves.

For the schemes, not covered by [12] we needed to compute the determinant in the cases:
[] [222222234], [] [432222222] for B

2
(1, 8, 1), [] [o

2
o7~2k
3

o
4
o2k
3

], [] [o2k
3

o
4
o7~2k
3

o
2
] for

B
2
(7, 2, 1), [o2k

2
o
3
][o4~2k

2
o4
3
] for B

3
(4, 5, 1) and in the following 22 (resp. 6,9,11) cases:

A
2
(2, 3, 5): [223333] [433] [33][2233444] [33][4223344] [][422334444] [][444223344] [][444442233]

[2233] [44433] [][332244444] [33][4422334] [][433224444] [][444332244] [][444443322]
[][223344444] [3333][22334] [33][4442233] [][442233444] [][444422334]
[][224444433] [3333][42233] [][334444422] [][443322444] [][444433224]

A
2
(3, 2, 5): [3][23334444] [333][233344] [33333][2333] [333][442333] [3][44233344] [3][44442333]

B
2
(1, 4, 5): [][222344444] [3333][22234] [][432224444] [][444322244] [][444443222]

[33][2223444] [33][4422234] [][442223444] [][444422234]

B
2
(3, 2, 5): [][233344444] [33][2333444] [33][4423334] [][433324444] [][444333244] [][444443332]

[][234444433] [3333][23334] [][334444432] [][442333444] [][444423334]

Besides the above cases **, det bK "0 for [] [224444433], [] [444442233] (the scheme
A

2
(2, 3, 5)), [] [433333332] (B

2
(7, 2, 1)), and [] [433324444] (B

2
(3, 2, 5)). The Alexander

polynomials are respectively '5
1
'2

2
'2

6
'

10
) (t6#2t4#t3#2t2#1), '5

1
'2

2
'

3
'2

6
'

10
,

'5
1
'2

2
'2

3
'2

6
, and '5

1
'2

2
'

6
where '

k
is the kth cyclotomic polynomial.

5.3. The series A3(a1, a2, b )

Since A
3
(a

1
, 0, b)"A

2
(a

1
, 0, b), we shall assume that a

2
'0. Choose p inside the oval

O
10

, the extremal among Sa
2
T if to look from an empty digon (see Fig. 13, where

a
2
"1#a@

2
#aA

2
, b"b@

1
#bA

1
#b

2
). Put b

1
"b@

1
#bA

1
.

The generating word is w"[ ]
3
]

3
]

3
M

2
w
1
L

2
]

3
]

3
]

3
M

4
w

2
L

3
] where w

1
"

o
i1
...o

id
, w

2
"o

id`1
...o

i9
, 0)d)9, 2)i

j
)4. Like above, we assume that either d"0 or
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i
d
"3 and the extremal choice of O

10
guarantees that all i

j
O5. Denote the empty ovals by

O
1
, ..., O

9
from left to right.

LEMMA 5.7. (a) ¹he word w
1

cannot contain
2

o
32

o
22

o
32

.
(b) If k(l(d, i

k
"3, i

l
"2 then aA

2
"bA

1
"0 and i

j
O2 for all j(k.

(b@) If l(k(d, i
l
"2, i

k
"3 then aA

2
"b

2
"0 and i

j
O2 for all j'k.

(c) If a
1
'0 then each oval of SbA

1
T is to the left of each oval of Sb

2
T.

(d) ¹he same as ¸emma 5.4(d).
(e) One of a

1
, a@

2
, aA

2
equals to zero.

Proof. (a)— (d) The proofs are similar to those of Lemma 5.4. In (b) (resp. (b@)) the conic
through O

k
, O

l
, p , q (resp. q@ ) may meet the objects in the following two cyclic orders: O

11
,

O
k
, C

1
, O

l
, p, O

11
, O

11
, q , O

11
or O

11
, O

k
, O

11
, O

11
, p, O

l
, C

1
, q, O

11
(resp. O

11
, q@, O

11
, O

11
,

p, O
l
, C

1
, O

k
, O

11
or O

11
, q@, C

1
, O

l
, p , O

11
, O

11
, O

k
, O

11
) .

(e) Combine (b) and (b@). h

LEMMA 5.8 (Follows from [6]). a
1
#a@

2
#b@

1
is odd; aA

2
#bA

1
#b

2
is even.

