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a b s t r a c t

It is now appreciated that both genetic alteration, e.g. mutations, and aberrant epigenetic changes,
e.g. DNA methylation, cause cancer. Epigenetic dysregulation is potentially reversible which makes
it attractive as targets for cancer prevention. Synthetic drugs targeting enzymes, e.g. DNA methyl-
transferase and histone deacetylase, that regulate epigenetic patterns are active in clinical settings.
In addition, dietary factors have been suggested to have potential to reverse aberrant epigenetic
patterns. Uncovering the human epigenome can lead us to better understand the dynamics of
DNA methylation in disease progression which can further assist in cancer prevention.

Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Epigenetics is defined as the study of heritable modifications on
chromatin, without changing the nucleotide sequence of DNA, that
regulates gene expression [1]. Gene silencing caused by epigenetic
alternations has been associated with all stages of tumor develop-
ment including initiation, progression, invasion, and metastasis.
In comparison to genetic DNA coding which provides the blueprint
for the manufacture of proteins to be made for a living cell,
epigenetic information provides instructions on how, where, and
lf of the Federation of European Bi

SAM, S-adenosylmethionine;
; MBD, methyl-CpG-binding
eted frizzled-related protein;
t foci; DES, diethylstilbestrol;

ase 2; SAHA, suberoylanilide
black raspberries; WIF, Wnt

; RAR, retinoic acid receptor;
13; RASSF1A, ras association
obox 2; COMT, catechol-o-
N-acetyltransferase type 1;

ethylator phenotype; BMP-4,
th factor 4; CDO1, cysteine

methyltransferase; 5-FU, 5-

ancer Center, The Ohio State
, United States.
. Huang), li-shu.wang@osum-

r Genetics Program, Compre-
460 W 12th Ave Columbus,
when the genetic information should be used [1]. Although it is
clear that genetic alternations, e.g. mutations, either germ line or
somatic, cause cancer, aberrant epigenetic alternations are now
appreciated as crucial processes in cancer development [2,3].
However, unlike genetic alternations which are almost impossible
to reverse, the potential reversibility of epigenetic patterns suggests
that it is a viable target for the prevention and/or treatment of can-
cers [2–4]. This review presents recent findings on the mechanisms
causing epigenetic dysregulation and the clinical implications of
epigenetic changes in cancer prevention and risk assessment.

2. Epigenetic alternations in carcinogenesis

2.1. Epigenetic patterns in normal and cancerous cells

Epigenetic mediated gene silencing can be generally divided
into three related processes: DNA methylation, chromatin remod-
eling, and histone modification [5]. The best characterized and
studied epigenetic modification is DNA methylation especially in
the promoter regions of genes that regulate important cellular
functions. A critical step in DNA methylation involves DNA meth-
yltransferases (DNMTs). These enzymes transfer methyl group
from S-adenosylmethionine (SAM) to the 5 position of the cytosine
ring. As shown in Fig. 1, in general, CpG islands in promoter regions
of genes in normal cells are protected against methylation. Only
small portion of genes with promoter CpG islands are methylated
in cancer cells. Importantly, these genes are involved in regulation
of crucial cellular functions and encoding for cell cycle regulation
(e.g. p16INK4a, p15, p14ARF), DNA repair (e.g. MLH1, GST3), tumor
ochemical Societies.
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Fig. 1. Simplified diagram shows the epigenetic patterns in promoters of active and inactive genes, and epigenetic patterns of inactive genes affected by epigenetic therapy
and/or dietary factors. (A) Promoters of active genes are often associated with unmethylated CpG sites (white circle), acetylation of histone (green cross), and methylation of
lysine 4 on histone H3 (H3K4) (yellow hexagon), and are absence of a nucleosome (blue sphere). This configuration favors the access of proteins that activate transcription. (B)
During carcinogenesis, CpG sites on the promoters of genes, frequently tumor suppressor genes, are methylated (red circle). MBD mediates transcriptional repression through
binding to methylated CpG sites and interacting with HDAC and DNMT. In addition, promoters of inactive genes are associated with methylation of lysine 9 or 27 on histone
H3 (H3K9 or H3K27) (red hexagon) and a nucleosome. This pattern renders the chromatin inaccessibility [3,11]. (C) Epigenetic therapy and/or dietary factors decrease DNMT,
HDAC, and MBD, and increase acetylation of histones and methyl mark on H3K4 in the promoters of inactive genes. The chromatin might become more accessible to the
transcription factors which then activate transcription.
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suppression (e.g. BRCA1, VHL), tissue remodeling (e.g. TIMP3,
E-cadherin), and hormone receptor (e.g. ESR1, ESR2) [6]. Summa-
rizing results from studies on the correlation between the position
of the methylation within a given gene and gene expression indi-
cates that methylation degree within and/or around the promoter
region is negatively associated with gene expression level [7,8].
Dose hypermethylation alone cause gene silencing? Studies have
shown that DNA methylation may not initiate gene silencing and
itself alone does not directly repress transcription. The constitution
of chromatin surrounding a hypermethylated gene promoter con-
tributes to the functional state of a gene [8,9]. Chromatins are com-
posed of nucleosomes which contain histone proteins and are
winded by DNA. Nucleosomes associated with active and non-
methylated gene promoters are normally widely and irregularly
spaced with acetylated core histone which favors the access of pro-
teins that activate transcription. In contrast, nucleosomes are
tightly and regularly spaced around heavily methylated gene pro-
moters and contain de-acetylated histones [8,9]. This indicates that
histone acetylases (HATs) and histone deacetylases (HDACs) are
associated with active and silent state of genes, respectively
[8,9]. In addition to acetylation, active genes are often associated
with methylation of lysine 4 on the core histone H3. The promoters
of silenced genes are often marked by methylation of lysine 9 or 27
on histone H3 [8,9]. Although only discovered relatively recently,
methyl-CpG-binding domain (MBD) family has been shown to
possess a significant role in controlling gene expression. The study
on the profile of MBD occupancy of hypermethylated promoter
CpG islands of tumor suppressor genes in human cancers indicates



