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Lipid accumulation is a central event in the development of chronic metabolic diseases, including obesity and
type 2 diabetes, but the mechanisms responsible for lipid accumulation are incompletely understood. This
study was designed to investigate the mechanisms for excess nutrient-induced lipid accumulation and whether
activation of AMP-activated protein kinase (AMPK) prevents the hepatic lipid accumulation in excess nutrient-
treated HepG2 cells and high fat diet (HFD)-fedmice. Exposure of HepG2 cells to high levels of glucose or palmi-
tate induced the endoplasmic reticulum (ER) stress response, activated sterol regulatory element-binding
protein-1 (SREBP-1), and enhanced lipid accumulation, all of which were sensitive to ER stress inhibitor and
gene silencing of eukaryotic initiation factor 2α. The increases in ER stress response and lipid accumulation
were associated with activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Inhibition
of mTORC1 signaling attenuated the ER stress response and lipid accumulation induced by high glucose or by
deletion of tuberous sclerosis 2. In addition, AMPK activation prevented the mTORC1 activation, ER stress
response, and lipid accumulation. This effect was mimicked or abrogated, respectively, by overexpression of
constitutively active and dominant-negative AMPK mutants. Finally, treatment of HFD-fed mice with
5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside inhibited the mTORC1 pathway, suppressed the ER
stress response, and prevented insulin resistance and hepatic lipid accumulation. We conclude that activation
of AMPK prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 and ER stress
response.
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1. Introduction

Nutrient overload is a major cause of chronic metabolic diseases,
including obesity, diabetes, and cardiovascular disease. Excessive intake
of nutrients (lipids, proteins, and carbohydrates) causes lipid accumula-
tion in fat tissue, skeletal muscle, and the liver, leading to insulin
resistance and metabolic disorders [1]. Lipid metabolism occurs mainly
at the endoplasmic reticulum (ER), where many of the enzymes related
to lipid metabolism reside [1]. The ER is a highly dynamic organelle and
plays an important role in maintaining metabolic homeostasis. When
the ER is challenged, the ER stress is activated and the unfolded protein
response (UPR) is initiated through three ER membrane proteins:
inositol-requiring enzyme 1, activating transcription factor-6 (ATF6),
and protein kinase-like ER kinase (PERK). Disruption of the ER stress
response has been implicated in the development of obesity, diabetes,
and atherosclerosis [2]. In pancreatic β cells, the activation of PERK
and eukaryotic translation initiation factor 2 subunit alpha (eIF2α)
upregulates the expression of sterol regulatory element-binding
proteins (SREBPs), which are major regulators of cholesterol and fatty
acid synthesis [3]. In mammary epithelial cells, the loss of PERK reduces
SREBP activity and lipogenesis [4]. Thus, the ER stress responsemay be a
mechanistic link between excess nutrients and lipid accumulation,
which is a crucial event in the development of metabolic syndrome.

The mammalian target of rapamycin (mTOR), a coordinator
between nutritional stress and cellular growth machinery, is associated
with the pathogenesis of insulin resistance. Nutrient overload induces
constitutive p70 ribosomal S6 kinase (S6K) activation, which leads to
insulin resistance by suppressing insulin-induced class I PI3K
(phosphoinositide 3-kinase) signaling [5]. The mTOR exists as two
distinct protein complexes, mTOR complex1 (mTORC1) and mTOR
complex2 (mTORC2) [6–9]. Activation of mTORC1 increases protein
synthesis and ribosomal biogenesis, thereby playing a key role in
coupling nutrients to growth [10]. Activation of mTORC1 also regulates
the expression of hepatic SREBP-1c and lipogenesis [11,12]. Moreover,
activation of mTORC1 by deletion of TSC1 or TSC2 has been shown to
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activate the ER stress response [13]. These findings lead us to hypothe-
size that activation ofmTORC1maymediate excess nutrient-induced ER
stress and intracellular lipid accumulation.