Define e
10

, da, db, da
i
, 2 as in Section 5.2., for instance, da

2
"e

10
#+

ij/2
(!1) j,

da@
2
"+

j)d, ij/2
(!1) j, etc. The complex orientations formulas (c.o.) yield:

LEMMA 5.9. (a) da"1; (b) db
1
!db

2
#2da

2
"!1; (c) db@

1
!db

2
!dbA

1
#2(da@

2
#

da
1
)"!e

10
.

Proof. (a) Follows from c.o. for C
6
; (b) Follows from c.o. for C

6
XC

1
. (c) Follows from

c.o. for C
6
Xl

0
where q3l

0
3L

p
. h

COROLLARY 5.10 (Combine 5.7d and 5.9a). e
10
"1.

Conditions of Lemmas 5.7—5.10 are satisfied for 435 words w. In principle, we could check
(3) for all of them and complete the proof. However, we are going to demonstrate how the
generalized method of complex orientations 4.3 works in this case and to prohibit by this
method 378 words more and, as a consequence, 6 real schemes.

LEMMA 5.11. 2db@
1
#aA

2
#b

2
#bA

1
"2.

Proof. Let us numerate the connected components ¸
1
, 2 , ¸

5
of ¸ (A, p) according to

Fig. 13. Let l
ij

be the linking number of ¸
i
, ¸

j
. Using Proposition 3.8, one can check that

l
12
"2, l

13
"l

14
"l

15
"1, l

23
"1#da

1
#db@

1
, l

24
"daA

2
#(1!a

1
!a@

2
!b@

1
)/2,

l
25
"1#db@

1
!daA

2
, l

34
"!2!da

1
!db

1
, l

35
"dbA

1
l
45
"!db@

1
!(aA

2
#b

2
#bA

1
)/2.

It follows from Proposition 4.3. and Lemma 5.10 that ¸
2
X¸

5
L¸` and ¸

1
X¸

4
L¸~

(‘‘#’’ and ‘‘!’’ may be swapped). One has k (N)"4 by (12), hence only one of these two
links can bound a connected component of N. It must be ¸

1
X¸

4
because otherwise the

component of N bounded by ¸
1

together with its image under the complex conjugation
would be disjoint from the rest of A. Hence, all the linking numbers between ¸

1
X¸

4
, ¸

2
, ¸

3
,

¸
5

are zero, in particular, l
15
#l

45
"0 implies the required equality (the vanishing of the

other linking numbers give nothing new with respect to 5.9) h
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Example 5.12. [i
12

i
d
] [i

d`12
i
9
]"[333] [244333] satisfies 5.3.1 — 5.3.4 but not

5.3.5.

Adding Lemma 5.11 to the other restrictions, we leave only 57 words w non-prohibited,
none of which represents A

3
(a

1
, a

2
, 1) with a

1
NM0, 4, 7N. For all the series we have e(b)"4.

det bK "0 only when [i
12

i
d
] [i

d`12
i
9
] is one of

A
3
(0, 9, 1): [22224] [2222] A

3
(4, 5, 1): [33433] [2222] * A

3
(2, 3, 5): [33444] [3322] *

[22422] [2222] A
3
(7, 2, 1): [3333333] [23] * [44433] [2244] *

[42222] [2222] A
3
(0, 5, 5): [22224] [3344] ** A

3
(4, 1, 5): [33334] [3333] *

A
3
(0, 1, 9): [44444] [3344] * [42222] [3344] ** [43333] [4444] *

Calculating the signature and nullity for the words corresponding to A
3
(0, 9, 1), we see that

p(bK )"!1, n (bK )"2 in all the three cases. This contradicts (3). The cases marked by * are
realized in [12, 11]; the real scheme corresponding to A

3
(0, 5, 5) (marked by **) is realizable

by an L
p
-flexible curve (see Section 7.2 below). The proof of its non-realizability in [23] is

faulty.
The words allowed by Lemmas 5.7—5.10 corresponding to real schemes neither realized

nor prohibited in [12] are [32224] [4333], [32224] [4443] for A
3
(1, 4, 5), [33324] [4333],

[33324] [4443], [4444333] [23] for A
3
(3, 2, 5), and the following 18 words for A

3
(0, 5, 5)

[22224] [3333] [22224] [4334] [42222] [3333] [42222] [4334] [22444] [3322] [44422] [2244]
[22224] [3344] [22224] [4433] [42222] [3344] [42222] [4433] [22444] [4422] [4444222][24]
[22224] [3443] [22224] [4444] [42222] [3443] [42222] [4444] [44422] [2233] [44444] [2222]