Y.-W. Huang et al. / FEBS Letters 585 (2011) 2129–2136 2131
that most hypermethylated promoters are occupied by MBD
proteins, whereas unmethylated promoters are generally devoid
of MBDs; the profile of MBD occupancy is gene and tumor type
specific [10]. Further, the MBD proteins ‘read’ and ‘interpret’ the
methylation moieties on DNA, and thus are critical mediators of
many epigenetic processes, e.g. MBD1 binds to methylated CpGs
and mediates repression through interactions with HDAC and
DNMT proteins [11].
3. Dysregulation of epigenetic controls in cancer development

3.1. Epigenetic and genetic alternations in carcinogenesis

A complete loss of function of a tumor suppressor gene requires
the disruption of both copies of a given gene – the two-hit hypoth-
esis proposed by Knudson [12]. It is now accepted that both genetic
changes, e.g. mutations, and epigenetic changes, e.g. promoter
hypermethylation, cause silencing of genes. In familial cancers,
the first hit is the germ-line mutations, and both genetic and epi-
genetic changes can cause the second hit in which the cells lose
both copies of a given gene [8]. In somatic cancers, the loss of
one or both alleles of a tumor suppressor gene by promoter hyper-
methylation has been observed in non-familial cancers [8,12].

The number of tumor suppressor genes affected by epigenetic
inactivation equals or exceeds the number that is inactivated by
mutations [8,13]; the number of mutations in a cancer cell has
been estimated to be approximately 80 whereas aberrant methyl-
ation of promoter CpG islands can reach several hundreds to thou-
sands [4]. Although the frequency of mutations of a specific gene in
non-cancerous tissues is very low (0.0001–0.1% of cells), aberrant
methylation can be up-to 10% of cells [4]. Mutations are generally
induced by mutagenic chemicals, radiations, and oxygen radicals
whereas chronic inflammation and aging might be associated with
the induction of aberrant methylation [4,14]. For example, high
levels of aberrant promoter methylation of tumor suppressor genes
have been detected in Helicobacter pylori-infected gastric mucosa
from healthy volunteers; these high degrees of methylation are
similar with mucosa from H. pylori-positive gastric cancer patients
[14]. Recently, aberrant promoter methylation of genes in Wnt sig-
naling pathway has been observed in inflammatory bowel disease
(IBD) associated neoplasia [15]. Furthermore, aging has been sug-
gested as a factor causes methylation and age-related methylation
seems to be gene and tissue specific [16]. Age-related methylation
has been suggested as a risk factor for human colorectal [16] and
prostate [17] cancers. In an attempt to study if age-related methyl-
ation is restricted to humans because of the relatively long lifespan
or is common physiologic aging event, a recent study compares
gene methylation of gastrointestinal tract (esophagus, stomach,
small intestine, cecum, and large intestine), lung, kidney, liver,
and spleen tissues from mice at 3-mo-old and 35-mo-old [18].
Age-related methylation is observed with a strong tissue-specific-
ity. The largest differences of age-related increase and decrease in
methylation are seen in small intestine and cecum; variation of
age-related methylation is less frequent and to a lesser degree in
lung, liver, and spleen than the changes observed in small intes-
tine. Therefore, epigenetic deregulation is a common feature of
aging in mammals [18]. Because genes with increased methylation
in aging tissue are frequently hypermethylated in cancer, espe-
cially in colorectal cancer [18], it is reasonable to speculate that
age-related alternations in methylation may result from accumula-
tion of errors in cell proliferation and/or environmental exposures;
gene expression diversity caused by mixture of graded methylation
may trigger selective growth such as tumor growth [9,18]. How-
ever, the methylation of some genes, e.g. secreted frizzled-related
protein 2 (SFRP2) and genes associated with DNA repair, are not af-
fected by aging; rather, their methylation levels are increased with
