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SUMMARY

Energy coupling factor (ECF) transporters are
responsible for the uptake of essential scarce nutri-
ents in prokaryotes. This ATP-binding cassette
transporter family comprises two subgroups that
share a common architecture forming a tripartite
membrane protein complex consisting of a translo-
cation component and ATP hydrolyzing module
and a substrate-capture (S) component. Here, we
present the crystal structure of YkoE from Bacillus
subtilis, the S component of the previously uncharac-
terized group I ECF transporter YkoEDC. Structural
and biochemical analyses revealed the constituent
residues of the thiamine-binding pocket as well
as an unexpected mode of vitamin recognition. In
addition, our experimental and bioinformatics data
demonstrate major differences between YkoE and
group II ECF transporters and indicate how group I
vitamin transporter S components have diverged
from other group I and group II ECF transporters.

INTRODUCTION

Energy coupling factor (ECF) transporters form a large superfam-

ily of prokaryotic membrane translocation systems involved in

the uptake of scarce nutrients and trace elements from the

environment. They form a modular complex consisting of

two integral transmembrane proteins, a T component, and an

S component that form the conduit for the substrate, coupled

to a soluble ATP-binding cassette (ABC) protein (Rodionov

et al., 2009). The S component is involved in substrate recogni-

tion and generally interacts with its substrate molecule with

very high affinity (Duurkens et al., 2007; Erkens and Slotboom,

2010). The ABC component has two nucleotide-binding domains

(NBD) and drives the substrate translocation by utilizing ATP

hydrolysis; the NBD proteins are coupled with the T component,

which acts as a scaffold and can interact with the corresponding

S component of the ECF modules and confer conformational re-

arrangement within the complex, coordinating ATP hydrolysis
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and substrate translocation (Zhang et al., 2014; Xu et al., 2013;

Swier et al., 2016).

ECF modules can be classified into two distinct groups (Fig-

ure 1A). The best characterized are the group II ECF transporters,

which share a common T component (EcfT) and NBD proteins

(EcfA and A0) with different S components (EcfS), such as ThiT,

RibU, BioY, and PanT, forming distinct interacting partners

(Zhanget al., 2010;Erkenset al., 2011;Berntssonetal., 2012;Kar-

powich et al., 2015). Despite high structural similarity, group II S

components share very low sequence similarity, with the most

conserved motif being the residues interacting with the T com-

ponent. The less characterized group I ECF transporters form a

dedicated tripartite membrane protein complex wherein all the

constitutive components are generally encoded together in one

operon. The basic molecular organization of group I ECF trans-

porters is similar to the group II ECF transporters. Moreover,

mechanistic crosslinking and spectroscopic studies exist for the

group I BioMNY complex (Neubauer et al., 2011; Finkenwirth

et al., 2013; Finkenwirth et al., 2015). However, only one high-res-

olution structure of a group I S component is available to date.

NikM, the S component of an ECF type nickel/cobalt transporter,

contains an additional N-terminal transmembrane helix that is

crucial to the coordination of the nickel or cobalt ion (Yu et al.,

2014). It is currently unclear whether all group I S components

containcommonstructural featuresandhigh-resolutionstructural

details of their interaction with the T components are missing.

The yko operon encodes for a group I ECF module, where

YkoE acts as the substrate-capture S component, YkoC as the

T component and YkoD represents the ABC component consist-

ing of two fused ATPase domains (Figure 1A). The ykoEDC

operon is found in Gram-positive bacteria and is under control

of a THI box riboswitch, implicating the complex in the transport

of thiamine or a thiamine precursor across the bacterial mem-

brane (Figure 1B). Little is known about the substrate specificity

of the YkoEDC complex, however some studies have shown that

the complex is capable of transporting thiamine (Schyns et al.,

2005). Moreover, some bacterial species possess an additional

gene within the operon, a soluble thiamine-binding protein

YkoF (Devedjiev et al., 2004).

Despite extensive research into ECF modules, the mecha-

nistic details of substrate transport remain highly elusive. The

structures of the entire ECF modules for folate and pantothe-

nate transporters reveal an almost parallel orientation of the
MRC Laboratory of Molecular Biology. Published by Elsevier Ltd. 827
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Figure 1. Overall Structure of YkoE

(A) Comparison of the architectures between

group I and group II ECF transporters. Group II ECF

modules can share several different S compo-

nents, whereas group I S components are specific

for their cognate ECF module, with all partners

generally found in an operon together.

(B) Genetic organization of ykoEDC operon. The

entire operon is under the regulation of the THI box,

a thiamine-responsive riboswitch. The function

of YkoF (green), an oligomeric, soluble thiamine-

binding protein is currently unclear.