5.4. The series A4(a, b1, b2 )

We suppose b
2
'0 because A

4
(a, b, 0)"A

2
(a, 0, b). Choose p inside the oval O

10
, the

most far from line among the ovals SbT
2
. The generating word is w"

[]
4
]

5
M

4
o
j1 2 o

j9
L

4
]

5
]

4
]

4
]

4
], 3)j)5 (see Fig. 13). Like above, i

j
O2 due to the

choice of O
10

. We have a"d(i
j
"3), b

k
"d(i

j
"3#k).

LEMMA 5.13. (a) w cannot contain [2 o
32

o
k2

o
32

] with k'3.
(b) w cannot contain [2 o

52
o
32

o
42

o
52

], nor [2 o
52

o
42

o
32

o
52

].

Proof. (a) See Lemma 5.2. (b) Follows from Bézout theorem for the conic through these
ovals and p. h

Put e
10
"1 if O

10
is oriented with respect to O

11
as it is shown in Fig. 13 and e

10
"!1

otherwise. Let da"+
ij/3

(!1) j, db
1
"+

ij/4
(!1) j, db

2
"e

10
#+

ij/5
(!1) j, db"

db
1
#db

2
. As in Lemma 5.5 we have

LEMMA 5.14. (a) da#db"e
10
!1; (b) da"1; (c) db

1
!db

2
"!3.

160 words w satisfy Leemas 5.13 and 5.14 none of them corresponding to real schemes
with b

1
"0, 1. We have e(b)"5 for all the series. Hence, Corollary 2.4 is applicable.

det bK "0 only when [i
12

i
9
] is one of

A
4
(1, 4, 5): 444355554 ** A

4
(1, 6, 3): 434554444

444553554 A
4
(1, 8, 1): 444443444 *

444555534 A
4
(5, 4, 1): 433333444 *

and the Alexander polynomial is identically equal to zero only in the two cases marked by
* (realized in [12] ) and in the case marked by ** (realized by an L

p
-flexible curve; see 7.2).

The proof [12] of non-realizability of A
4
(1, 4, 5) is faulty.
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The sequences i
12

i
9

allowed by Lemmas 5.7—5.11 corresponding to real schemes
neither realized nor prohibited in [12] are 433333455, 433333554, 455333334, 554433333 for
A

4
(5, 2, 3) and the following 40 sequences for A

4
(1, 6, 3)

434444455 434455444 435445444 444345544 444445534 445445434 454454434 544543444
434444554 434544445 435544444 444354454 444455434 445543444 455344444 544544434
434445445 434544544 444344455 444355444 444544534 445544434 455443444 554344444
434445544 434554444 444344554 444443455 444553444 454444534 455444434 554443444
434454454 435444454 444345445 444443554 444554434 454453444 544445434 554444434

5.5. The rest of the series B

It remains to consider the three schemes B
1
(a, b) and B

2
(9, 0, 1). The schemes B

1
(1, 8)

and B
1
(5, 4) are realized.

B
1
(9, 0): Choose p inside the most right inner oval if to look from the outer one. Then all

possible L
p
-schemes can be reduced to []

3
]

4
]

4
]

3
]

3
]

4
M

3
o8
2
L

3
] using Proposition 3.6.

We have e(b)"6, k (¸)"5, k (N)"3. The Alexander polynomial is (t12#2t11#2t10#
5t9#4t8#8t7#5t6#8t5#4t4#5t3#2t2#2t#1) (t2!t#1) (t!1)4. Thus, the
primitive 6th roots of unity are its simple roots and we can apply Lemma 2.1 and (1).

B
2
(9, 0, 1) is treated the same way as B

2
(0, 9, 1) but the generating word should be

replaced with [M
3
w
1
]

2
w
2
L

3
]

2
]

3
]

4
]

4
]

3
, ] and a

1
, a

2
should be swapped everywhere

in Section 5.2. Only the 5 words [o2k
2

o
3
][o8~2k

2
] are allowed by Lemmas 5.4 — 5.6, for all of

them det bK O0.