the progression of cancer. This is especially true of colorectal can-
cer in human [16,19]. Factors other than aging must also be impor-
tant in the regulation of methylation. Genetic changes and their
interaction with epigenetic and environmental factors may con-
tribute to part of the originality of tumor growth.

Is there a connection between epigenetic and genetic deregula-
tion? A recent study investigating the relationships between gene
copy number alterations and DNA methylation profiles in a case
series of pleural mesotheliomas has shown that the overall extent
of copy number alteration is significantly associated with DNA
methylation profile; this association has been suggested to be par-
tially attributable to prevalent allele loss at the DNA methyltrans-
ferase gene DNMT1 [20].

Using Wnt signaling pathway as an example, Baylin and Ohm
have provided a new mechanism from which abnormalities arise
in colorectal tumorigenesis [2,21]. Wnt pathway deregulation can
lead to the expansion of stem and progenitor cell populations.
Mutations of adenomatous polyposis coli (APC), a tumor suppressor
gene in Wnt pathway, are often found in colorectal cancer and are
thought to be responsible for the initial progression of this cancer
[22]. Promoter methylation, however, has been detected in negative
Wnt regulators, e.g. SFRPs, in early stage lesion of colorectal cancer,
aberrant crypt foci (ACF), in which most ACF cells do not contain APC
mutations and methylation of SFRP-gene promoter persists in colo-
rectal adenomas [21]. Interestingly, in the same study, the authors
have shown that restoration of SFRP function in colorectal cancer
cells attenuates Wnt signaling even in the presence of downstream
APC mutations. Therefore, the epigenetic loss of SFRP function
occurring early in colorectal cancer progression may lead to consti-
tutive activation of Wnt signaling thereby complement down-
stream mutations in the evolution of colorectal cancer. Gene
silencing can lead to oncogenic pathway activation and addiction
of precancerous and cancerous cells to oncogenic pathways [2].

3.2. Environmental factors that dysregulate DNA methylation

Environmental agents including hormone, cigarette smoke,
metals, etc., affect tumor development and have been reported to
alter DNA methylation pattern [23]. We use environmental estro-
gens in the modulation of DNA methylation as an example.

Studies have shown that abnormal epigenetic silencing of genes
occurs most frequently during the early stage, precancerous stage,
of the neoplastic process, although it can occur any stage of tumor
development [2,24]. The exposure to a wide variety of xenobiotics,
e.g. diethylstilbesterol (DES), during critical period of mammalian
development can persistently alter the methylation pattern lead-
ing to aberrant gene expression [25]. Perinatal exposure of DES,
one of the environmental hormones possessing estrogenic activity,
has been found to induce epithelial tumors of the uterus in mice
[26]. Women who exposed to DES for the purpose of preventing
miscarriage during the first three months of pregnancy have
changes in the tissues and/or structure of their uterus, cervix or va-
gina which put them at high-risk of developing cancers from these
organs later in life [25,27]. Recently, it has been demonstrated that
xenoestrogen induces epigenetic repression of microRNA-9-3,
playing a role in the p53-related apoptotic pathway, in cultured
progenitor-containing mammospheres [28]. In addition, estrogen-
mediated epigenetic repression has been shown to be associated
with large chromosomal regions through DNA looping; together
with the acquisition of DNA methylation and repressive chromatin
modifications at the 16p11.2 loci [29]. An inflexible DNA scaffold
may be a novel determinant used by breast cancer cells to reinforce
estrogen-mediated repression [29]. Nutritional factors and stress
may also alter DNA methylation and modulate cancer and other
chronic diseases [25].
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3.3. Regulators of enzymes involved in epigenetic regulation

