Note

On variations of P_{4}-sparse graphs

Andreas Brandstädt*, Raffaele Mosca
Fachbereich Informatik, Universität Rostock, Albert-Einstein-Str. 21, D-18051 Rostock, Germany

Received 6 November 2001; received in revised form 22 May 2002; accepted 30 October 2002

Abstract

Hoàng defined the P_{4}-sparse graphs as the graphs where every set of five vertices induces at most one P_{4}. These graphs attracted considerable attention in connection with the P_{4}-structure of graphs and the fact that P_{4}-sparse graphs have bounded clique-width. Fouquet and Giakoumakis generalized this class to the nicely structured semi- P_{4}-sparse graphs being the (P_{5}, co- P_{5}, co-chair)-free graphs. We give a complete classification with respect to clique-width of all superclasses of P_{4}-sparse graphs defined by forbidden P_{4} extensions by one vertex which are not P_{4}-sparse, i.e. the P_{5}, chair, P, C_{5} as well as their complements. It turns out that there are exactly two other inclusion-maximal classes defined by three or four forbidden P_{4} extensions namely the (P_{5}, P, co-chair)-free graphs and the (P, co- P, chair, co-chair)-free graphs which also deserve the name semi- P_{4}-sparse.

© 2003 Elsevier B.V. All rights reserved.
Keywords: P_{4}-sparse graphs; Prime graphs; Clique-width; Linear time algorithms; Monadic second-order logic

1. Introduction

In [19] (see also [20]), Hoàng introduced the P_{4}-sparse graphs as the graphs where every set of five vertices contains at most one induced P_{4} and characterize them; prime P_{4}-sparse graphs are spiders. P_{4}-sparse graphs and variants were motivated by applications in areas such as scheduling, clustering and computational semantics; they attracted considerable attention in connection with the P_{4}-structure of graphs and the fact that P_{4}-sparse graphs, as a natural generalization of cographs, have nice tree structure and bounded clique-width implying efficient algorithms for some problems

[^0]

Fig. 1. All one-vertex extensions of a P_{4}.
(see e.g. [1,10,16,17,23,24]; in [22], linear time recognition of P_{4}-sparse graphs is given).

Obviously, the P_{4}-sparse graphs are exactly the graphs containing no induced P_{5}, co- P_{5}, chair, co-chair, P, co- P, C_{5} (see Fig. 1 for the definition of these subgraphs). In [16], Fouquet and Giakoumakis generalized P_{4}-sparse graphs to the nicely structured semi- P_{4}-sparse graphs being the (P_{5}, co- P_{5}, co-chair)-free graphs.

Recently, the notion of clique-width of graphs attracted much attention due to the fact that every algorithmic graph problem expressible in Monadic second-order logic quantifying only over vertex sets (but not over edge sets) can be solved in linear time on a graph class of bounded clique-width (assuming that a k-expression defining the input graph is given or can be determined in linear time).

The aim of this note is to give a complete classification of all graph classes defined by a forbidden subset of $\left\{P_{5}\right.$, co- P_{5}, chair,co-chair, P, co- $\left.P, C_{5}\right\}$ with respect to their clique-width, and for the classes of bounded clique-width, a complete structure description is given.

1.1. Basic notions

Throughout this note, let $G=(V, E)$ be a finite undirected graph without self-loops and multiple edges. Let $\bar{G}=(V, \bar{E})$ with $x y \in \bar{E}$ if and only if $x y \notin E$ for $x, y \in V$, $x \neq y$, denote the complement graph of G (we denote the complement graph of G also by co- G).

The edges between two disjoint vertex sets X, Y form a join (co-join) if for all pairs $x \in X, y \in Y, x y \in E(x y \notin E)$ holds. Let $A(1) B(A \subseteq B)$ denote the corresponding join (co-join) operation between A and B.

A vertex $z \in V$ distinguishes vertices $x, y \in V$ if $z x \in E$ and $z y \notin E$. A vertex set $M \subseteq V$ is a module if no vertex from $V \backslash M$ distinguishes two vertices from M, i.e. every vertex $v \in V \backslash M$ is either adjacent to all or to none of the vertices of M. A module is trivial if it is either the empty set, a one vertex set or the entire vertex
set V. Nontrivial modules are called homogeneous sets. A graph is prime if it contains only trivial modules.