5.6. The series C
*
(a

1
, a

2
, b )

Choose the point p on C
1

so that the affine L
p
-scheme of C

6
with C

1
at infinity takes

form w"[M
4
o
i12

o
i10
L

5
] where 2)i

j
)5 and a

1
"d(i

j
"3), a

2
"d(i

j
"5), the

b
1
"d(i

j
"4), b

2
"d(i

j
"2). Denote the empty ovals by O

1
, 2 , O

10
where O

j
matches

o
ij
. The series C

1
(resp. C

2
) corresponds to b

2
"0 (resp. a

2
"0). Define da, da

1
, 2 as

above.

LEMMA 5.15. (a) If i
j
"3 and i

k
"5 then j(k; If i

j
"4 and i

k
"2 then j(k.

(b) [12]. w cannot contain [2o
42

o
32

o
42

o
32

], nor [2 o
32

o
42

o
32

o
42

]
(c) w cannot contain [2 o

32
o
22

o
42

o
32

], nor [2o
32

o
42

o
22

o
32

].

Proof. (a) Otherwise the line passing through O
j
and O

k
meets C

6
in 8 points.

(b) Otherwise the conic passing through them and p meets C
6

in 14 points.
(c) Follows from Lemma 5.2. h

LEMMA 5.16 (Compare with 5.5). (a) da
1
!da

2
"1; (b) 2da

1
#db"1.

The conditions of Lemmas 5.15 and 5.16 are satisfied for 293 sequences i
1
, 2 , i

10
in the

series C
1
and for 272 in C

2
(133 and 20 of them correspond to the schemes realized in [12] ).

Corollory 2.4 is applicable to C
6

because e (b)"4. The determinant is zero only for

C
1
(0, 9, 1): 5455555555 * C

1
(0, 5, 5): 4444555554 C

1
(3, 2, 5): 3344444355 *

5555555455 4455555444 4444433355
C

1
(7, 2, 1): 3333334355 * 5444445555 C

1
(0, 1, 9): 4444444454 *

4333333355 5554444455 4454444444
C

2
(1, 3, 6): 4443222222 ** C

2
(1, 7, 2): 4444434422 * C

2
(5, 3, 2): 4333334422 *
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and 4354454455 (the scheme C
1
(1, 4, 5)) but in the latter case p (bK )"4 which contradicts (3).

The cases marked by * are realized in [12]. The case marked by ** is realizable by an
L

p
-flexible curve, its prohibition in [12] is faulty.
All the sequences of ovals allowed by Lemmas 5.15 and 5.16, which are neither

constructed nor prohibited in [12] are: o
4
o
3
o8
5

for C
1
(1, 8, 1), o2k

3
o
4
o9~2k
3

for C
1
(9, 0, 1),

o4
3
o5
4
o
3
, o2

3
o5
4
o3
3
, o

4
o5
3
o4
4
, o3

4
o5
3
o2
4
, o5

4
o5
3
for C

1
(5, 0, 5), the following 70 sequences for C

1
(1, 4, 5):

3444545455 3454545544 4344445555 4345445554 4354454455 4355445544 4443445555
3444545554 3454554454 4344455455 4345455454 4354454554 4355454454 4443455455
3444555454 3454555444 4344455554 4345544455 4354455445 4355455444 4443455554
3445545454 3455445454 4344544555 4345544554 4354455544 4355544445 4443544555
3454445455 3455544454 4344545545 4345545445 4354544545 4355544544 4443545545
3454445554 3455545444 4344554455 4345545544 4354554445 4355554444 4443554455
3454455454 3544545454 4344554554 4345554454 4354554544 4434545455 4443554554
3454544455 3554445454 4344555445 4345555444 4355444455 4434545554 4443555445
3454544554 3554544454 4344555544 4354444555 4355444554 4434555454 4443555544
3454545445 3554545444 4345445455 4354445545 4355445445 4435545454 4444435555

and o
4
o5
3
o
2
, o3

4
o5
3
o
4
o
2
, o4

4
o2k
3

o
2
o5~2k
3

for C
2
(5, 4, 1).

5.7. The series D(a, b1, b2, b3)

Since the picture is symmetric, we suppose b
1
)b

2
)b

3
. Choose p inside the oval O

10
,

the most far from the line among the ovals Sb
3
T if to look from an empty digon, not

adjacent to the region containing Sb
1
T. The generating word is w"

[]
3
]

3
M

2
w

1
]

3
]

3
w

2
L

2
]

3
]

3
] where w

1
"o

i1 2
o
id
, w

2
"o

id`12
o
i9
, 2)i

j
)4,

b
1
"d( j)d, i

j
"3), b

2
"d( j'd, i

j
"3), b

3
"1#d(i

j
"2), a"d(i

j
"4). Owing to

(10) we may assume that either d"0 or i
d
"3. Define da, db, db

j
as above (db

3
"3

10
#2

where e
10
"1 if the orientation of the upper branches of O

10
and O

11
coincide with the

orientation of the ribbon bounded by them).