3.3.1. DNMTs
Using cultured human lung cancer cells, Lin et al. have sug-

gested that dysregulation of p53/Sp1 leads to DNMT1 overexpres-
sion in lung cancer. In the same study, in lung cancer patients,
overexpression of DNMT1 is associated with p53 mutation and
high expression of Sp1 protein; patients with overexpression of
both DNMT1 and Sp1 proteins have poor prognosis [30]. These re-
sults identify a core mechanism of transcriptional deregulation on
DNA methyltransferase that promotes lung tumorigenesis and
progression.

Mice carrying a truncated DNMT3B isoform, DNMT3B7, exhibit
altered embryonic development, including lymphopenia, craniofa-
cial abnormalities, and cardiac defects, similar to Dnmt3b-deficient
animals but rarely develop cancer [31]. However when these trans-
genic mice are bred with El-Myc transgenic mice, the frequency of
mediastinal lymphomas increases in El-Myc/DNMT3B7 animals.
Mediastinal lymphomas from these mice have more chromosomal
rearrangements, increased global DNA methylation levels, and
more locus-specific perturbations in DNA methylation pattern in
comparison with El-Myc lymphomas. This is the first in vivo mod-
el of cancer-associated DNA methylation changes suggesting that
truncated DNMT3B isoforms, commonly found in cancer cells,
may contribute to the re-distribution of DNA methylation charac-
terizing most if not all human tumors.

3.3.2. HDACs
The function of HDACs is the removing of acetyl groups from

histones which can induce chromatin condensation and transcrip-
tional repression [32]. Although their function has been elucidated,
the environmental stimuli that change nuclear HDAC function re-
main largely unknown. New evidence from a recent study has
demonstrated that lipid sphingosine-1-phosphate (S1P) inhibits
the activity of HDAC1 and HDAC2 [32]. Both S1P and sphingosine
kinase 2 (SphK2), the enzyme that synthesizes S1P, are assembled
in co-repressor complexes containing HDAC1 and HDAC2. S1P is
among the few endogenous HDAC inhibitors that is synthesized
Table 1
Effects of DNA methylation and histone-deacetylase inhibitors on patients.

Drug Clinical trial and targeted d

DNA methylation inhibitors – nucleoside analogues
5-Azacytidine (azacitidine) Phase I, II, III

Myelodysplastic syndrome
5-Aza-20-deoxycytidine (decitabine) Phase I, II, III

Hematopoietic malignancie

DNA methylation inhibitors – non-nucleoside analogues
Hydralazine Phase I

Cervical cancer

MG98 Phase I
Solid tumors

Histone-deacetylase inhibitor – short-chain fatty acids
Combination of valproic acid and all-trans retinoic acid Phase I

Acute myeloid leukemia in
patients

Histone-deacetylase inhibitor – hydroxamic acids
Suberoylanilide hydroxamic acid (SAHA) Phase I

Hematological and solid tu

LBH589 Phase I
Hematological tumor

Histone-deacetylase inhibitor – cyclic tetrapeptides
Depsipeptide (FK228) Phase I

chronic lymphocytic leuke
acute myeloid leukemia
in the nucleus in response to extracellular stimulation and is the
first nuclear lipid associated with an epigenetic modification [32].

4. Epigenetics in cancer prevention

Although demehtylation of tumor suppressor genes may have a
beneficial effect, the decrease of methylation of oncogenes which
reactivate these genes may have an adverse effect. However, it
has been shown that hypomethylation agents exert therapeutic
activities related to the fact that tumor cells are much more depen-
dent on gene silencing to maintain their phenotype than normal
adult cells. Thus, the overall effect of decreasing methylation ap-
pears to be positive [33]. We present the recent findings on epige-
netic prevention and/or therapy using synthetic drugs and dietary
factors. The clinical implications of global DNA methylation and
epigenetic changes in cancer prevention are discussed as well.