Let $N_{v}:=\{u: u \in V, u v \in E\}$ denote the neighborhood of vertex v. For $U \subseteq V$ let $G(U)$ denote the subgraph of G induced by U. Throughout this note, all subgraphs are understood to be induced. If H is a subgraph of G then a vertex v not in H is called a k-vertex with respect to H if v has exactly k neighbors in H. A vertex set $U \subseteq V$ is stable in G if the vertices in U are pairwise nonadjacent. A vertex set $U \subseteq V$ is a clique in G if U is a stable set in \bar{G}. Let $K_{n}, n \geqslant 1$, denote the clique of n vertices.

For $k \geqslant 1$, let P_{k} denote the induced path with k vertices and $k-1$ edges, and for $k \geqslant 3$, let C_{k} denote the induced cycle with k vertices and k edges. A hole is a $C_{k}, k \geqslant 5$. An antihole is the complement of a hole. Note that the P_{4} is the smallest nontrivial prime graph and the complement of a P_{4} is a P_{4} itself. A claw is the graph consisting of four vertices a, b, c, d such that a, b, c are pairwise nonadjacent and d is adjacent to a, b and c. A $2 K_{2}$ is the complement graph of C_{4}.

Let \mathscr{F} denote a set of graphs. A graph G is \mathscr{F}-free if none of its induced subgraphs is in \mathscr{F}.

1.2. Cographs and clique-width

For a P_{4}-free graph G (also called co-graph), either G or its complement is disconnected, and the co-tree of G expresses how the graph can be recursively generated from single vertices by repeatedly applying join and co-join operations. See [4,6-8] for more information on P_{4}-free graphs.

In [9], the join and co-join operations were generalized to the following operations in labeled graphs:
(i) create single vertices with integer label i,
(ii) disjoint union (i.e. co-join) of two graphs (with disjoint vertex set),
(iii) join between all vertices with label i and all vertices with label j for $i \neq j$, and
(iv) relabel vertices of label i by label j.

In [9], the clique-width $\operatorname{cwd}(G)$ of a graph G is defined as the minimum number of labels which are necessary to generate a given graph by using operations (i)-(iv). Obviously, the clique-width of cographs is at most two.

A k-expression for a graph G of clique-width k describes the recursive generation of G by repeatedly applying these operations using only a set at most k different labels.

Proposition 1 (Courcelle et al. and Courcelle and Olariu [10,11]). The clique-width of a graph is the maximum of the clique-width of its prime subgraphs, and the cliquewidth of the complement graph \bar{G} of G is at most twice the clique-width of G.

Recently, the concept of clique-width of a graph attracted much attention since it gives a unified approach to the efficient solution of many algorithmic graph problems on graph classes of bounded clique-width via the expressibility of the problems in terms of logical expressions; in [10], it is shown that every algorithmic problem
expressible in a certain kind of Monadic second-order logic called $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ in [10] is linear-time solvable on any graph class with bounded clique-width for which a k-expression can be constructed in linear time.

Hereby, in [10] it is mentioned that, roughly speaking, $\operatorname{MSOL}\left(\tau_{1}\right)$ is Monadic secondorder logic with quantification over subsets of vertices but not of edges; $\operatorname{MSOL}\left(\tau_{1, L}\right)$ is the extension of $\operatorname{MSOL}\left(\tau_{1}\right)$ with the addition of labels added to the vertices. LinEMSOL $\left(\tau_{1, L}\right)$ is the extension of $\operatorname{MSOL}\left(\tau_{1, L}\right)$ which allows one to search for sets of vertices which are optimal with respect to some linear evaluation functions. The problems vertex cover, maximum weight stable set, maximum weight clique, domination, Steiner tree and some others are examples of $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ problems.

Theorem 1 (Courcelle et al. [10]). Let \mathscr{C} be a class of graphs of clique-width at most k such that there is an $\mathcal{O}(f(|E|,|V|))$ algorithm, which for each graph G in \mathscr{C}, constructs a k-expression defining it. Then for every $\operatorname{LinEMSOL}\left(\tau_{1, L}\right)$ problem on \mathscr{C}, there is an algorithm solving this problem in time $\mathcal{O}(f(|E|,|V|))$.