LEMMA 5.17. (a) w does not contain 2o
42

o
k2

o
42

, k(4;
(b) w

1
does not contain 2 o

22
o
32

; (c) w
2

does not contain 2 o
32

o
22

.

Proof. (a) See Lemma 5.2. (b,c) Follow from Bézout theorem for the conic through the
two ovals, the two empty digons nearest to them, and the point p. h

LEMMA 5.18. (a) da"1. (b) db
1
#db

2
!db

3
"!3.

Conditions Lemmas 5.17 and 5.18 hold for 25 words. For all of them e(b)"5, det bK O0.

5.8. Double coverings of S 3 branched along C1

Now we show how sometimes the computation of the Alexander polynomial can be
replaced with the computation of usual signature and nullity for a double covering of S3. As
an example, we give here another proof of non-realizability of B

2
(7, 2, 1). We have seen in

Section 5.2 that the only case where the usual signature and nullity do not work is
[M

4
]

2
o
4
o7
3
o
2
]

2
]

2
L

2
]

3
]

3
]

4
]. One has b"p6

2
p6 2
4
p6
3
p
4
p6 7
3
p6
2
p
3
p6
2
p6 2
4
p6 2
3
p6
4
*, e(b)"5 (here

p6
i
"p~1

i
). Let ¸"bK , then k (¸)"4, hence, k (N)"3 by (12). Components of ¸ correspond

to cycles of the image of b in the symmetric group. They are (17) (246) (3) (5). Denote the
corresponding components of ¸ respectively by ¸

1
, 2, ¸

4
and their linking numbers by l

ij
.

One has l
12
"3, l

13
"l

14
"1, l

23
"0, l

24
"!3, l

34
"!1. As in Lemma 5.11, we see that

the boundaries of components of N are LN
1
"¸

1
X¸

4
, LN

2
"¸

2
, LN

3
"¸

3
.
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The line C
1

and its complexification correspond to ¸
3
and N

3
. Thus, the double covering

of B4 branched along N
3

is the ball. Denote by NI , I̧ , NI
i
, I̧

i
the preimages of N, 2 We see

from the linking numbers that

k ( I̧
1
)"k ( I̧

3
)"k ( I̧

4
)"k (NI

1
)"k (NI

3
)"1, k ( I̧

2
)"k(NI

2
)"2.

Hence, k ( I̧ )"5, k (NI )"4. Compute the braid defining I̧ by 2.7 and then compute
p( I̧ )"2, n ( I̧ )"1. This contradicts (1).

6. OTHER REDUCIBLE CURVES OF DEGREE 7

In this section we prove Theorems 1.2A and 1.2B. Everything is similar to Section 5. The
point p in the both cases is chosen according to Figs. 2 and 3.

6.1. The quintic and the conic depicted in Fig. 2

Using Proposition 3.6, each L
p
-scheme can be reduced to the one encoded by a word

w"[]
3
]

3
]

2
]

2
]

3
M

2
o
iÇ
2o

iÎ
]

1
L

2
]

1
]

2
]

3
]

3
] where a

1
"a@

1
#aA

1
, a@

1
"d(i

j
"2),

aA
1
"d(i

j
"5), a

2
"d(i

j
"4), b"d(i

j
"3). Define da

j
, da@

1
, daA

1
, db like in Section 5, for

instance, da@
1
"+

ij/2
(!1) j.

LEMMA 6.1. (a) ¸et j(k. If i
j
"5 then i

k
"5; if i

k
"2 then i

j
"2.

(b) w cannot contain 2 o
j2

o
42

o
32

o
42

( j(4), nor 2 o
42

o
32

o
42

o
32

Proof. (a) Follows from Bézout theorem for the line through these two ovals.
(b) Thin follows from Bézout theorem for the conic through the 4 ovals and p.

LEMMA 6.2. (a) daA
1
"0; (b) da@

1
"da

2
.