The AMP-activated protein kinase (AMPK) senses intracellular
energy status [14] and plays an important role in the regulation of
glucose and lipid metabolism [15]. Activation of AMPK phosphorylates
several target molecules, resulting in the downregulation of anabolic
pathways to conserve ATP and the upregulation of catabolic pathways
to generate more ATP [16]. Activation of AMPK provides an important
cellular protective response to various stress conditions, including
hypoxia [17], oxidative stress [18,19], exercise [20], and starvation [21].

In the diabetic hearts AMPK activation has been shown to restore
autophagy, inhibit cardiomyocyte apoptosis, and improve cardiac
function [22–26]. In addition, several studies suggest that activation of
AMPK protects against hypoxia-induced cardiomyocyte apoptosis, and
reduces atherosclerosis by suppressing the ER stress response [2,17].
However, whether AMPK activation prevents excess nutrient-induced
hepatic lipid accumulation through inhibition of the ER stress response
remains unknown. The present study was designed to elucidate the
mechanism by which excessive intake of nutrients results in hepatic
lipid accumulation, and to determine the role of AMPK in preventing
excess nutrient-induced hepatic lipid accumulation. Our data suggest
that excess nutrients activate mTORC1 signaling, which induces the ER
stress response and subsequent hepatic lipid accumulation. Activation
of AMPK prevents hepatic lipid accumulation by suppressing the
mTORC1-ER stress pathway.
2. Materials and methods

2.1. Reagents

Human hepatocarcinoma HepG2 cells were obtained from Cascade
Biologics (Portland, OR). Dulbecco's modified Eagle's medium
(DMEM) was purchased from Mediatech, Inc. (Herndon, VA). Fetal
bovine serum (FBS) was obtained from Invitrogen Corporation
(Carlsbad, CA). The following antibodies were purchased from Cell
Signaling Technology (Beverly, MA): phosphor-mTOR (Ser2448),
phosphor-AMPK (Thr172), AMPK-α, phosphor-S6K (Thr389), SREBP-
1, fatty acid synthase (FAS), Ras homolog enriched in brain (Rheb),
78 kDa glucose-regulated protein (GRP78), phosphor-PERK,
phosphor-eIF2α, eukaryotic translation initiation factor 4E binding pro-
tein 1 (4EBP1), and phosphor-4EBP-1 (Thr37/46). The antibody against
β-actin was acquired from Santa Cruz Biotechnology (Santa Cruz, CA).
All secondary antibodies were obtained from Jackson ImmunoResearch
Laboratories, Inc. (West Grove, PA). AICAR (5-aminoimidazole-4-
carboxyamide ribonucleoside) was procured from Toronto Research
Chemicals, Inc. Compound C and rapamycin were purchased from
Calbiochem (San Diego, CA). Tunicamycin, 4-phenyl butyric acid
(PBA), palmitate, human recombinant insulin, and other chemicals
were obtained from Sigma.
2.2. Experimental animals

The animal protocol was reviewed and approved by the University
of Oklahoma Institutional Animal Care and Use Committee. At
12 weeks of age, male C57BL/6J mice (Jackson Laboratories, Bar Harbor,
MI) were fed either a normal diet (ND; 20% protein, 70% carbohydrate,
10% fat) or a high fat diet (HFD; 20% protein, 35% carbohydrate, 45%
fat, total 5.7 kcal/g). Both diets were obtained from Research Diet, Inc.,
New Brunswick, NJ (ND: D12450B, HFD: D12451). At the same time,
the mice were randomly assigned to receive intraperitoneal injections
of AICAR (250 mg/kg/day) or vehicle. After 2 months of treatment, the
animals were euthanized and livers were collected for biochemical
and molecular biological analyses.
2.3. Cell culture and treatment

HepG2 cells were maintained in DMEM with 1 g/L glucose contain-
ing 10% fetal bovine serum. TSC2 deletion (TSC2−/−) mouse embryotic
fibroblasts (MEFs) provided by Brendan Manning and David
Kwitakowski (Harvard Medical School) were cultured in DMEM with
10% fetal bovine serum. All culture media were supplemented with
penicillin (100 U/mL) and streptomycin (100 μg). The cells were
incubated in a humidified atmosphere of 5% CO2 and 95% air at 37 °C.