(C) Ribbon depiction of the overall conformation of

YkoE.

(D) Cartoon representation of the orientation of

individual helices in YkoE.
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S component to themembrane, indicating a topplingmechanism

during substrate translocation (Xu et al., 2013; Swier et al., 2016;

Zhang et al., 2014). As these structures were free of nucleotide

and substrate, theymost likely represent a state after ATP hydro-

lysis and substrate release (Zhang, 2013; Slotboom, 2014; Fin-

kenwirth et al., 2015). In the course of the transport cycle, the

substrate-bound S component must associate with EcfT and

NBD proteins and is assumed to topple over.

Here, we present the first crystal structure of a group I ECF

vitamin transporter S component, YkoE. While the overall

conformation of YkoE resembles those of group II ECF trans-

porters, this group I S component contains several unique

structural features. We combine structural analysis with bio-

informatics and molecular dynamic simulations in order to probe

the impact of these additional structural features on the YkoEDC

complex formation and mechanism of vitamin transport.

RESULTS

Overall Structure
To gain insights into the function of the YkoEDC ECF transporter,

we solved the crystal structure of its S component YkoE. The

gene was cloned from several bacterial species, and the protein

was expressed and purified to homogeneity. YkoE failed to

crystallize using the traditional vapor-diffusion methods after

screening several different homologs. However, YkoE from

Bacillus subtilis could be readily crystallized using the lipidic

cubic phase (LCP) method. The structure was solved using sin-

gle-wavelength anomalous dispersion (SAD) with selenomethio-

nine-labeled YkoE to 1.95 Å resolution. The electron density from

native crystals was of sufficient quality to build the entire mole-

cule of YkoE with the exception of the four N-terminal amino

acids (Figure S1A). The structure of YkoE revealed a six helical

transmembrane domain with the overall fold reminiscent of S

components from group II ECF transporters (root-mean-square

deviation between YkoE and other S components ranges be-

tween 2.6 and 3.6 Å) (Figures 1C and 2A). YkoE possesses an

additional C-terminal helix that presumably protrudes toward

the cytosol and lies perpendicular to the lipid bilayer (Figure 1D).
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The present orientation of the helix is likely

stabilized by the crystallographic con-

tacts between neighboring molecules
(Figure S1B). The six hydrophobic helices form a tight fold with

an open cavity with a volume of 545 Å3 facing the extracellular

part of the membrane. The most conserved amino acid residues

in YkoE map to the interior of the cavity as well as residues

involved in the interhelical packing within the molecule (Fig-

ure 3A). In YkoE, helix H1 is highly extended with a bend in the

middle, leading into a sharp turn joining to helix H2 (Figure 3B).

Helix H2 possesses a conserved Pro44 that breaks up the a-he-

lical backbone, giving rise to a kink in the helix that leads into a

310 helical conformation, returning to a regular a-helical back-

bone after a short amino acid stretch (Figures 1D and 3B).

Such a structural feature is reminiscent of helix H4 in ThiT where

thep bulge dictates the conformation of the residues forming the

thiamine-binding site (Erkens et al., 2011). In YkoE, helix H2

packs very tightly against helix H6, which bears a highly

conserved p bulge that introduces an additional kink at the

nearly invariant Gly47 residue in helix H2, and thus reversing

the 310 helical stretch to an a-helical one (Figure 3B). This pack-

ing arrangement, together with the surrounding helices H3, H4,

and H5, creates a funnel-like substrate-binding cavity.

Thiamine Coordination
During the initial stages of refinement, the density for thiamine

became apparent and allowed the modeling of the full molecule

unambiguously (Figure 4A). The thiamine molecule is present at

the base of the cavity found in the extracellular part of the mem-

brane (Figures 4B and 4C). The pyrimidine group forms p-stack-

ing interactions with a highly conserved Trp49 located at the kink

of helix H2. In addition, the pyrimidine group is coordinated by H

bonds by highly conserved Glu77 and Gln95 residues located on

helix H3 and H4, respectively. The thiazole ring of thiamine forms

H-bonding interactions with Asp131 and Tyr46 (Figure 4D). The

residues coordinating the pyrimidine moiety of thiamine are

more conserved than those coordinating the thiazole moiety

(Figure S2A). The orientation of the thiamine in the YkoE binding

pocket differs significantly from that of the thiamine bound to

ThiT, a group II ECF S component (Erkens et al., 2011). The thia-

zolemoiety of thiamine in ThiT points to the bottom of the binding

pocket and the pyrimidine moiety faces the extracellular side



Figure 2. Structure Superposition of S Com-

ponents

(A) Superposition of the structure of YkoE (dark

blue) and the structures of group II S components

colored as follows: FolT with bound folate (PDB:

4Z7F) in pink, RibU (PDB: 3P5N) in light green, HMP

(PDB: 4HZU) in magenta, ThiT (PDB: 3RLB) in

yellow, apoFolT (PDB: 4HUQ) in gray, BioY (PDB:

4DVE) in green, PanT (PDB: 4RFS) in orange.