Proof. Use the complex orientations formula (a) for C
5
; (b) for C

5
XC

2
. h

These restrictions are satisfied for the following 40 sequences i
12

i
6
:

444444 224455 225555 433444 234443 334455 222343 335555 344333 234333
224444 445555 555555 443344 223344 344355 234355 333344 433334 223333
444455 222222 334444 444334 223443 433455 222233 333443 443333 333355
222244 222255 344443 444433 224433 443355 223355 334433 233343 333333

We have e(b)"4 for all of them and det bK "0 only for o2k
2

o6~2k
5

and o3
2
o
3
o
4
o
3
. But n(bK )"2

in the latter 5 cases, which contradicts (3).

6.2. The quartic and the cubic depicted in Fig. 3

Choose the complex orientations of C
3

and C
4

according to Fig. 3. Then the complex
orientations formula written for C

4
XC

3
implies that all the 3 free ovals of C

4
are negatively

oriented with respect to the oval of C
3
. Hence all the L

p
-schemes can be reduced to those

encoded by the words w1
k
"[M

3
o
4
]12~2k

2
]2k

3
o
3
L

4
] and w2

k
"[M

4
o
3
]12~2k

2
]2k

3
o
4
L

3
]

(k"0, 2 , 3) where wa
k

corresponds to kSaT for k'0 and to 0S0T for k"0. In all the
cases we have e(b)"6. Hence, by (3) and Lemma 2.1, an arrangement kSaT is prohibited if
the Alexander polynomial has a simple root on the unit circle. The Alexander polynomials
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are respectively (t!1)4pSaT
k

(t) where

pS1T

1
"2t14!2t13#5t12!5t11#7t10!9t9#7t8!11t7#

2

pS3T

1
"t14!2t13#4t12!7t11#11t10!15t9#17t8!19t7#

2

pS1T

2
"t20!t19#2t18#t16#2t15!2t14#3t13!5t12#2t11!7t10#

2

pS2T

2
"t20!t19#3t18!2t17#3t16!t14#3t13!7t12#6t11!11t10#

2

pS3T

2
"t20!t19#3t18!2t17#4t16!2t15#3t13!8t12#8t11!13t10#

2

(we do not write other coefficients because Alexander polynomials are symmetric).
The conformal mapping t"(i#u) /(i!u) maps the line Im u"0 onto the circle DtD"1.

Let, for instance, p"p1
1

. Performing this substitution we get p((i#u)/(i!u))"q(u)/(u!i)14
where q (u) is a real (due to the symmetricity of p) polynomial of the form 85u14#2 and
one can compute q (1)"!128. Thus, q has a real root u

0
and it corresponds to a root t

0
,

Dt
0
D"1 of p. Checking that gcd(p, p@)"1 we see that all roots of p are simple.

7. CONSTRUCTION OF Lp-FLEXIBLE CURVES

7.1. The method of construction

The constructions of L
p
-flexible curves are based on the following simple observation

whose proof we omit.

PROPOSITION 7.1. A real L
p
-scheme is realizable by an L

p
-flexible curve if and only if one

of the braids obtained by the construction described in Section 3.4 (see also Remark in the end
of Section 3.4) is quasipositive.

Evidently, the quasipositivity of a braid is equivalent to the existence of transformations
w
1
Pw

2
P2Pp

i
P1 of cyclic words in p

1
, 2 , p

m
, each transformation being either an

equivalence of closed braids, or removing p
i
, or inserting p~1

i
. So, to find the flexible curves,

we used the following heuristic method. In each step, using equvalencies of closed braids, we
tried to minimize the length of the word (n in (4)) and to put it ‘‘to the most elegant form’’.
Then we tried to remove/insert some generators, testing each time if the Murasugi—Tristram
inequality still holds.

We leave it to the reader to check for identities in the braid groups used below. The word
problem in B

m
is effectively decidable (see, for instance, [2]). Also, one can use for this

purpose the program GAP supplied with the package Chevie [14].
In this section we abbreviate the notation of braids denoting p

1
, p

2
, 2 by 1, 2, 2 and

p~1
1

, p~1
2

, 2 by 1M , 2M , 2 . The conjugate w~1bw is denoted by bw, for example, 12 means
p
1
p~1
2

p
1
p
2
p~1
1

. Attention: 12 means p~1
2

p
1
p
2

but not p
1
p
1
!