1.3. Further tools and notions

A graph is a split graph if its vertex set can be partitioned into a clique and a stable set.

Theorem 2 (Foeldes and Hammer [14]). G is a split graph if and only if G is $\left(2 K_{2}\right.$, C_{4}, C_{5})-free.

A graph G is a

- thin spider if G is partitionable into a clique C and a stable set S with $|C|=|S|$ or $|C|=|S|+1$ such that the edges between C and S are matching and at most one vertex in C is not covered by the matching (an unmatched vertex is called the head of the spider);
- thick spider if it is the complement of a thin spider (spiders were called turtles in [20]);
- matched co-bipartite graph if G is partitionable into two cliques C_{1}, C_{2} with $\left|C_{1}\right|=$ $\left|C_{2}\right|$ or $\left|C_{1}\right|=\left|C_{2}\right|+1$ such that the edges between C_{1} and C_{2} are a matching and at most one vertex in C_{1} and C_{2} is not covered by the matching;
- co-matched bipartite graph if it is the complement of a matched co-bipartite graph;
- bipartite chain graph if it is a bipartite graph $B=(X, Y, E)$ and for all vertices from $X(Y)$, their neighborhoods in $Y(X)$ are linearly ordered (bipartite chain graphs appear in [27]; in [18] they are called difference graphs);
- co-bipartite chain graph if it is the complement of a bipartite chain graph.

An important result for P_{4}-sparse graphs is the following theorem shown in [19]; it appears also in [23].

Theorem 3. Prime P_{4}-sparse graphs are spiders.

Obviously, the clique-width of graphs having at most k vertices is at most k. Moreover, it is straightforward to see that spiders, matched co-bipartite graphs, co-matched bipartite graphs, bipartite chain graphs and their complements, induced paths and cycles of arbitrary length as well as their complements have clique-width at most 4. Due to Theorem 3 and Proposition 1, P_{4}-sparse graphs have clique-width at most 4 since spiders have clique-width at most 4 .

Now we collect some further tools. The domino is the graph consisting of six vertices a, b, c, d, e, f such that a, b, c, d, e induce a P_{5} with edges $a b, b c, c d, d e$ and f is adjacent exactly to a, c and e. The graph A is the graph consisting of six vertices a, b, c, d, e, f such that a, b, c, d induce a P_{4} with edges $a b, b c, c d, e$ has no edge to a, b, c, d, and f is adjacent exactly to a, c and e.

Lemma 1 (Hoàng and Reed [21]). If a prime graph contains an induced $C_{4}\left(2 K_{2}\right)$ then it contains an induced co- P_{5} or A or domino (P_{5} or co-A or co-domino).

Lemma 2 (Brandstädt and Mosca [5]). If G is a prime chair-free split graph then G is a spider.

Proof. A chair-free split graph which is not P_{4}-sparse must contain a co-chair since the $P_{5}, \overline{P_{5}}, C_{5}, P, \bar{P}$ are impossible in split graphs. It is easy to see, however, that a prime split graph containing a co-chair must contain a chair as well (see [15]). Thus, prime chair-free split graphs are P_{4}-sparse and thus, according to Theorem 3, they are spiders.

Lemma 3 (Brandstädt et al. [3]). If G is a prime chair-free bipartite graph, then G is a co-matched bipartite graph or an induced path or an induced cycle.

In order to make this paper self-contained, we give a proof of Lemma 3 (which is different from that one in [3]).

Proof of Lemma 3. Let $G=(X \cup Y, E)$ be a prime chair-free bipartite graph. By primality, G is connected. It is well-known that if G contains no P_{5} then the neighborhoods of X-vertices in Y (and vice versa) are linearly ordered; G is a bipartite chain graph. By primality of G, this linear order is strict. Now, since G is chair-free, it is obvious that X (Y, resp.) contains at most two vertices, i.e. G is a P_{4}.