4.1. Synthetic drugs

4.1.1. DNA methylation inhibitors
There are two kinds of DNA methylation inhibitors: nucleoside

and non-nucleoside analogues (Table 1). Nucleoside analogues
have a modified cytosine ring, e.g. carbon at the 5 position of the
ring is replaced by nitrogen in drug 5-azacytidine (Fig. 2). DNMTs
transfer methyl group from SAM to the 5 position of the cytosine
ring. These drugs inhibit methylation when they are integrated
into DNA and block the release of DNMTs by forming a covalent
complex with these enzymes [34]. They have been found to have
clinical activities especially on hematopoietic malignancies
[35–38]. Although aberrant promoter methylation is corrected by
DNA methylation inhibitors, once the drug being stopped, the
aberrant promoter methylation and gene silencing return [8].
Therefore, the prolonged use of the drug is necessary for the pur-
pose of cancer therapy and even more important for the purpose
of prevention. The toxic effect probably caused by their presence
in the DNA has been reported. Because these drugs need to be
incorporated into DNA to have effects, the quiescent cells, e.g. stem
cells, can be less responsive [2]. Non-nucleoside analogues are
isease Findings Ref.

subtypes
The first demethylating agent approved for treatment of
myelodysplastic syndrome.

[35]

s
Better demethylation response was observed in low
dose regimen than high does group.

[36–38]

Demethylated and reactivated tumor suppressor genes
without affecting global methylation. There is no dose-
related effect.

[39]

– Antisense oligonucleotide of human DNMT1
– No evidence of antitumor activity was observed.

[40]

elder
Complete marrow response was observed in 3 patients,
including 1 complete remission. Two additional patients
had hematologic improvement.

[41]

mors
– Increase of acetylated histones
– Tumor regression in four (2 lymphoma and 2 bladder)
patients

[42]

Increase of H2B and H3 acetylation [43]

mia and
Effectively inhibits HDAC but there was no partial or
complete response.

[44]



Fig. 2. Methylation of cytosine by DNMTs and inhibiting methylation with 5-
azacytidine. (A) Using S-adenosylmethionine as the methyl group (CH3) donor,
DNMTs catalyze the methylation of the 5 position of the cytosine ring. (B) 5-
Azacytidine, a cytosine analogue, is a hypomethylation drug which can block this
reaction by replacing cytosine and acts as a direct and irreversible inhibitor of
DNMTs [8].
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small molecular inhibitors. They directly bind to the catalytic re-
gion of DNMTs or are antisense oligonucleotide of DNMTs which
suppress the translation. Both of which lead to DNA demethylation
without integration into DNA [3]. These groups of drugs however
are less and/or not active in solid tumors [39,40].

4.1.2. HDAC inhibitors
HDAC inhibitors include short-chain fatty acid, hydroxamic, and

cyclic tetrapeptides (Table 1). They contain different functional
groups but all inhibit HDAC leading to the accumulation of acety-
lation in histones [3]. In combination with all-trans retinoic acid,
valproic acid produces complete marrow response in elder patients
with acute myeloid leukemia [41]. Suberoylanilide hydroxamic
acid (SAHA) is probably the most successful HDAC inhibitor. SAHA
can bind to a zinc ion in the catalytic domain of HDAC resulting in
inhibition of the enzyme [42]. SAHA treatment produces good re-
sults and improves symptoms in patients with hematological and
solid tumors [42]. LBH, a cinnamic hydroxamic acid analogue his-
Table 2
Effects of dietary factors on promoter methylation status and on enzymes associated with

Dietary factor System G
d

Freeze-dried black raspberries Phase I clinical trial: 20 colorectal cancer
patients

S
W

EGCG Human esophageal squamous cell carcinoma
cell line KYSE510

R
h

EGCG Human lung cancer cell lines H460 and A549 W
EGCG Human breast cancer cell line MCF7 R
Genistein Human esophageal squamous cell carcinoma

cell line KYSE510
R

Genistein Human prostate cancer cell lines LNCaP and
PC3

–

Genistein Human renal cell carcinoma (RCC) cell lines
A498, ACHN, and HEK-293

B

Caffeic acid, chlorogenic acid
(coffee polyphenols)

Human breast cancer cell lines MCF7 and
MDA-MB-231

R

tone deacetylase inhibitor, increases H2B and H3 acetylation in pa-
tients with refractory hematologic malignancies [43]. Further,
depsipeptide (FK228) effectively inhibits HDAC but does not pro-
duce partial or complete response in chronic lymphocytic leukemia
and acute myeloid leukemia [44].