(B) Superposition of YkoE (dark blue) and NikM

(light pink).

(C) Structure-based multiple sequence alignment

of group I and II S components. The secondary

structural elements of YkoE are shown on the top.

Structurally equivalent residues are shown in

uppercase. The residues contributing to the con-

served FXXXA motif are indicated with red dots at

the bottom of the alignment, the YkoE residues that

interact with the thiamine are indicated with yellow

dots, and the Phe residues that obscure the groove

with blue dots.
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(Figures 5A and S3). In contrast, the thiamine bound to YkoE is in

a reverse orientation and located much deeper in the binding

pocket. There are also differences between the key interactions

for thiamine binding in the YkoE and ThiT binding pockets. In

ThiT, the thiazole ring is sandwiched between the conserved

Trp34 and His125 located on loop L1 and helix H5, respectively.

In addition, the Glu84 residue in helix H4 forms a hydrogen bond

with the pyrimidine moiety and Trp133 located at the cap of helix

H5makes a stacking interaction (Figure 5B). The latter is reminis-

cent of the interaction between the conserved Trp49 and the

pyrimidine ring of the thiamine in the YkoE structure. The confor-

mation of the thiamine molecule in the binding sites of YkoE

and ThiT is almost identical, both molecules having the

low-energy F conformation as defined by the dihedral angles

fT (C50-C3,50-N3-C2) and fP (N3-C3,50-C50-C40) (Pletcher

et al., 1977). The thiamine-binding crevice in YkoE is open and

not protected by lid closure mediated by loop L1 as observed

for several group II ECF S components (Figures 4B and S3)

(Zhang et al., 2010; Erkens et al., 2011; Zhao et al., 2015).

Biochemical Characterization of Thiamine Binding
to YkoE
Escherichia coli is able to synthesize thiamine in its cytoplasm,

therefore we decided to investigate whether YkoE co-purifies
Cell Chem
with its substrate in the pre-bound form

as reported for several other S compo-

nents (Erkens and Slotboom, 2010;

Berntsson et al., 2012). We expressed

the protein in standard terrific broth as

well as M9 minimal media without the

addition of thiamine as a co-factor. In

both instances, thiamine could be de-

tected using MALDI-TOF mass spectrom-

etry from the denatured YkoE protein,

confirming that, like for other S compo-

nents, the affinity between YkoE and thia-

mine is very tight. To investigate whether

there was a difference in the populations
between the pre-bound versus apo-YkoE, we performed tem-

perature melting circular dichroism (CD) experiments to assess

the stability of proteins overexpressed under different condi-

tions. YkoETB gave a Tm of 73�Cwhereas YkoEM9 had a Tm value

of 68�C, which suggested that YkoE produced in M9 minimal

media contained a substantial population of apo-YkoE mole-

cules (Figure 6A). To confirm that the difference in Tm between

the proteins is due to the presence of pre-bound thiamine, we

added an excess of thiamine to YkoEM9 and repeated the CD

melting experiments. The measured Tm of YkoEM9 supple-

mented with excess thiamine was 75�C, which confirmed that,

when overexpressed in M9minimal media, a substantial propor-

tion of YkoE is in its apo form. We then proceeded to investigate

the thiamine-YkoEM9 interactions using intrinsic Trp fluores-

cence measurements. The addition of excess thiamine led to

the quenching of Trp fluorescence in YkoE and allowed us to

determine an approximate dissociation constant (Kd) of 4.5 nM

for YkoEM9-thiamine complex formation (Figures 6B and 6C).

The YkoEW49A mutant did not exhibit any Trp quenching in

response to the thiamine titration. Substitution of other thiamine

coordinating residueswith alanine (namely YkoEE77A, YkoED131A,

YkoEQ95A, YkoEY46A) resulted in 2- to 5-fold weaker binding with

the Q95A mutation showing the largest effect on affinity (Fig-

ure 6D). In addition, introduction of a bulky Trp side chain
ical Biology 23, 827–836, July 21, 2016 829



A B Figure 3. Structural Overview of the

Conserved Motifs in the Group I S Compo-

nent YkoE

(A) Substrate cavity and interhelical contacts are the

most conserved regions of YkoE. Conservation of

amino acid residues was analyzed using ConSurf

(Ashkenazy et al., 2010). 980 non-redundant se-

quences of YkoE homologs were used in the align-

ment to emphasize the most conserved regions

of the structure. Highly conserved residues are

depicted as burgundy patches; moderately

conserved side chains are shown in light pink.