Now assume that G contains a P_{5}. Let $P=\left(v_{1}, \ldots, v_{k}\right), k \geqslant 5$, be a longest induced path in G, and assume that G is neither an induced path nor an induced cycle. Thus, there is a vertex u not in P being adjacent to an internal vertex $v_{i} \in X, 1<i<k$, of P. Since G is chair-free, such a vertex u is then adjacent to all P-vertices of the other color class. Now, if $k \geqslant 6$ and $v_{1} \in X$ then $v_{1}, u, v_{5}, v_{4}, v_{6}$ is a chair if $u \in Y$ and $v_{6}, u, v_{2}, v_{1}, v_{3}$ is a chair if $u \in X$, and similarly for $v_{1} \in Y$. This means that G must be P_{6}-free.

It is straightforward to see that any $P_{5}, P=\left(v_{1}, \ldots, v_{5}\right)$, dominates G since G is chairand P_{6}-free. Let $P=\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}\right)$ be a P_{5} in G, and let $R_{X}:=X \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ and $R_{Y}:=Y \backslash\left\{y_{1}, y_{2}\right\}$. Since G is chair-free, every vertex from R_{X} is adjacent to y_{1} and
y_{2}, and every vertex from R_{Y} is adjacent to x_{1} and x_{3} (and possibly to x_{2}). If there are nonedges $x y, x^{\prime} y$ for two vertices $x, x^{\prime} \in R_{X}$ and a vertex $y \in R_{Y}$, then $y x_{1} y_{1} x x^{\prime}$ is a chair in G-contradiction. If there are nonedges $x_{2} y, x y$ for a vertex $x \in R_{X}$ and a vertex $y \in R_{Y}$, then $y x_{1} y_{1} x_{2} x$ is a chair in G-contradiction. If there are nonedges $x y, x y^{\prime}$ for a vertex $x \in R_{X}$ and two vertices $y, y^{\prime} \in R_{Y}$, then $x y_{1} x_{1} y y^{\prime}$ is a chair in G-contradiction. If there are nonedges $x_{2} y, x_{2} y^{\prime}$ for two vertices $y, y^{\prime} \in R_{Y}$, then $x_{2} y_{1} x_{1} y y^{\prime}$ is a chair in G-contradiction. Thus G is co-matched bipartite.

2. Two new \boldsymbol{P}_{4}-sparse graph extensions of bounded clique-width

The (P_{5},co-chair,co- P_{5})-free graphs called semi- P_{4}-sparse graphs in [15] are a nice generalization of the P_{4}-sparse graphs:

Theorem 4 (Fouquet and Giakoumakis [15]). If G is a prime (P_{5}, co- P_{5},co-chair)- free graph then G is either a bipartite chain graph or a spider or C_{5}.

Theorem 4 has a slightly simpler proof in [5].
Theorem 5. If G is a prime (chair,co-P,house)-free graph then G fulfills one of the following conditions:
(i) G is an induced path $P_{k}, k \geqslant 4$, or an induced cycle $C_{k}, k \geqslant 5$;
(ii) G is a co-matched bipartite graph;
(iii) G is a spider.

Proof. Let G be a prime (chair,co- P, house)-free graph.
Assume first that G contains a $C_{5} C$. This cycle has

- no 1-vertex since G is chair-free;
- no 2-vertex since G is co- P - and chair-free;
- no 3-vertex since G is co- P - and house-free;
- no 4-vertex since G is house-free.

If C has 5 - or 0 -vertices then C would be a homogeneous set in G. Thus, in the case that G contains a C_{5}, G itself is a C_{5}.

Assume now that G is C_{5}-free but contains a $C_{6} C$ with vertices $1,2, \ldots, 6$. This cycle has

- no 1 -vertex since G is chair-free;
- no 2 -vertex since G is co- P - and chair-free;
- no 4 -vertex since G is co- P - and house-free;
- no 5 -vertex since G is house-free.

The only possible 3 -vertices are of two types: adjacent to $1,3,5$ or adjacent to $2,4,6$. Let M_{135} be the set of 3-vertices adjacent to 1,3,5 and M_{246} be the set of 3-vertices
adjacent to $2,4,6$. Moreover, let U denote the set of 6 -vertices and let N denote the set of 0 -vertices.

Claim 1. $M_{135}(1) U$ and $M_{246}(1) U$.
Without loss of generality, let $x \in M_{246}$ and $y \in U$. Then, since $x 4 y 61$ is no house, $x y \in E$ holds.