2.4. Adenovirus infection and gene silencing of eIF2α

The constitutively active AMPK adenoviral vector (CA-AMPK) was
constructed from a rat cDNA encoding residues 1–312 of AMPKα1, in
which Thr172 was mutated into aspartic acid (T172D). The dominant-
negative AMPK adenoviral vector (DN-AMPK) was constructed from
AMPKα2 bearing a mutation altering lysine 45 to arginine (K45R), as
described previously [27]. Adenovirus encoding green fluorescent
protein (GFP) served as a control. HepG2 cells were infected with the
indicated adenovirus at an MOI of 50 in serum-free medium overnight.
The cells were then washed and incubated in fresh serum-free medium
for an additional 18–24 h before use in the experiments. Under these
conditions, infection efficiency was typically N80%, as determined by
measuring GFP expression [19,28]. Scrambled siRNA and eIF2α-
specific siRNA were obtained from Applied Biosystems (Foster City,
CA). Transfection was performed according to the manufacturer's in-
structions. The efficiency of siRNA transfection was evaluated by
Western blotting of eIF2α with a specific antibody.

2.5. Hyperinsulinemic–euglycemic clamp

The hyperinsulinemic–euglycemic clamps were performed as
described previously [29,30]. Briefly, mice were anesthetized by
intraperitoneal injection of ketamine (100 mg/kg) and xylazine
(20 mg/kg). Heparin (200 U/mL) was intraperitoneally injected to
prevent blood clotting. A polyethylene catheter was inserted into the
right jugular vein for infusion of 20% glucose and insulin (2 mU/mL)
in normal saline, using a peristaltic pump. The left carotid artery was
cannulated for blood sampling. Insulin (3 mU/kg/min) was infused
through the jugular vein catheter from 0 to 120min. During this period,
the blood glucose concentration was monitored every 5 min with a
glucometer and clamped at euglycemic levels (5.0 ± 0.5 mmol/L) by a
variable infusion of 20% glucose. Clamping was achieved by 90 min
and maintained for 30 min. The mean glucose infusion rates (ml/min/
kg) were calculated during the last 30 min of the clamp. To determine
blood glucose levels,micewere fasted overnight and their blood glucose
was monitored by applying tail blood to the glucometer.

2.6. Measurement of intracellular lipid, cholesterol, and triglyceride
contents

The intracellular lipid contents of culturedHepG2 cellswere evaluat-
ed byOil RedO staining. Briefly, the cellswere fixed in 4% paraformalde-
hyde in PBS for 30 min, stained with Oil Red O for 1 h at room
temperature, and then rinsed with water. Lipids in cultured HepG2
cells and mouse liver were extracted as described by Folch et al. [31].
Cholesterol and triglyceride levels in extracted lipids were measured
enzymatically using the reagents from Cayman Chemical (Ann Arbor,
MI) according to the manufacturer's instruction.

2.7. Western blot analysis

Weextracted proteins from cultured cells andmouse livers, and sub-
jected cell lysates to Western blot analysis as described previously [19,
28]. The protein content was assayed by BCA protein assay reagent
(Pierce, Rockford, IL). The lysates were resolved by SDS-PAGE and



1846 H. Li et al. / Biochimica et Biophysica Acta 1842 (2014) 1844–1854
then transferred to a nitrocellulose membrane. We incubated the
membrane with a 1:1000 dilution of primary antibodies, followed by a
1:5000 dilution of horseradish peroxidase-conjugated secondary
antibodies. Nuclear fractions were prepared as described previously
[19]. The protein levels of SREBP-1 were determined by Western
blotting. The signal was revealed using chemiluminescence.We quanti-
fied the optical density of bands using the AlphaEase (Alpha Innotech
Corporation) image system and expressed it as arbitrary units [32,33].