4.1.3. Combination of DNA methylation and histone deacetylase
inhibitors

DNA methylation inhibitors and HDAC inhibitors have been
shown to have synergistic effects and they work together in
mediating the function of genes in cultured cells and rodents [3].
Trichostatin A (TSA), a HDAC inhibitor, can not transcriptionally
reactivate hypermethylated genes in tumor cells whereas TSA alone
can up-regulate the expression of non-methylated genes [45]. TSA
treatment results in robust re-expression of methylated gene only
after the presence of low dose 5-aza-20-deoxycytidine which causes
minimal demethylation and slight gene reactivation. These results
suggest that methylation seems to be the dominant component
that locks genes in the silence state. The combination of 5-aza-20-
deoxycytidine and TSA is being tested in clinical setting [24].

4.2. The modulation of dietary factors on epigenetics

As mentioned above, using SAM as the methyl group donor,
DNMTs catalyze the methylation of the 5 position of the cytosine
ring [8]. Dietary factors, e.g. folate, vitamin B12, vitamin B6, vita-
min B2, methionine, choline, and alcohol, etc., may influence the
supply of methyl groups available for the formation of SAM [46].
Dietary factors may also affect the activity of DNMTs which in turn
modify the utilization of methyl groups. The effects of dietary fac-
tors on promoter methylation status and on enzymes involved in
regulation of epigenetics, e.g. DNMTs, HATs, etc., are depicted in
Table 2. Results from our recent study demonstrate the DNA
demethylation capabilities of freeze-dried black raspberries (BRBs)
in human colorectal cancer patients; average 4 weeks of dietary
intervention of BRBs inhibits DNMT1 protein expression and
demethylates promoters of tumor suppressor genes, e.g. p16INK4a,
negative Wnt pathway regulators, SFRP2 and Wnt inhibitory factor
1 (WIF1), leading to a reduction of cell proliferation and protective
modulation of Wnt pathway downstream genes, e.g. b-catenin,
E-cadherin [47]. Micronutrients, e.g. isoflavones, flavonols, and
catechins, etc., have received much attention due to their ability
to influence activities of chromatin-modifying enzymes [48].
(�)-Epigallocatechin 3-gallate (EGCG) from green tea has been
demonstrated to inhibit DNMTs and reactivate tumor suppressor
genes in cultured human cancer cell lines including esophageal
[49], lung [50], and breast [51]. Similarly, genistein from soybean
the regulation of epigenetics.

ene
emethylated

Enzymes examined Ref.

FRP2, SFRP5,
IF1, PAX6a

; DNMT1 [47]

ARb, MGMT,
MLH1, p16

; DNMTs [49]

IF1 – [50]
ARb ; DNMT1 [51]
ARb, MGMT, p16 ; DNMT1 [52]

" Acetylated histones 3, 4, and H3/K4 at the p21 and
p16 transcription start sites

[53]

TG3 ; DNMTs
; MBD2
" HAT

[54]

ARb ; DNMT1 [55]
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modulates enzymes that regulate DNA methylation and histone
acetylation, and reactivates tumor suppressor genes in esophageal
[52], prostate [53], and renal [54] cancer cells. Catechol-containing
coffee polyphenols, caffeic acid, and chlorogenic acid demethylate
retinoic acid receptor b (RARb) possibly through the inhibition of
DNMT1 in human breast cancer cells [55]. Therefore it is possible
that bioactive food components possess DNA demethylation activ-
ity and influence DNA methylation pattern which in turn regulate
gene expression and delay cancer development [48,56].