Claim 2. $M_{135}(1) N$ and $M_{246}(0) N$.
Without loss of generality, let $x \in M_{246}$ and $y \in N$. Then, since $2 y x 45$ is no chair, $x y \notin E$ holds.

Thus, if there are 6 - or 0 -vertices in $G, C \cup M_{135} \cup M_{246}$ would be a homogeneous set, i.e. $U=N=\emptyset$ holds.

Claim 3. M_{135} and M_{246} are stable sets.
Assume not; without loss of generality, let $x, x^{\prime} \in M_{246}$ with $x x^{\prime} \in E$. Let A denote the connected component of M_{246} containing x and x^{\prime}. Then there is an edge $y y^{\prime} \in A$ and a vertex $z \notin A$ distinguishing y, y^{\prime} (i.e. $z \in M_{135}$); let $y z \in E$ and $y^{\prime} z \notin E$ but now $2 y^{\prime} y z 5$ is a co- P-contradiction.
Now, due to Lemma 3, G is a co-matched bipartite graph (or induced C_{6} which is itself a co-matched bipartite graph).
Assume now that G is $\left(C_{5}, C_{6}\right)$-free but contains a $C_{k} C, k \geqslant 7$, with vertices $1,2, \ldots$, $7, \ldots$. We are going to show that G itself is the cycle C. Note that C has

- no 1-vertex since G is chair-free;
- no 2 -vertex since G is co- P - and chair-free.

Assume first that a k-vertex $x \notin C, k \geqslant 3$, has two consecutive neighbors $i, i+1$ on C. Then, since $i, x, i+1, i+2, i+3$ is no co- P and no house, x must be adjacent to $i+2$. The same argument holds for $i+1, x, i, i-1, i-2$ implying that x must be adjacent to $i-1$. Applying this argument repeatedly shows that x is universal for C.

Assume now that a k-vertex $x \notin C, k \geqslant 3$, has no consecutive neighbors on C. Then G contains a chair-contradiction.

Thus, C has only 0 -vertices and vertices universal for C but then C is a homogeneous set. Thus, G itself is the cycle C.

From now on, let G be a prime (hole,chair,co- P, house)-free graph, and assume that G contains a $P_{k}, k \geqslant 6$.

Claim 4. G itself is the $P_{k}, k \geqslant 6$.
Let Q with vertices $1,2, \ldots, k, k \geqslant 6$, be a longest induced path in G. Q has

- no 1-vertex since G is chair-free and Q is longest.

As before, assume first that a k-vertex $x \notin C, k \geqslant 3$, has two consecutive neighbors $i, i+1$ on Q. Then, since $x, i, i+1, i+2, i+3$ is no co- P and no house, x must be adjacent to $i+2$ and so on. The same argument holds for $x, i, i-1, i-2, i-3$. Thus, x must be universal for Q.

Now assume that x has only nonconsecutive neighbors on Q. Then, since G is hole-free, x is adjacent to every other vertex of Q, and thus G contains a chaircontradiction.

Since G is prime, universal vertices for Q cannot exist which shows Claim 4.
From now on, let G be a prime (hole, P_{6}, chair,co- P, house)-free graph, and assume that G contains P_{5}.

Claim 5. Either G itself is $a P_{5}$ or G is a domino.
Let Q with vertices $1,2, \ldots, 5$ be an induced P_{5} in $G . Q$ has

- no 1-vertex since G is chair- and P_{6}-free.

Since G is (hole,chair,co- P)-free, the only 2-vertices have neighbor 2 and 4 on Q. In order to show that, in fact, Q cannot have a 2 -vertex, we show the next claim.

Claim 6. $A:=N(2) \cap N(4) \cap \bar{N}(1) \cap \bar{N}(5)$ is a module in G.
Assume not; let $x, y \in A$ and $z \notin A$ such that $x z \in E$ and $y z \notin E$.
Case 1: $x y \in E$. Since $12 x z 4$ is no chair and no co- $P, z 1 \in E$ or $z 2 \in E$, and since $54 x z 2$ is no chair and no co- $P, z 5 \in E$ or $z 4 \in E$ holds.