7.2. Constructions of flexible affine M-sextics

Now we realize by L
p
-flexible curves the isotopy types of affine M-sextics marked by (f )

in Fig. 1.
The isotopy types A

4
(1, 4, 5) and C

2
(1, 3, 6) can be described respectively by

[]
4
]

5
M

4
o3
4
o
3
o4
5
o
4
L

4
]

5
]

4
]

4
]

4
] and []

4
]

5
M

4
o3
4
o
3
o5
5
L

5
]

4
]

5
]

5
]

4
]
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(in both the cases p is chosen inside one of the ovals b
2

, like in Section 5.4). These two
L

p
-schemes define by Proposition 3.8 the same quasipositive braid:

(65451 3 ) 456)41 41 3444454 ) (321 4 ) 123)4454 ) 65

The L
p
-scheme []

4
]

3
]

3
M

2
o4
2
o
4
L

3
]

2
]

3
]

4
M

3
o2
3
o2
4
L

4
] of A

3
(0, 5, 5) gives

(561 32432 ) 6561 43 ) 1)2334 ) 56431

The curves B
2
(1, 8, 1) and B

2
(1, 4, 5) can be represented respectively (l"1, 2) by

[]
3
]

4
]

4
]

3
]

2
M

3
o4
3
e(l)
8

]
2
o
3
L

3
] where e(1)

8
"[o3

3
L

3
M

4
o
3
], e(2)

8
"[o

4
L

3
M

4
o3
4
].

They define the same braid

(54 ) 65)4432433 ) 123 ) 456

Remarks 7.2. A
3
(0, 5, 5) , B

2
(1, 8, 1) are realizable by real algebraic curves (see Theorem

1.1).
2. The L

p
-flexible realizability of the above L

p
-schemes B

2
is stronger than the realiza-

bility of those obtained by omitting L
3
M

4
from e(l)

8
(the reduction works only in one

direction). The words e(l)
8

can be obtained as different smoothings of the singularity E
8
.

Thus, it would be very natural if both the curves are obtained by smoothing of the same
curve with E

8
.

7.3. Curves from Theorem 1.2B

Algorithm of Proposition 3.8 applied to wSaT
k

(see Section 6.2) yields:

0S0T wS1T

0
P324341 ) (451 3423 ) 561 43 ) 1)61 233333333343 ) (54 ) 65)444444

2S1T wS1T

2
P3231 43 ) (453423 ) 65443423 ) 12)3333343 ) (54 ) 65)44

8. OTHER APPLICATIONS

8.1. A singularity without M-perturbations (See Section 1.4).

Choose the center of projection inside the shadowed oval (Fig. 5; right). Using Bézout
theorem and the reductions of Proposition 3.6, we reduce the problem to the quasipositivity
of the braids

b
i
"p

1
) p

6
p
5
p
4
p
3
p
2
p
1
)¹

i
) q

1,2
p~1
2

p~1
1

p~1
3

)A
hi
<
j/1

p~1
2

pej
3
p~ej
1 B )p3

p
1
)

) p
2
)p

1
p
2
p
3
p
4
p
5
p
6
) p

2
p
1
p
3
p
2
)p~1

5
3 B

7
, i"1, 2, 3

where h
1
"h

2
"4, h

3
"2, ¹

1
"q

2,3
p~1
3

q
3,4

p~1
4

q
4,1

p~5
1

, ¹
2
"q

2,4
p~1
4

q
4,3

p~1
3

q
3,1

p~5
1

,
¹

3
"q

2,4
p~5
4

q
4,1

p~4
1

, and q
i,k

are defined by (9).
We have e(b

i
)"m!2, hence, by Corollary 2.2, it suffices to show that det bK

i
O0.

Applying Corollary 2.11 we obtain (up to a non-zero constant factor)

det bK
1
"!228#28e

1
#64e

2
#100e

3
#136e

4
!9e2

1
!32e2

2
!41e2

3
!36e2

4

!16e
1
e
2
!14e

1
e
3
!12e

1
e
4
!48e

2
e
3
!32e

2
e
4
!52e

3
e
4
;

det bK
2
"!1236!120e

1
#36e

2
#192e

3
#348e

4
!85e2

1
!324e2

2
!381e2

3
!256e2

4

!120e
1
e
2
!70e

1
e
3
!20e

1
e
4
!416e

2
e
3
!184e

2
e
4
!348e

3
e
4
;

det bK
3
"!180#240e

1
!60e

2
#109e2

1
#256e2

2
#76e

1
e
2
.
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Each det bK
i
, i"1, 2, is a quadratic function of e

j
whose Hessian is negatively definite and

whose value at the minimum is also negative. Hence, det bK
i
(0 for i"1, 2. Easy to check

that det bK
3
O0 for any integer (e

1
, e

2
).