4.3. Global DNA methylation

Although global DNA hypomethylation has been closely linked
to chromatin restructuring and nuclear disorganization in cancer
cells leading to chromosomal instability [3,33], the effects of global
DNA hypomethylation on tumor development in animals have
been controversial. Mice carrying a hypomorphic Dnmt1 allele,
which reduces Dnmt1 expression to 10% of wild-type level, exert
substantial genome-wide hypomethylation in all tissues. These
mutant mice are runty at birth and at 4–8 months of age they de-
velop aggressive T cell lymphomas that display a high frequency of
chromosome 15 trisomy [57]. Apc(Min/+) mice carrying Dnmt1
hypomorphic alleles have reduced genomic methylation and ele-
vated incidence of microadenomas; however, the incidence and
growth of macroscopic intestinal tumors in the same animals are
strongly suppressed [58]. In contrast to the overall inhibition of
intestinal tumorigenesis in these animals, hypomethylation causes
development of multifocal liver tumors [58]. These results clearly
demonstrate the opposing effects of DNA hypomethylation on
intestinal and liver carcinogenesis. In humans, a study examining
global methylation in cancer cell lines, including breast, central
nervous system, colon, leukemia, liver, lung, ovary and prostate,
has shown that 85% of tested cell lines (51 out of 60) is globally
hypomethylated [59]. Interestingly, the same study has demon-
strated that global methylation in colorectal tumors is highly var-
iable and increased, no change or decreased global methylation is
observed in comparison with their adjacent normal tissues. The
global hypomethylation is partially reversed in tumor with micro-
satellite instability which may reflect alternative progression path-
ways in tumors [59]. Therefore, the concept of global DNA
hypomethylation in cancers might be too simplified and needs to
be further investigated.

The DNA global methylation changes caused by DNA methyla-
tion inhibitors or dietary factors have been studied in humans.
For example, patients, with chronic myelogenous leukemia who
are resistant to imatinib mesylate, are treated with low dose deci-
tabine, a DNA methylation inhibitor. The decreases of DNA global
methylation, measured by LINE1 methylation, in responders and
non-responders are 14.5 ± 3.0% and 26.8 ± 2.7%, respectively; the
resistant cells can withstand more hypomethylation [37]. Further,
a study on the prevention of colorectal adenomas in 388 patients
after 3 years of folic acid supplementation (1 mg/day) reports that
overall the global hypomethylation is not influenced by folic acid
but difference between left and right colon is observed in which
right side of the normal colon has significantly lower mean LINE-
1 methylation levels than those on the left [60].

4.4. Clinical implications of epigenetic changes in cancer prevention

Chemoprevention is the administration of one or more chemical
entities, either as individual drugs or as dietary supplements, to
prevent the initiation of premalignant lesions or their progression
to cancer or cancer recurrence [61]. Therefore, cancer prevention
can be to prevent cancer in high-risk populations, e.g. frequent
exposure to carcinogens or family history of cancer. It also can be
to prevent cancer from recurrence and metastasis after surgery
and chemotherapy, or to prevent cancer from developing resis-
tance to chemotherapeutic drugs. Using epigenetic changes as
markers for cancer prevention has being greatly advanced in the
past few years because numbers of human studies have been con-
ducted. Few examples are given below.

Epigenetic changes have been detected in a high-risk popula-
tion. For example, p16INK4a promoter methylation has already been
found in smokers with bronchial epithelial atypia, classified as
pre-neoplastic pathologically; increased p16INK4a methylation is
detected in sputum from 3 of 7 patients with cancer and 5 of 26
cancer-free individuals at high risk [62]. Can epigenetic changes
be used to predict recurrence or metastasis? A study in the US
investigating the methylation of genes in tumor and lymph nodes
from patients with recurrent and non-recurrent non-small-cell
lung cancer (NSCLC) has reported that p16INK4a, cadherin 13
(CDH13), ras association domain family protein 1A (RASSF1A),
and APC in tumors and in histologically tumor-negative lymph
nodes are associated with tumor recurrence; the methylation of
these genes in histologically normal regional lymph nodes proba-
bly indicates the presence of microscopically undetectable
micrometastases which can be detected by gene methylation
[63]. Similar findings from a study in Japan targeting patients with
NSCLC have demonstrated that p16INK4a and CDH13 methylation
are associated with poor prognosis [64,65]. Further, methylation
of pituitary homeobox 2 (PITX2) has been suggested to predict risk
of metastasis and distant recurrence in steroid hormone receptor-
positive and node-negative breast cancer patients who received
tamoxifen as their only systemic adjuvant therapy [66].