Since $1 z x 2 y$ is no house, $z 1 \in E$ implies $z 2 \in E$, and since $z x 45 y$ is no house, $z 5 \in E$ implies $z 4 \in E$. Thus, z is adjacent to 2 and 4 . Since $z \notin A, z$ is adjacent to 1 or 5 ; say $z 1 \in E$, but then $12 z 4 y$ is a house-contradiction.

Case 2: $x y \notin E$. Since G is house-free, z is not adjacent to exactly one of the vertices 2 and 4 . If $z 2 \notin E$ and $z 4 \notin E$ then, since G is chair-free, z must be adjacent to 1 and 5 but then $1 z 54 y 2$ is a C_{6} in G-contradiction. If $z 2 \in E$ and $z 4 \in E$ then, since $z \notin A, z$ must be adjacent to 1 or 5 ; say $z 1 \in E$, but then $12 z 4 y$ is a house in G-a contradiction which shows Claim 6.

Thus, Q has no 2-vertex.
The only possible 3 -vertices of Q have neighbors 1,3 and 5 or 2,3 and 4 on Q. The second type is excluded by Claim 6. Let $Q_{135}=N(1) \cap N(3) \cap N(5) \cap \bar{N}(2) \cap \bar{N}(4)$. Again, we are going to show that Q_{135} is a module.

Since G is co- P - and house-free, Q has no 4 -vertex. Let U denote the set of 5 -vertices of Q. The 0 -vertices are nonadjacent to Q_{135} since G is chair-free.
$Q_{135}(1) U$ since for $x \in Q_{135}$ and $y \in U, 1 x 3 y 4$ is no house and thus, $x y \in E$. Thus, since Q is no homogeneous set, $U=\emptyset$ and Q_{135}, as a module, has at most one vertex; thus Claim 5 implies: if $Q_{135}=\emptyset$ then G is a P_{5}, and if $Q_{135} \neq \emptyset$ then G is a domino (which is co-matched bipartite).

Finally, let G be a prime (P_{5}, C_{5}, chair,co- P, house)-free graph. Then, due to Lemma 1, G is C_{4}-free since A contains chair and domino contains P_{5}. Moreover, G is $2 K_{2}$-free
since co- A contains co- P and co-domino contains house. Thus, by Theorem 2, G is a split graph. Then, by Lemma $2, G$ is a spider.

Remark. In [2, Theorem 2.1], Bertolazzi et al. claim that any prime graph is either bipartite or claw-free or else contains an induced subgraph from a certain family F described in [2]. One can easily verify that if G is prime (chair,co- P,house)-free then G is F-free and thus, according to [2], G should be bipartite or claw-free but a thick spider (being prime) is not bipartite and contains a claw if it has at least 8 -vertices. On the other hand, thick spiders are obviously (chair,co- P, house)-free. This shows that Theorem 2.1 of [2] is incorrect.

Theorem 6. If G is a prime (chair,co-chair, P, co- P)-free graph then one of the following conditions holds:
(i) G or \bar{G} is an induced path $P_{k}, k \geqslant 4$, or an induced cycle $C_{k}, k \geqslant 5$;
(ii) G or \bar{G} is a spider;
(iii) G has at most 9 vertices.

Proof. The proof of Theorem 6 is very similar to the proof of Theorem 5. Let G be a prime (chair,co-chair, P, co- P)-free graph. It is easy to show that if G contains a C_{5} then G itself is a C_{5}, if G contains a C_{6} then G has at most 9 vertices, and if G contains a $C_{k}, k \geqslant 7$, then G itself is a C_{k}. Since the graph class is self-complementary, the same holds for complements of such cycles. From now on, assume that the graph G is hole- and antihole-free.

If G contains a C_{4} then, due to Lemma $1, G$ contains a house, and if G contains a $2 K_{2}$ then G contains a P_{5}. Thus, we have the following cases: If G is $\left(2 K_{2}, C_{4}, C_{5}\right)$-free then it is a split graph and thus, due to Lemma 2, it is a spider.

Otherwise, let G contain a P_{5}. Then it is again straightforward to show that either G is a $P_{k}, k \geqslant 6$ (if G contains such a P_{k}) or G has at most 9 vertices if G is P_{6}-free but contains a P_{5}.