2.8. RNA extraction and quantitative real-time PCR (QRT-PCR)

We extracted the total mRNA from cultured cells and livers with
Trizol reagent (Invitrogen). For reverse transcription, 1 μg of the total
mRNA was converted to first strand complementary DNA in 20 μL
reactions using a cDNA synthesis Kit (Promega). Quantitative RT-PCR
reactions were performed as described previously [34,35]. Calculations
were performed by a comparative method (2−ΔΔCt) using GAPDH as
an internal control [36]. The primers used for the PCR are as follows:
fatty acid synthase (FAS): forward 5′-AGGGGTCGACCTGGTCCTCA-3′,
reverse 5′-GCCATGCCCAGAGGGTGGTT-3′; acetyl CoA carboxylase
(ACC-1): forward 5′-CGAAAGACTCTTAACTCTGG-3′, reverse 5′-CCAG
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2.9. Statistics

Data are expressed as mean ± standard errors of the mean (SEM).
Statistical analyses were performedwith the Student's t-test (2 groups)
or one-wayANOVAwith the Bonferroni procedure formultiple compar-
ison tests (≥3 groups). P b 0.05 was considered statistically significant.

3. Results

3.1. Elevated glucose levels stimulate ER stress, activate SREBP-1, and
increase lipid accumulation in HepG2 cells

SREBPs are a family of transcription factors that regulate the lipid
metabolic genes related to fatty acid and cholesterol biosynthesis [37,
38]. SREBP-1 processing has been reported to be regulated through
the PERK–eIF2α pathway [4]. To determine the mechanism underlying
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nutrient-induced hepatic lipid accumulation, we exposed HepG2 cells
to high glucose for 6 or 24 h, and then examined the cells' ER stress
response, SREBP-1 activation, and lipid contents. Elevated glucose levels
stimulated ER stress in a time-dependent manner, as indicated by
increased expression of GRP78 and phosphorylation of PERK and
eIF2α (Fig. 1A and B). This was not due to the increase in osmolarity,
because incubation of HepG2 cells with 25 mM mannitol plus 5 mM
glucose had no effect on the ER stress response (data not shown). To
assess SREBP-1 activation, we detected the expression of the cleaved,
mature 68 kDa form of SREBP-1 in the nuclear fractions by Western
blotting. The cells treated with high glucose exhibited higher levels of
cleaved SREBP-1 in the nuclear fractions (Fig. 1C andD) than the control
cells. The activation of SREBP-1 was associated with increases in its
target genes, including ACC1, ACLY, and SCD1 (Fig. 1E), and upregula-
tion of FAS protein levels (Fig. 1C and D). Concomitantly, high glucose
treatment resulted in lipid accumulation in the cells. Oil red O staining
revealed a clear increase in total lipid levels in the cells (Fig. 1F). Because
plentiful extracellular lipids may mask intracellular lipid staining, lipid
content was further measured enzymatically using a commercial kit.
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The analysis revealed significant increases in intracellular triglyceride
and cholesterol levels (Fig. 1G and H). These results suggest that elevat-
ed glucose levels were associated with the activation of the ER stress
response and the increase in intracellular lipid accumulation.

3.2. Palmitate induces ER stress and intracellular lipid accumulation

We further incubated HepG2 cells in medium containing palmitate
to mimic fatty acid overload conditions. Similar to the aforementioned
results with elevated glucose, palmitate also increased the expression
of ER stress markers, such as GRP78, P-PERK, and P-eIF2α (Fig. 1I), acti-
vated SREBP-1 (Fig. 1J), upregulated FAS (Fig. 1J), and induced lipid ac-
cumulation, as evidenced by high intracellular levels of triglycerides
(Fig. 1K) and cholesterol (Fig. 1L). Taken together, our results indicate
that nutrient overload stimulated ER stress and induced intracellular
lipid accumulation. Because elevated glucose and/or fatty acid levels
have similar effects on ER stress and lipid accumulation, we used high
glucose as an ER stress stimulus to determine themechanisms involved
in excess nutrient-induced lipid accumulation in the in vitro study.
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3.3. Elevated glucose levels induce lipid accumulation through activation of
ER stress response

To establish the role of ER stress in lipid accumulation, we treated
HepG2 cells with various concentrations of tunicamycin (TM), an
ER-stress inducible reagent, for 24 h, and then analyzed the intracellular
lipid contents. Consistent with the previous findings [39], tunicamycin
stimulated ER stress, i.e., increased GRP78 expression, as well as PERK
and eIF2α phosphorylation (Fig. 2A). At the same time, tunicamycin
enhanced protein levels of SREBP-1 in the nuclear fractions (Fig. 2B),
upregulated FAS protein expression (Fig. 2B), and increased intracellu-
lar triglyceride (Fig. 2C) and cholesterol levels (Fig. 2D).