Weakly conserved residues are colored in cyan.

Residues that exhibit some degree of conservation

among the 980 homologs of YkoE are in white.

(B) Ribbon representation of the packing con-

formations of helix H2 and helix H6. Helix H2 is

comprised of a-310-a helical elements that allow

it to pack tightly against helix H6, thereby closing

the cavity from the cytoplasmic side. The highly

conserved p bulge is in the middle of helix H6.
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(YkoEQ95W mutant) abolished thiamine binding completely,

possibly by causing a steric clash with the pyrimidine group at

the bottom of the binding pocket. Altogether, the mutagenesis

studies presented here corroborate with the observed orienta-

tion of thiamine in the substrate-binding site of YkoE in crystallo.

Orientation of YkoE in the Membrane
The orientation of ECF transporter S components in the mem-

brane is highly debated. So far, all individual group II S compo-

nents have been crystallized in detergent conditions and the

orientation of monomers with respect to each other in the

asymmetric unit is usually incompatible with the formation of a

continuous lipid bilayer (Erkens et al., 2011). YkoE is the first

S component that was crystallized in LCP. The crystal packing

shows extensive head-to-tail interactions forming type I mem-

brane protein crystals (Figure S1B) and suggests a standard

orientation in the membrane, i.e., with helices perpendicular to

the membrane plane. Two lipid molecules could be assigned in

the electron density of YkoE aligning with the transmembrane

helices (Figure S1C), thus further supporting this orientation of

YkoE in the membrane bilayer. In contrast, in available crystal

structures of entire ECF complexes, the S components are posi-

tioned in an almost horizontal orientation in the bilayer, perpen-

dicular to the T components (Xu et al., 2013; Zhang et al.,

2014), suggesting a toppling mechanism as the basis for the

import of substrates during their catalytic cycle (Slotboom, 2014).

In order to investigate the basis for the toppling mechanism,

we performed coarse-grained molecular dynamics (CGMD) sim-

ulations of YkoE in lipid bilayers. Using a vertical (perpendicular)

starting orientation (standard), YkoE is stable during 2 ms simula-

tions (Figure S4A). In contrast, YkoE positioned in a horizontal

(parallel) orientation in the lipid bilayer, an orientation reminiscent

of S components in intact ECF complexes, rapidly turns by 60� to
adopt a stable perpendicular/vertical orientation (Figure S4B).

We further investigated the role of the highly charged C-terminal

helix of YkoE. In the absence of the C-terminal helix, YkoE also

turns into a stable perpendicular/vertical orientation, although

with a significant delay compared to wild-type YkoE, suggesting

that electrostatic forces between the C-terminal helix H7 of YkoE
830 Cell Chemical Biology 23, 827–836, July 21, 2016
and the phosphate head groups of the lipid bilayer may accel-

erate reorientation of the protein in the bilayer (Figure S4C).

To investigate whether these results are a special feature of

YkoE or also occur in other group I or group II S components,

we performed similar CGMD simulations with all ECF S com-

ponents with known structure (Figure S5). All investigated

S components return to their standard orientation within 1 ms

simulation. While most S components begin to turn immediately,

YkoE-DC, a truncated version of NikM, and RibU show a signif-

icant delay. These CGMD simulations also suggest that isolated

S components are unlikely to topple over by themselves, but

rather require T-component association for toppling. As all

investigated S components are positively charged in their intra-

cellular side (Figure S6), in accordance with the positive-inside

rule (Heijne, 1986), it is tempting to speculate that a positively

charged cytoplasmic/intracellular region is responsible for the

rapid reorientation of S components in the membrane (after

substrate release and dissociation from the T component).

A partition between positive inside and a more uncharged/

hydrophobic outside is a general feature of ECF S components

and may facilitate the integration of extracellular regions in the

bilayer during the proposed toppling mechanism by lowering

the energetic barrier.

DISCUSSION

The structure of YkoE provides the first insight into the S compo-

nent of a group I vitamin transporter and how it relates to other

group I and II ECF S components. Despite having a common

evolutionary origin, evidenced by their global structural similarity

and binding site architecture, group I and group II S components

differ in several aspects. Since distinct group II S components

use the same ECF module, they have evolved to compete for

the common T component depending on their substrate load.