3. Clique-width classification of \boldsymbol{P}_{4}-sparse graph extensions

Since bipartite chain graphs, co-matched bipartite graphs and spiders have bounded clique-width, Theorems 4-6 and Proposition 1 imply that (P_{5}, co- P_{5},co-chair)-free graphs, (chair,co- P,house)-free graph, and (chair,co-chair, P, co- P)-free graphs have bounded clique-width as well. Moreover, k-expressions for such graphs can be found in linear time.

Now let \mathscr{F} be a subset of $\left\{P_{5}\right.$, co- P_{5},chair,co-chair, P, co- $\left.P, C_{5}\right\}$.
Corollary 1. (i) The inclusion-minimal classes of \mathscr{F}-free graphs having unbounded clique-width are the (P_{5}, chair,co- P, P, C_{5})-free graphs, the (P_{5},chair,co- P, C_{5}, co-chair) -free graphs, and the ($\left.P_{5}, c o-P, P, C_{5}, c o-P_{5}\right)$-free graphs as well as their complement classes.
(ii) The inclusion-maximal classes of \mathscr{F}-free graphs having bounded clique-width are the (P_{5},chair,co- P_{5})-free graphs, the (P_{5}, P, co-chair)-free graphs as well as their complement classes, and the (chair,co-chair, P, co- P)-free graphs.
(iii) For every other choice of F, the class of \mathscr{F}-free graphs is either a superclass of some class in (i) or a subclass of some class in (ii).

Proof. To (i). In [25], Makowsky and Rotics have shown that the following graph classes have unbounded clique-width:

- the F_{n} grids (whose complements are (co-gem, P_{5}, chair,co- P, C_{5}, co-chair)-free);
- the $H_{n, q}$ grids (whose complements are (co-gem, P_{5}, chair,co- P, P, C_{5}, bull)-free)
- the split graphs (which are ($P_{5}, \mathrm{co}-P, P, C_{5}, \mathrm{co}-P_{5}$)-free).

This implies (i), i.e. unbounded clique-width for every superclass of

- (co-gem, P_{5},chair,co- P, C_{5},co-chair)-free graphs;
- (co-gem, P_{5}, chair,co- P, P, C_{5}, bull)-free graphs;
- $\left(P_{5}, \mathrm{co}-P, P, C_{5}, \mathrm{co}-P_{5}\right)$-free graphs,
as well as their complement classes, i.e. if \mathscr{F} is a subset of $\left\{\right.$ co-gem, P_{5}, chair,co- P, C_{5}, co-chair $\}$, of $\left\{\right.$ co-gem, P_{5}, chair,co- P, P, C_{5}, bull $\}$ or of $\left\{P_{5}\right.$, co- P, P, C_{5}, co- $\left.P_{5}\right\}$ then the class of \mathscr{F}-free graphs has unbounded clique-width.

To (ii) and (iii). A straightforward case analysis shows that in all other cases, the \mathscr{F}-free graphs are contained in one of the following classes:

- $\left(P_{5}\right.$, co-chair,co- $\left.P_{5}\right)$-free graphs,
- $\left(P_{5}\right.$, co-chair,$\left.P\right)$-free graphs,
- (chair,co-chair, P, co- P)-free graphs,
or their complement classes which are of bounded clique-width by Proposition 1 and Theorems 4-6.

Theorem 1 and modular decomposition in linear time [12,13,26] implies that on the following classes:
(i) $\left(P_{5}\right.$,chair,co- $\left.P_{5}\right)$-free graphs,
(ii) (P_{5}, P,co-chair)-free graphs,
(iii) (chair,co-chair, P,co- P)-free graphs,
as well as their complement classes, all LinEMSOL ($\tau_{1, L}$) problems can be solved in linear time, among them are vertex cover, maximum weight stable set, maximum weight clique, domination, Steiner Tree, maximum induced matching and others. This extends recently published results such as some of the results in [24].

Acknowledgements

We are grateful to two anonymous referees for some comments which helped to improve the presentation of this note and in particular to simplify the proof of Lemma 3, as proposed by one of the referees.