Next, we investigated whether small molecule chemical chaperone
4-phenyl butyric acid (PBA), a well-characterized ER stress inhibitor
[40], could alleviate the ER stress response and lipid accumulation
induced by high glucose levels. Pretreatment of HepG2 cells with PBA
dose-dependently reduced PERK and eIF2α phosphorylation and
downregulated GRP78 expression upon exposure to elevated glucose
levels (Fig. 2E and F). Under these conditions, high glucose-enhanced
nuclear SREBP-1 protein levels and FAS expression were significantly
attenuated (Fig. 2G and H). High glucose-enhanced intracellular lipid
accumulation was also diminished, as reflected by reduced Oil red O
staining (Fig. 2I) and low intracellular triglyceride (Fig. 2J) and
cholesterol (Fig. 2K) levels. These data suggest that elevated glucose
levels induce intracellular lipid accumulation by evoking the ER stress
response.

3.4. Knockdown of eIF2α prevents high glucose-enhanced nuclear SERBP-1
levels and intracellular lipid accumulation

The PERK–eIF2αpathwayhas been reported to regulate SREBP-1 [4].
We therefore used a gene silencing approach targeting eIF2α to
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establish the role of the ER stress response in mediating high glucose-
enhanced intracellular lipid accumulation. As depicted in Fig. 3A,
eIF2α siRNA significantly reduced eIF2α protein levels, whereas control
siRNA did not. The reduction of eIF2α expression prevented high
glucose-enhanced SREBP-1 in the nuclear fractions and abolished high
glucose-induced upregulation of FAS protein levels (Fig. 3A and B).
Silencing eIF2α also abrogated the elevated glucose-mediated increase
in triglyceride and cholesterol levels (Fig. 3C and D). Thus, activation
of ER stress response is a central event in high glucose-induced intracel-
lular lipid accumulation.

3.5. Activation of mTORC1 signaling is required for high glucose-induced ER
stress

mTOR is an essential signaling pathway that senses intracellular nu-
tritional status [41]. We therefore studied whether mTOR mediates ER
stress in the presence of high glucose. Incubating HepG2 cells in elevat-
ed levels of glucose activated the mTORC1 signaling pathway, as
determined by phosphorylation of mTOR at Ser2448 and its
downstream effector S6K at Thr389 and 4EBP1 at Thr37 (Fig. 4A).
Since Ras homolog enriched in brain (Rheb) plays critical roles in the
activation of mTOR, we determined whether Rheb mediates high
glucose-activated mTOR signaling by gene silencing of Rheb. Transfec-
tion of Rheb siRNA into HepG2 cells significantly reduced Rheb protein
levels (Fig. 4B). In the cells transfected with control siRNA, elevated
glucose concentration increased Rheb expression and concomitantly
increased phosphorylation of mTOR and S6K (Fig. 4B). However, the
activation of mTORC1 signaling was absent in the cell transfected with
Rheb siRNA (Fig. 4B). We next examined whether inhibition of
mTORC1 signaling can prevent high glucose-induced hepatic lipid
accumulation. Administration of the mTORC1-specific inhibitor
rapamycin suppressed the phosphorylation of mTOR, S6K, and
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4EBP1in the presence of high glucose (Fig. 4C). It also prevented
high glucose-induced ER stress response by reducing the phosphoryla-
tion of PERK and eIF2α and downregulation of GRP78 (Fig. 4D).
Rapamycin treatment concomitantly reduced nuclear SREBP-1
protein levels (Fig. 4E), downregulated FAS expression (Fig. 4E),
and decreased triglyceride levels (Fig. 4F), suggesting that mTORC1
mediates high glucose-induced ER stress and intracellular lipid
accumulation.