This probably exerts a strong evolutionary pressure to maintain

structural complementarity of the interface between ECF S and

T components, and therefore group II S components share

certain sequence and structural features. In contrast, group I

S components associate with their own distinct ECF module,
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Figure 4. Thiamine-Binding Site of YkoE

(A) Electron density of thiamine from the 2Fo � Fc
map contoured at 1.5 s.

(B) Top view of the surface of YkoE with thiamine

bound in the substrate cavity.

(C) Cross-section of YkoE with thiamine localized

within the binding pocket. Black lines indicate the

positions of helix H2 and helix H6.

(D) Coordination of thiamine (cyan) by residues within

the substrate-binding pocket (orange). Hydrogen

bonds are shown as black dashes. Carbon atoms are

colored gray, nitrogen atoms are purple, oxygen

atoms are red, and the sulfur atom is light orange.
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the components of which can co-evolve, acquire new features,

and diverge independently from other group I and group II trans-

porters. The latter statement is supported by the comparison of

the NikM and YkoE structures that reveal lack of conservation,

and differences in the length of their loops, interhelical packing,

and additional N- and C-terminal helices (Figure 2B). Analysis of

the structures of group II ECF transporters suggests that the

main interactions between S and T components involve helix

H1, the groove between helices H1 and H6, the loop connecting

helices H5 and H6 from the S component, and coupling helices

CH2, CH3, and transmembrane helices from the T component

(Xu et al., 2013; Zhang et al., 2014; Swier et al., 2016). Structure

superposition of the T components suggests small conforma-

tional changes at the transmembrane helices that probably allow

a certain degree of freedom in order to accommodate distinct S

components. All group II S components possess a FxxxA motif

(whereF is a small residue) in their helix H1 that interacts with he-

lix CH2 of the T component. The conservation of this motif is not

strict and individual mutations are tolerated in several group I

and group II S components (Zhang et al., 2014; Erkens et al.,

2011; Finkenwirth et al., 2015). Another characteristic feature

of the interface between group II S and T components is a

deep groove defined by helices H1 and H6 of the S component,

which serves as a platform on which helix CH3 of the T compo-

nent docks via two highly conserved Phe residues (Figure S7A).

Helices CH2 and CH3 are the most conserved parts of the group

II T components, underpinning their importance for protein

function.

None of the features characteristic for the group II trans-

porters are present in YkoE, and this likely accounts for why

YkoE does not associate with group II ECF modules (Figure 2C).

Instead of the FxxxA motif, YkoE contains a semi-conserved

S/AxxxI/VV motif located at the equivalent position on helix

H1. This motif probably interacts with the CH2 helix of its T

component YkoC. We modeled the YkoE-YkoC complex using

a YkoC homology model and the EcfS(PanT)-EcfT complex as
Cell Ch
a template. The main interactions between

YkoE and YkoC probably involve a large

hydrophobic interface defined by helix H1

and the groove between H1 and H6 of

YkoE and the highly conserved coupling

helices CH2 and CH3 of YkoC. We specu-

late that the interaction between helix H1

and CH2 in the YkoE-YkoC complex is
mediated by a hydrophobic/shape complementarity interaction

between the branched amino acid I/V on the YkoE helix H1 and

a highly conserved Gly144 on the YkoC helix CH2 (Figure 7).

The lack of strong sequence conservation in helix H1 is prob-

ably due to the uniqueness of the YkoE-YkoC interface that

was shaped during speciation through the co-evolution of the

two binding partners.

Similar to the lack of a conserved motif on the helix H1, YkoE

does not possess a deep groove that can accommodate the

conserved Phe residues from the T-component helix CH3. The

extended helix H2 in YkoE causes a displacement of the helix

H6 that narrows the distance between helix H1 and H6

compared with other S components. In addition, the presence

of two semi-conserved Phe residues (Phe19 and Phe26) on the

helix H1 makes the groove between helices H1 and H6 very

shallow (Figure S7B). Furthermore, helix CH3 in YkoC, which

likely complements this groove in the YkoE-YkoC complex, con-

tains highly conserved aliphatic residues in the equivalent posi-

tions of the Phe residues in the T component helix CH3.

Another difference between YkoE and group II S components

resides in loop L1 (Figure 2). In YkoE, helices H1 and H2 are

much longer than the corresponding helices in group II S compo-

nents; the loops on the extracellular side joining adjacent a heli-

ces are short and seemingly do not serve any substrate-gating

function. This is in stark contrast to the crystal structures of all

S components determined to date, where loop L1 plays a major

role in shielding the bound substrate molecule, usually resulting

in very tight substrate binding (e.g. Kd of 100 pM in ThiT) (Figures

2 and S3) (Erkens et al., 2011; Zhao et al., 2015). Due to the

absence of lid-like features in YkoE, it is likely that the conforma-

tional changes accompanying the substrate release in the

context of the whole module differ from the group II S compo-

nents andNikM, and probably involve a rearrangement of helices

contributing to the substrate coordination.