References

[1] L. Babel, S. Olariu, On the p-connectedness of graphs: a survey, Discrete Appl. Math. 95 (1999) 11-33.
[2] P. Bertolazzi, C. de Simone, A. Galluccio, A nice class for the vertex packing problem, Discrete Appl. Math. 76 (1997) 3-19.
[3] A. Brandstädt, C.T. Hoàng, V.B. Le, Stability number of bull- and chair-free graphs revisited, Discrete Applied Math, to appear.
[4] A. Brandstädt, V.B. Le, J. Spinrad, Graph Classes: A Survey, in: SIAM Monographs on Discrete Mathematics Applications, Vol. 3, SIAM, Philadelphia, 1999.
[5] A. Brandstädt, R. Mosca, On the structure and stability number of P_{5} - and co-chair-free graphs, Discrete Appl. Math., accepted for publication.
[6] D.G. Corneil, H. Lerchs, L. Stewart-Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163-174.
[7] D.G. Corneil, Y. Perl, L.K. Stewart, Cographs: recognition, applications, and algorithms, Congr. Numer. 43 (1984) 249-258.
[8] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
[9] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. Systems Sci. 46 (1993) 218-270.
[10] B. Courcelle, J.A. Makowsky, U. Rotics, Linear time solvable optimization problems on graphs of bounded clique-width, extended abstract, in: Conference Proceedings of WG'98, Lecture Notes in Computer Science, Vol. 1517, Springer, Berlin, 1998, pp. 1-16; Theory Comput. Systems 33 (2000) 125-150.
[11] B. Courcelle, S. Olariu, Upper bounds to the clique-width of graphs, Discrete Appl. Math. 101 (2000) 77-114.
[12] A. Cournier, M. Habib, A new linear algorithm for modular decomposition, LIRMM, University Montpellier (1995), Preliminary version in: Trees in Algebra and Programming-CAAP'94, Lecture Notes in Computer Science, Vol. 787, Springer, Berlin, 1994, pp. 68-84.
[13] E. Dahlhaus, J. Gustedt, R.M. McConnell, Efficient and practical modular decomposition, J. Algorithms 41 (2001) 360-387.
[14] S. Foeldes, P.L. Hammer, Split graphs, Congr. Numer. 19 (1977) 311-315.
[15] J.-L. Fouquet, V. Giakoumakis, On semi-P 4_{4}-sparse graphs, Discrete Math. 165-166 (1997) 267-290.
[16] V. Giakoumakis, F. Roussel, H. Thuillier, On P_{4}-tidy graphs, Discrete Appl. Math. Theoret. Comput. Sci. 1 (1997) 17-41.
[17] V. Giakoumakis, J.-M. Vanherpe, On extended P_{4}-reducible and extended P_{4}-sparse graphs, Theoret. Comput. Sci. 180 (1997) 269-286.
[18] P.L. Hammer, U.N. Peled, X. Sun, Difference graphs, Discrete Appl. Math. 28 (1990) 35-44.
[19] C.T. Hoàng, A class of perfect graphs, M.Sc. Thesis, School of Computer Science, McGill University, Montreal, 1983.
[20] C.T. Hoàng, Perfect graphs, Ph.D. Thesis, School of Computer Science, McGill University, Montreal, 1985.
[21] C.T. Hoàng, B. Reed, Some classes of perfectly orderable graphs, J. Graph Theory 13 (1989) 445-463.
[22] B. Jamison, S. Olariu, Recognizing P_{4}-sparse graphs in linear time, SIAM J. Comput. 21 (1992) 381-406.
[23] B. Jamison, S. Olariu, A tree representation for P_{4}-sparse graphs, Discrete Appl. Math. 35 (1992) 115-129.
[24] B. Jamison, S. Olariu, Linear time optimization algorithms for P_{4}-sparse graphs, Discrete Appl. Math. 61 (1995) 155-175.
[25] J.A. Makowsky, U. Rotics, On the clique-width of graphs with few P_{4} 's, Internat. J. Found. Comput. Sci. 10 (3) (1999) 329-348.
[26] R.M. McConnell, J. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241.
[27] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebraic Discrete Methods 3 (1982) 351-358.

[^0]: * Corresponding author. Tel.: +49-381-498-3363; fax: +49-381-498-3366.

 E-mail addresses: ab@informatik.uni-rostock.de (A. Brandstädt), ciufolini@tiscali.it (R. Mosca).