To further elucidate the relationship betweenmTORC1 signaling and
the ER stress response, we investigated whether hyperactive mTOR
could increase ER stress in TSC2−/− MEFs, in which mTOR is constitu-
tively activated. TSC2 deletion activated mTOR, which increased PERK
and eIF2α phosphorylation and GRP78 expression. These effects were
prevented by administration of rapamycin (Fig. 4G). Consistently,
deletion of TSC2 increased SREBP-1 protein levels in the nuclear
fractions. This increase was abolished by rapamycin treatment
(Fig. 4H). These data suggest that high glucose-enhanced ER stress
and lipid accumulation is mTORC1-dependent.
3.6. Activation of AMPK prevents high glucose-induced lipid accumulation
by inhibiting the mTORC1-ER stress pathway

AMPK is considered a key therapeutic target for the treatment of
obesity due to its role in the regulation of lipid and glucosemetabolism.
We therefore examined whether activation of AMPK by AICAR, a
well-characterized AMPK activator, prevents high glucose-induced
intracellular lipid accumulation by suppressing the mTORC1-ER stress
pathway. Elevated glucose levels significantly inhibited AMPK
phosphorylation at Thr172, indicating the suppression of AMPK activity
(Fig. 5A). The inhibitory effect of high glucose on AMPK phosphoryla-
tionwas abrogated by administration of AICAR (Fig. 5A). The restoration
of AMPK activity by AICAR abolished high glucose-activated mTORC1
signaling by inhibitingmTORphosphorylation at Ser2448 and inhibiting
its downstreammolecule S6K at Thr389 (Fig. 5B). Simultaneously, high
glucose-stimulated ER stress response, including phosphorylation of
PERK and eIF2α, and expression of GRP78 (Fig. 5C) was inhibited.
Notably, the inhibition of mTORC1 and the ER stress response was
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associated with a reduction in nuclear SREBP-1 protein levels and
downregulation of FAS protein expression (Fig. 5D).

We further determined the inhibitory effect of AMPK on high
glucose-induced lipid accumulation using a genetic means. HepG2
cells were transfected with adenovirus encoding DN-AMPK, CA-AMPK,
or GFP. In the presence of high glucose, AICAR treatment and transfec-
tion of CA-AMPK increased AMPK phosphorylation, while transfection
of DN-AMPK had the opposite effect. Both overexpression of CA-AMPK
in HepG2 cells and administration of AICAR in the cells infected with
GFP adenovirus prevented high glucose-enhanced SREBP-1 protein
levels in the nuclear fractions and reduced FAS expression in cell lysates
(Fig. 5E). However, AICAR did not reduce FAS expression and nuclear
SREBP-1 levels in the cells transfected with DN-AMPK adenovirus
(Fig. 5E). In line with the alteration in nuclear SREBP-1 protein levels,
AICAR treatment reduced high glucose-enhanced triglyceride contents
in the cells transfected with GFP adenovirus, but the effect was absent
in the cells transfected with DN-AMPK (Fig. 5F). Taken together,
activation of AMPK suppressedmTROC1 signaling, leading to the inhibi-
tion of ER stress and lipid accumulation.

3.7. Chronic administration of AICAR inhibits mTORC1 and ER stress
response in vivo

To determine the mechanisms underlying nutrient overload-
induced hepatic lipid accumulation in vivo, we analyzed alteration
of mTORC1 signaling, ER stress, and lipid contents in the liver in
AICAR-treated and HFD-fed mice. The mice on HFD gained significantly
more weight than those fed a ND (Fig. 6A). The increase in weight-gain
was significantly attenuated by AICAR treatment (Fig. 6A). Total caloric
intake was increased in HFD-fed mice as compared with the mice
maintained on ND. Chronic administration of AICAR had no effect on
caloric intake in HFD mice (Fig. 6B). Compared with ND-fed mice,
HFD-fedmice exhibited a reduction in AMPK phosphorylation, suggest-
ing an inhibition of AMPK. AMPK activitywas restored by chronic AICAR
treatment (Fig. 6C). HFD feeding resulted in activation of mTORC1
signaling, as determined by an increase in S6K phosphorylation
(Fig. 6D). This triggered the ER stress response by increasing the
phosphorylation of PERK and eIF2α (Fig. 6E), all of which were
attenuated by AICAR treatment (Fig. 6C and E). Notably, HFD-
enhanced nuclear SREBP-1 levels were abrogated by chronic adminis-
tration of AICAR (Fig. 6F).