Our structural analysis suggests that YkoEDC and group II

ECF transporters have certain structural and mechanistic
emical Biology 23, 827–836, July 21, 2016 831
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Figure 5. Side by Side Comparison of YkoE

and ThiT

Both proteins are colored by conservation.

(A) YkoE (left) and ThiT (right) with bound thiamine.

(B) The constituent residues of the YkoE (left) and

ThiT (right) thiamine binding pocket that interact

with thiamine.
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features in common. There are, however, pronounced differ-

ences between their components that could result in differ-

ences in their mechanism of vitamin transport. Further struc-

tural and functional studies of the YkoEDC complex would

help to elucidate the key aspects of the mechanism of this

transporter.
SIGNIFICANCE

Energy coupling factor (ECF) transporters are essential

vitamin transporters in many prokaryotes and are proposed

to function via a unique topplingmechanism.Wedetermined

the structure of a thiamine-bound group I substrate-capture

(S) component (YkoE), an integral membrane protein that is

part of a dedicated tripartite transporter complex, in a lipidic

environment. Our structure analysis revealed essential

differences between YkoE and the better characterized

group II ECF S components and uncovers how group I

vitamin transporter S components can diverge from other

group I and group II ECF transporters.
EXPERIMENTAL PROCEDURES

Cloning, Overexpression, and Purification of YkoE

The genes coding for ykoEwere amplified from several bacterial species using

PCR, cloned into a pNKE vector with an N-terminal His6 tag, and screened for
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expression using a variety of expression strains,

media, and conditions. The most promising candi-

date, YkoE from B. subtilis, was overexpressed in

E. coli Lemo21 cells (Schlegel et al., 2012) in terrific

broth media supplemented with 1 mM L-rhamnose

at 37�C. Cells were grown to an OD600 of 0.8–1.2,

the temperature was lowered to 20�C, and

0.1 mM isopropyl thiogalactopyranoside was

added. Cells were harvested the next day and

lysed using an Avestin EmulsiFlex-C3 high-pres-

sure homogenizer. Cell debris were pelleted at

20,000 3 g for 30 min, and membrane fractions

were isolated by centrifuging the supernatant at

200,000 3 g for 1 hr. Membranes were resus-

pended and solubilized in buffer A (30 mM Tris-

HCl, 500 mM NaCl, 5% glycerol, pH 7.1) with 1%

n-dodecyl-b-D-maltopyranoside for 1 hr at 4�C;
insoluble material was removed by centrifugation

at 150,000 3 g for 30 min. Solubilized membranes

were incubated with Ni-NTA resin for 1 hr; the resin

was washed with buffer A + 0.2% n-decyl-b-D-

maltopyranoside and 50 mM imidazole. YkoE

was then eluted with buffer B (30 mM Tris,

500 mM NaCl, 5% glycerol, 0.2% n-decyl-b-D-

maltopyranoside, 250 mM imiadzole). Next, YkoE

was incubated with TEV protease overnight to

remove the His6 tag. TEV was subsequently

removed by the re-application of the protein
mixture to Ni-NTA resin. YkoE was further purified by size-exclusion chro-

matography using a Superdex S200 10/300 column equilibrated using buffer

A + 0.2% n-decyl-b-D-maltopyranoside.

Crystallization

Prior to crystallization, YkoE was concentrated to 10 mg/ml. Diffracting crys-

tals could only be obtained using the LCP method with monoolein as lipid,

despite extensive high-throughput screening of several homologs using the

traditional sitting-drop vapor-diffusion method. Using LCP crystallization,

several crystal hits were identified after several days at 20�C. Initial crystal
hits exhibited poor diffraction, however addition of excess thiamine to the pro-

tein prior to crystallization and extensive crystal optimization improved the

diffraction quality and resolution from 6.5 Å to below to 2 Å. The best crystals,

diffracting to 1.95 Å, were obtained for protein purified in n-decyl-b-D-malto-

pyranoside and reservoir solutions containing 0.05 M disodium hydrogen

phosphate, 19% PEG1000, 0.05 M citric acid, 0.1 M lithium sulfate, and

80 mM phosphoformic acid. SeMet-labeled YkoE was subjected to high-

throughput screening after the crystals failed to grow in previously identified

conditions. The best diffracting SeMet YkoE crystals were obtained in mono-

olein-based LCP at 20�C using reservoir solution containing 0.2 M ammonium

phosphate monobasic, 0.1 M ammonium sulfate, 0.1 M sodium citrate

(pH 4.5), and 32% PEG400. SeMet crystals of YkoE were much smaller in

size (max. 20 mm) and diffracted to 3.2 Å. All crystals were flash frozen in liquid

nitrogen without additional cryoprotection.