8.2. On the real scheme S1\1S1T\1S18TT of degree 8

Choose the point p inside the nest 1S1T. It follows from the complex orientations
formula that the complex scheme must be S1\1S1

`
T\1S10

`\8
~
TT and a line through

1S1T and an empty outer oval must separate the inner ovals of the nest 1S18T into two
chains, an odd number of ovals in each. Therefore, by Proposition 3.6, the admissible
L

p
-schemes are

[M
4
M

2
L

2
o2k`1
4

o
5
o16~2k
4

L
4
], 0)k)4.

Hence, by Section 3.4, ¸"bK where b is one of

b
k,e

"p~1
4

p~1
5

p~1
3

p~1
4

p1~e
5

p1`e
3

p~2k~1
4

q
4,5

p~1
5

q
5,4

p2k~16
4

*
8
, e (b)"8.

The complex orientations imply that e is even, hence, k(¸)"6 and by, k(N)"3. Like in
Section 5.8, denote respectively by ¸

1
, 2, ¸

6
the connected components of ¸ correspond-

ing to the cycles (18) (26) (3) (4) (5) (6) of the permutation. The linking numbers l
ij
:"¸

i
)¸

j
are: l

12
"2, !l

35
"l

1, i
"l

2, i
"1 (i'2), l

34
"2!e/2, l

45
"!9, l

56
"1#e/2,

l
36
"l

46
"0. Define N$, ¸$ as in Section 4.3. It follows from Proposition 4.3 and the

complex orientations formula that ¸
3
X¸

5
L ¸~, ¸

4
X¸

6
L¸` and ¸

1
, ¸

2
have opposite

signs. Suppose ¸
1
L¸~, ¸

2
L¸` (the other case is similar). Then k (¸`)"k (¸~)"3.

Since k (N)"3, we have N"N$

\NY
1 \NY

2
where k(LNY

i
)"i. Let LNY

1
"¸

j
. Then j'2

because otherwise NY
1

Xconj(NY
1
) would be disconnected from the rest of the curve.

j"3: 0"LN~
1
) LN`"¸

3
) (¸

2
X¸

4
X¸

6
)"6!e. Hence, e"6.

j"5: 0"LN~
1
) LN`"¸

5
) (¸

2
X¸

4
X¸

6
)"!14#e. Hence, e"14.

j"4: 0"LN`
1
) LN`

2
"¸

4
) (¸

2
X¸

6
)"2. Contradiction.

j"6: 0"LN`
1
) LN`

2
"¸

6
) (¸

2
X¸

4
)"2. Contradiction.

Computing pf (bK k,e)"3, nf(bK k,e)"1 for k"1, 2, e"6, 14, f"exp(5ni/4), we see that the
realizability of these 4 braid contradicts (3). Thus, there remains only 6 braids b

k,e
,

k"0, 3, 4, e"6, 14. At least one of them, namely b
0,6

is quasipositive.s Thus, the corres-
ponding real L

p
-scheme is realizable by an L

p
-flexible curve. Moreover, analyzing the

process of obtaining the quasipositive representation (see Section 7.1) one can see that this
curve can be degenerated into the singular L

p
-flexible curve shown in Fig. 14(left) whose

braid can be written (in the notation of Section 7.1) as

3231 31 31 31 31 31 31 54534 ) (6543 ) 76 ) 2 ) 1)71 543234543 ) 67.

Fig. 14.

sWe did not study the question of quasipositivity of the other 5 braids.
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Thus, there is no topological obstruction for the existence of a curve of degree 8 shown
in Fig. 14(right) where the singular point has 2 branches of types A

8
and A

20
. Maybe, some

of the remaining 3 ovals might be further degenerated to nodes (one can show that these
nodes must be isolated points). The capacity of computers available to me was not enough
to construct such a singular curve by a direct resolving of simultaneous equations for the
coefficients as it was done in [15].

Acknowledgements—Iam grateful to V.M. Kharlamov and O.Ya.Viro who noted that the methods used in some of
my papers could be applied to the topology of real algebraic curves. I thank the universities of Rennes-1 and
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