3.8. AICAR treatment prevents hepatic lipid accumulation and insulin
resistance

We next investigated whether AMPK activation prevents nutrient
overload-induced hepatic lipid accumulation and insulin resistance
in vivo. Consistent with the activation of SREBP-1, HFD-fed mice
exhibited upregulation of SREBP-1 target genes FAS and ACC1
(Fig. 7A). This was in turn associated with more fat deposition in the
liver and viscera (Fig. 7B), increases in subcutaneous and visceral fat
mass (Fig. 7C), and higher levels of triglycerides and cholesterol in the
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liver (Fig. 7D and E). All these effects were abrogated by chronic admin-
istration of AICAR (Fig. 7A–E). To determine the effect of AICAR on
insulin signaling, we first examined the effect of AICAR on fasting
glucose levels. We found that chronic administration of AICAR normal-
ized fasting blood glucose in HFD-fedmice (Fig. 7F).We next performed
a hyperinsulinemic–euglycemic clamp study in these mice. Consistent
with the fact that diet-induced obesity inhibits insulin sensitivity, we
observed a significant decrease in the glucose infusion rate in HFD-fed
mice (Fig. 7G and H). The glucose infusion rate in AICAR-treated and
HFD-fed mice was significantly higher than that in HFD-fed mice
(Fig. 7G and H), indicating that chronic administration of AICAR
enhances insulin sensitivity in a diet-induced obesity model.

4. Discussion

Excessive intake of nutrients is a major cause of lipid accumulation,
which leads to the development of obesity and insulin resistance.
Thus, identification of the mechanistic link between nutrient overload
and lipid accumulation might help to define novel nutritional and
pharmacological approaches for the treatment of obesity and insulin
resistance. The present study demonstrated that excess nutrients
triggered the ER stress response, activated SREBP-1, and increased
intracellular lipid levels. All of these were abolished by inhibiting the
mTORC1 signaling pathway. Activation of AMPK prevented high
glucose-activated mTORC1 signaling, leading to suppression of the ER
stress response and lipid accumulation. Moreover, treatment of HFD-
fed mice with AICAR inhibited the mTORC1 pathway, suppressed the
ER stress response, and prevented insulin resistance and hepatic lipid
accumulation. These findings establish a novel and attractive model
that suppression of mTORC1 by AMPK inhibits nutrient overload-
induced ER stress, which in turn prevents hepatic lipid accumulation
and insulin resistance (Fig. 7I).

Under nutrient overload conditions, increased phosphorylation of
PERK and eIF2α is associated with upregulation of SREBP-1 and lipid
accumulation. Gene silencing of eIF2α abolishes lipid accumulation
induced by elevated excess nutrients, suggesting that the PERK/eIF2α
UPR branch serves as a critical regulator of lipid metabolism via regula-
tion of SREBP1 processing and target gene expression. PERK is a major
transducer of the ER stress response and it can directly phosphorylate
eIF2α [42,43]. Phosphorylated eIF2α specifically promotes the transla-
tion of activating transcription factor 4, a member of the cAMP-
response element-binding protein family, which activates SREBP1 [44]
and upregulates the genes related to lipogenesis. In support of this
model, recent studies demonstrate that PERK knockout substantially
decreases SREBP-1 activity and reduces lipogenesis inmammary glands
[4]. Dephosphorylation of eIF2α diminishes hepatosteatosis in HFD-fed
animals [45]. These studies link the PERK/eIF2α UPR branch to the
development of dyslipidemia. However, other groups reported that
feeding a high-sucrose diet results in hepatosteatosis and activation of
the IRE1α-XBP1 branch in the liver [46]. A single high-carbohydrate
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meal also results in the phosphorylation of IRE1α, induces XBP1
splicing, and increases expression of lipogenic genes in the liver [47].
Although XBP1 is identified as an important regulator of hepatic
lipogenesis in carbohydrate-fedmice, its function in regulating lipogen-
esis is independent of the ER stress response [48]. Thus, further investi-
gations are needed to determine whether other UPR branches are
involved in the regulation of hepatic lipogenesis under excess nutrient
conditions.