Structure Determination

All X-ray diffraction data were collected at 100 K. Native data were

collected at the PETRA III P13 and ESRF ID29 synchrotrons at 0.972 Å

wavelength; data for SAD phasing on the SeMet-derivatized crystals

were collected at the PETRA III P14 microfocus beamline at 0.979 Å



Figure 6. Binding of Thiamine to YkoE

(A) Temperature-induced unfolding of YkoEM9 (open circles) and YkoETB (filled circles) monitored by CD spectroscopy. CD signal at 222 nm was recorded in

30 mM Tris, 200 mM NaCl (pH 7.1). The continuous line in each plot corresponds to a standard two-state unfolding model.

(B) Fluorescence spectra of 200 nM YkoEM9 in the absence (dashed line) and presence of a saturating amount of thiamine (solid line; 800 nM).

(C) Titration of 100 nM YkoEM9 with thiamine. Intrinsic protein fluorescence was measured with excitation wavelength of 280 nm and emission wavelength of

340 nm (filled circles) and 350 nm (open circles), respectively. The continuous line in each plot corresponds to a single-site binding model fit.

(D) Table summarizing the binding affinities for various YkoE variants.
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wavelength. All datasets were processed with XDS (Kabsch, 2010) and

merged with AIMLESS (Evans, 2006). Native YkoE crystals belonged to

the I422 space group with cell dimensions a = 70.71 Å, b = 70.71 Å,

c = 196.84 Å. SeMet-labeled YkoE crystals belonged to the C2221 space

group with cell dimension a = 109.29 Å, b = 132.04 Å, c = 34.86 Å. SHELXD

was used to find nine selenium atoms in the SAD dataset; SHELXE was

used for initial density modification and a partial backbone building consist-

ing of several a helices (Schneider and Sheldrick, 2002; Sheldrick, 2002;

Sheldrick, 2008). Further rounds of density modification using RESOLVE

allowed the placement of additional a helices in Coot (Terwilliger, 1999;

Emsley and Cowtan, 2004). This model was then used for molecular

replacement into a high-resolution native dataset. The final model was built

using AUTOBUILD as well as manual building performed in Coot (Emsley

and Cowtan, 2004; Terwilliger, 2003b; Terwilliger, 2003a). Refinement

was carried out in phenix.refine (Afonine et al., 2012). Initial refinement

steps included simulated annealing and optimization of atomic displace-

ment parameters. At later stages, a thermal libation and screw-rotation

(TLS) refinement strategy was used with the aid of TLSMD implemented

as part of phenix.refine (Afonine et al., 2012). The final R factors of the

refinement were 0.19/0.22 (Rwork/Rfree) with 99% of residues falling within

the Ramachandran favored region and no outliers in disallowed regions,

and a MolProbity (Chen et al., 2010) clashscore of 1.28.
CD Spectroscopy

Far-UV CD measurements were made using a Jasco J-815 spectropola-

rimeter. Spectra were recorded from 260 to 190 nm using a 1 mm path

length cell and 7–20 mM protein. CD melting curves were acquired by

following the CD signal at 222 nm using a heating rate of 1�C/min. Buffer

conditions were 30 mM Tris (pH 7.1), 200 mM NaCl, 0.2% n-decyl-b-D-

maltopyranoside.

Fluorescence Spectroscopy

Fluorescence measurements were performed on a Cary Eclipse fluorescence

spectrophotometer. Intrinsic tryptophan fluorescence was measured with

excitation at 280 nm and emission range from 300 nm to 500 nm. Individual

spectra were measured using 200 nM YkoE protein in the absence and pres-

ence of 800 nM thiamine. Thiamine titrations were performed using 100 nM

YkoEM9 and individual titrations of 2 ml. The excitation wavelength was

280 nm, and the emission signal at 340 nm and 350 nm was followed using

an averaging time of 20 s. Buffer conditions were 30 mM Tris (pH 7.1),

200 mM NaCl, 0.2% n-decyl-b-D-maltopyranoside.