In addition, epigenetic changes have been associated with drug
resistance and chemotherapy outcome. For instance, the applica-
tion of MGMT methylation as a predictor of response to alkylating
agents has been confirmed in two human clinical trials [67,68].
These agents cause cell death by cross-linking of double-stranded
DNA which can be inhibited by O-6-methylguanine-DNA methyl-
transferase (MGMT) [67]. Inactivation of MGMT gene by promoter
methylation which comprises DNA repair has been associated with
longer survival in glioblastoma patients treated with carmustine
[67] or temozolomide [68]. Further, methylation patterns of genes
coding for drug-metabolizing enzymes, e.g. catechol-o-methyl-
transferase (COMT), cytochrome P450 1A1 (CYP1A1), CYP2D6,
N-acetyltransferase type 1 (NAT1), and sulfotransferase 1A1 (SUL-
T1A1), have been examined in tissues from tamoxifen-resistant
breast cancers. Methylation of NAT1 is significantly higher in
tamoxifen-resistant tissues accompanying with lower NAT1 mRNA
expression, and higher Ki67 and cyclin D1 protein expression [69].
In patients with metastatic and microsatellite stable colorectal
carcinomas, CpG island methylation and CpG island methylator
phenotype (CIMP)-positive are associated with worse survival
[70]. Another trial has reported that DNA methylation markers,
PITX2, bone morphogenetic protein-4 (BMP4), fibroblast growth
factor 4 (FGF4), and C20orf55, can be used to predict outcome in
lymph node-positive and HER-2-negative breast cancer patients
treated with anthracycline-based chemotherapy [71]. In a similar
patient population, anthracycline treated, estrogen receptor-posi-
tive, and lymph node-positive breast cancer patients, cysteine
dioxygenase 1 (CDO1) promoter methylation has been suggested
as a biomarker for outcome prediction in these patients [72]. Inter-
estingly, however, p16INK4a methylation is associated with longer
survival and a longer recurrence-free period in gastric cancer
patients who received 5-fluorouracil (5-FU)-based adjuvant
chemotherapy [73]. Many more investigations are necessary to
understand the large scale methylation pattern changes caused
by different chemotherapeutic drugs and heterogeneous nature
of tumors needs to be taken into consideration.

Chemoprevention and chemotherapeutic drugs, and dietary fac-
tors can lead to methylation pattern changes in a group of genes
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rather than a single or few genes. Our recent review article sum-
marizes the technologies of quantitative methylation detection
providing high-throughput screening with increased sensitivity.
It is now possible to globally map the DNA cytosine methylation
at single base resolution, e.g. genome-scale sequencing [74]. New
genome-wide technologies might be applied to central questions
such as how cells from the same person differ in epigenetics over
time and environmental exposure. For example, a recent study
uses genome-wide methylation analysis to study age-related
methylation changes in mice and discovers the possible epigenetic
component that changes with aging [18]. These technologies can
be applied to study the involvement of epigenetic components in
common aging events, e.g. insulin resistance, neuron degeneration,
etc., which might be caused by the environmental exposures and/
or their interaction with genetic and epigenetic factors [18]. Final-
ly, they can be used to discover new genes whose methylation sta-
tuses are associated with risk assessment, chemotherapeutic
outcome, recurrence, and metastasis.
5. Conclusions

Cancer prevention might be achieved by understanding the ini-
tiation and maintenance of epigenetic gene silencing which ulti-
mately reverses the process of gene silencing. Epigenetic therapy
and dietary factors regulate enzymes controlling the functional
state of genes which might turn chromatin to be more accessible
to transcriptional factors and activate transcription (Fig. 1C). The
best understood epigenetic gene silencing is gene promoter hyper-
methylation. The profiling of DNA methylomes might provide new
insights into the regulation and dynamics of DNA methylation in
genomes for cancer prevention. Hypomethylation drugs are help-
ing patients live longer with fewer side effects than conventional
cytotoxic therapy [33]. Because it is a relatively easy and a non-
invasive method to obtain DNA from small amount of blood, stool,
or sputum for the detection of CpG methylation, DNA methylation
markers might be clinically valuable for cancer risk assessment,
early detection, and prognosis.
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