The mTORC1 signaling pathway integrates inputs from several
upstream pathways, including the nutrient-sensing pathway, with cell
growth and metabolism. These conditions may also challenge ER integ-
rity, evoking the UPR. Consistent with a previous finding that knockout
of TSC1 or TSC2 triggers the UPR, resulting in mTOR-mediated feedback
inhibition of insulin action and increased apoptosis [13], we observed
that nutrient overload causes ER stress and activates the UPR in an
mTORC1-dependent manner. These results suggest that activation of
the UPR pathway is an important consequence of mTORC1 activation,
and contributes to the development of insulin resistance. Conversely,
as an intermediary of insulin signaling, mTORC1 can also be activated
by ER stress [49]. Previous studies have shown that downstream effec-
tor of mTOR, S6K, contributes to the development of insulin resistance
in a condition of energy surplus by negatively regulating insulin
receptor substrate 1 function [50]. Thus, under conditions of nutrient
overload, the mTORC1-S6K1 axis and UPR might coordinately regulate
insulin signaling, resulting in inhibition of insulin sensitivity. As insulin
is a major stimulus for many biosynthetic pathways, including protein
synthesis, the feedback inhibition of insulin action in the presence of
ER stress may represent an adaptive response that protects the cells
from further aberrant protein synthesis and stress in the ER by partially
blocking protein translation and insulin responsiveness.

Another important set of findings is that activation of AMPK
downregulates mTORC1 activity, attenuates the UPR, reduces lipid
accumulation, and enhances insulin sensitivity in vivo. Under excess
nutrient conditions, two important signaling pathways in sensing nutri-
ent and energy status, AMPK and mTORC1, coordinately regulate the
UPR, lipid metabolism, and insulin signaling. AMPK has been reported
to inhibit mTORC1 either through direct phosphorylation of mTOR
[51] or through phosphorylation and activation of tuberin [52]. In
HepG2 cells exposed to high glucose, inactivation of AMPK activates
the mTORC1 signaling pathway, leading to lipid accumulation and
suppression of insulin signaling. Administration of AICAR restores
AMPK activity, inhibits mTORC1 signaling, reduces lipid accumulation,
and improves insulin sensitivity. These results are consistent with the
observation that activation of AMPK by AICAR inhibits the phosphoryla-
tion of S6K and reduces its activity in SV40-immortalized human
corneal epithelial cells [53]. In addition, under energy depletion
conditions, AMPK phosphorylates TSC2 and enhances its activity,
which inhibits mTORC1 signaling, protecting cells from energy
deprivation-induced apoptosis [54]. Taken together, AMPK protects
against ER stress and lipid accumulation through the inhibition of
mTORC1 signaling. This conclusion is also supported by our in vivo
observation that activation of AMPK by chronic administration of
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AICAR reduced S6K phosphorylation, inhibited the ER stress response,
and attenuated hepatic lipid accumulation and insulin resistance.

In summary, activation of AMPK prevents hepatic lipid accumulation
and insulin resistance induced by excess nutrients. This effect could be
mediated by AMPK suppression of mTORC1 and UPR signaling. These
findings highlight the importance of the AMPK–mTORC1 axis in the
regulation of UPR under nutritional overload conditions, and provide
new insights into the mechanism by which AMPK activation prevents
hepatic lipid accumulation and insulin resistance. These studies also
suggest that either activation of AMPK or inhibition of mTORC1 and
UPRmay have potential for the treatment of chronicmetabolic diseases,
including obesity, type 2 diabetes, and cardiovascular disease.
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