Molecular Dynamics Simulations

The structures of the S components were processed by removing ligands

and solvents. For FolT (4Z7F), PanT (4RFS), and RibU (3P5N), the missing
Cell Chemical Biology 23, 827–836, July 21, 2016 833



Figure 7. Modeling of YkoEDC Complex

(A) Theoretical model of YkoEDC complex. YkoE is shown in orange, the homology model of YkoC in gray, and the homology model of YkoD in aquamarine.

(B) Theoretical model of YkoEC complex. YkoE is shown in orange, the homology model of YkoC colored according to conservation scores (cyan, variable;

burgundy, conserved), the most conserved parts of YkoC are the helices CH2 and CH3, which are probably involved in interactions with YkoE and YkoD. An

insertion and deletion in YkoC compared with EcfT could potentially result in some mechanistic differences between these T components. In YkoC, the loop

connecting helix CH3 and transmembrane helix H5 is longer, and the hinge region between CH1 and CH2 is much shorter compared with the group II Ecf

T component. The similarities in the pairwise alignments used to build the homologymodels are: YkoC and EcfT, 28%; YkoDN-terminal domain and EcfA2, 37%;

YkoD C-terminal domain and EcfA1, 33% sequence identity.

S Component PDB Vector

BioY 4DVE 153–182

FolT 4Z7F 7–131

HMP 4HZU 51–133

NikM 4M58 77–158

NikM_DC 4M5B 77–158

PanT 4RFS 162–192

RibU 3P5N 49–129

ThiT 3RLB 123–171

YkoE 5EDL 39–59

YkoE_DC 39–59
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loop was modeled using the Modeller interface implemented in Chimera

(Yang et al., 2012), selecting the conformation with the lowest zDOPE score.

The structures were converted to a CG model with the martinize program (de

Jong et al., 2013). Subsequently, dipalmitoylphosphatidylcholine (DPPC)

lipids and solvent were added in a cubic periodic box of 10 nm with the

program insane (Wassenaar et al., 2015). The DPPC bilayer was built in

the xy plane, with the protein TM helices at different angles to the z axis.

Na+ and Cl� were added at a concentration of 0.1 M to neutralize the system.

The simulations were run with the GROMACS suite 4.6.5 (Hess et al., 2008;

Pronk et al., 2013), using the MARTINI 2.2 force field (Marrink et al., 2007).

The protein was simulated using the elastic network RubberBand, similar

to ElNeDyn (Periole et al., 2009) and implemented in martinize. The systems

were minimized with the steepest descent method during 500 steps using a

time step of 20 fs. Next, equilibration runs were performed using a Berend-

sen barostat (Berendsen et al., 1984) with a coupling time of 10 ps. After the

equilibration, production runs were done during 1 ms using semi-isotropic

pressure coupling to a reference pressure of 1.0 bar with the Parrinello-

Rahman barostat (Parrinello and Rahman, 1981) and a compressibility of

3.4 3 10�4 bar�1. The temperature was controlled at 323 K using the velocity

rescaling thermostat (Bussi et al., 2007) with a time step of 1 ps. The final

coordinates at 1 ms were transformed to GROMOS united atom representa-

tion (Oostenbrink et al., 2004) using the backward software (Wassenaar et al.,

2014).

For the calculation of the protein toppling angle in the membrane, a vector

was defined for each structure between CG backbone beads of two residues,
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spanning along the TM domain. The toggling angle was calculated between

this vector and the z axis, using VMD (Humphrey et al., 1996).
Sequence Analysis/Bioinformatics

NCBI-NR was searched using PSI-BLAST (Altschul et al., 1997) to identify

sequence homologs of YkoE, YkoC, and ThiT. Selected sequences were

aligned, the alignment was manually corrected and then used as input for

calculation of conservation scores. Multiple sequence alignments were
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generated usingMUSCLE (Edgar, 2004) andMafft (Katoh and Standley, 2013),

and visualized using Jalview (Waterhouse et al., 2009). Evolutionary conserva-

tion was computed using ConSurf (Ashkenazy et al., 2010). Sequence logos

were generated using WebLogo (Crooks et al., 2004). The substrate cavity

was analyzed using DoGSiteScorer (Volkamer et al., 2012). HHpred (Hilde-

brand et al., 2009) was used to search the PDB and Structural Classification

of Proteins databases for structural homologs. Homology models were gener-

ated with Modeller (Sali and Blundell, 1993) using EcfT, EcfA1, and EcfA2

structures as templates (PDB: 4RFS) and manually optimized alignments as

input. Structure-based sequence alignment was produced manually using

pairwise superpositions computed with TopMatch (Sippl and Wiederstein,

2008). Structure superpositions were made with TopMatch using a local

constraint on the three N-terminal helices.
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