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Abstract 

Madej, T. and D. B. West, The interval inclusion number of a partially ordered set, Discrete 

Mathematics 88 (1991) 259-277. 

A containment representation for a poset P is a map f such that x < y in P if and only if 

f(x) cf(y). We introduce the interval inclusion number (or interval number) i(P) as the 

smallest t such that P has a containment representation fin which each f(x) is the union of at 

most t intervals. Trivially, i(P) = 1 if and only if dim(P) =Z 2. Posets with i(P) = 2 include the 

standard n-dimensional poset and all interval orders; i.e. posets of arbitrarily high dimension. 

In general we have the upper bound i(P) < [dim(P)/2], with equality holding for the Boolean 
algebras. For lexicographic composition, i(P) = k and dim(Q) = 2k + 1 imply i(P[Q]) = k + 1. 
This result and i(&J = k imply that testing i(P) 6 k for any fixed k 2 2 is NP-complete. 

Concerning removal theorems, we prove that i(P -x) 5 i(P) - 1 when x is a maximal or 

minimal element of P, and in general i(P - x) 2 i(P)/2. 

1. Introduction 

In this paper we introduce and study a structural parameter for posets that we 
call the interval inclusion number of a poset. By a poset (partially ordered set) we 
mean a pair (P, CP), where P is a set of elements and cP is a partial order on P, 
i.e. an antisymmetric, irreflexive, transitive binary relation. Usually we will refer 
to P as a poset, with the order being understood, and write < for cP. A 
containment representation for a poset P is a set-valued function f defined on the 
elements of P, with the property that for any elements X, y E P, 

x <Y iff f(x) Cf (y). 
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An interval inclusion representation for a poset P is a containment representation 
f such that, for each element X, f(x) is a union of intervals from the real line R!. 
We say that P has a k-interval representation, or more simply a k-representation, 
iff it has an interval inclusion representation where each set f(x) is the union of at 
most k intervals. For a given poset P we let i(P) denote the minimum k such that 
P has a k-representation. We call i(P) the interval inclusion number of P, or 
often simply the interval number of P. If we number the elements of P as 

Xl,. . . > n,, then an interval inclusion representation for P is obtained by defining 

f(xj) = U {[i, il 1 Xi c xj> 

for each j, 1 ~j s n. No more than n intervals are used by this representation for 
any element, and it follows that i(P) is well-defined and we have the upper bound 
i(P) s IPI. A better upper bound will be obtained later in this paper. An 
i(P)-representation for P is an optimal representation. 

A poset with small interval number has a compact representation in a 
computer. Let n = IPI and k = i(P), so that each element of P can be encoded as 
a set of no more than k intervals. Without loss of generality we can assume that 
the endpoints of the intervals are integers, and it is clear that we need at most 
O(kn) distinct endpoints. Hence each element can be encoded within space 
O(k log n), which gives a total space requirement of O(kn log n). With a slight 
modification of this representation we can obtain an efficient algorithm for testing 
whether or not x s y, for elements, x, y E P. For each element x we maintain the 
list of its intervals, sorted in order of increasing endpoints. The time needed to 
compare x and y is then bounded above by the product of the time needed to 
traverse the two lists of intervals, each of length no more than k, and perform 
comparisons between a pair of numbers of magnitude O(n). Hence the time 
required to test x my is O(k log n). If we assume that a number can be stored in a 
single memory location and that two numbers can be compared in constant time, 
then the total space required is O(kn), and the time to test x my is O(k). Thus 
we see that if k is small we can achieve a saving in space over an adjacency matrix 
representation, and/or a saving in the time required to compare two elements 
over an adjacency list representation for the poset. Recall that an adjacency 
matrix requires space O(n’), and the time required to compare two elements 
using an adjacency list can be linear in n, e.g. consider the case of an adjacency 
list for a linear order. 

We will relate interval representations to other concepts in the theory of partial 
orders. If P and Q are partial orders on the same set of elements, the intersection 
of P and Q, denoted by P II Q, is the poset obtained by defining x -CPnQy iff 
x <py and x <e y for all elements X, y. In the obvious way we can extend the 
definition to more than two posets. A poset Q is an extension of P iff for every 
X, y E P, x cp y implies x cp y. A poset Q is a linear order iff for any X, y E Q 
with x # y, either x =$ y or y cQ X. We say that Q is a linear extension of P iff Q 
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is both a linear order and an extension of P. An important poset parameter that is 
related to the interval number is the partial order dimension of a poset. This was 
defined by Dushnik and Miller [4]. A set of linear extensions of P is called a 
realizer for P iff P is equal to their intersection. Szprilrajn [ll] first proved that a 
realizer always exists; in particular, P is the intersection of all its linear 
extensions. Dushnik and Miller then defined the partial order dimension of P, 
denoted by dim(P), to be the minimum cardinality of a realizer. An equivalent 
definition [6] is that dim(P) is the minimum k such that P can -be embedded in 
k-dimensional space R ‘, where the order on Rk is given by x my for x = 

(x1, . . . , x/C), y = (Yl, . * . > yk), iff we have xi cyi for every i, 1 s i s k. Partial 
order dimension has been extensively investigated since the Dushnik and Miller 
paper [4]; the interested reader can consult the survey paper [8]. In developing 
the theory of the interval number, we seek to provide analogues of results from 
dimension theory. In the remainder of this introduction we provide a brief 
overview of the rest of this paper. 

In Section 2 of this paper we present several fundamental lemmas concerning 
i(P) and relationships between i(P) and dim(P). The class of posets P with 
i(p) = 1 is exactly the class of posets with dim(P) s 2, a result appearing already 
in [4]. We prove a dimension bound on interval number; i(P) G ]dim(P)/2]. A 
theorem of Alon and Scheinerman [l] yields a proof that posets with arbitrarily 
large interval number exist. We also investigate how the interval numbers of 
component posets can affect the interval number of a poset constructed from 
them by some standard operations. Let P* denote the dual of the poset P, i.e. P* 
is P turned upside down, then in general we can have i(P*) #i(P), but these 
interval numbers never differ by more than one. If P is a bounded poset, i.e. has 
unique minimum and maximum elements, then we always have the equality 
i(P) = i(P*). We also establish bounds on i(P) for the composition and product 
of posets, namely i(P[Q]) c max{i(P), ]dim(Q)/2]}, and i(P x Q) c i(P) + 

i(Q). 
In Section 3 we consider some special classes of posets. We provide examples 

of classes of posets of arbitrarily high dimension and bounded interval number; 
these are the ‘standard posets of dimension IZ’ and the interval orders. As a 
corollary we obtain a bound on the interval number of a poset in terms of its 
interval dimension. We prove that the dimension bound is tight by showing that 
i(B,) = [dim(&)/21 = [n/2], w h ere we use B, to denote the Boolean algebra of 
all subsets of an IZ element set, ordered by inclusion. 

In Section 4 we prove a difficult technical result with several interesting 
implications. The most immediate consequence is that i(P[Q]) = i(P) + 1 if 
dim(Q) = 2i(P) + 1. This establishes the optimality of our bound on i(P[Q]). It 
also implies that testing i(P) c k for any fixed k ?=2 is NP-complete, via a 
transformation from the problem of computing dim(P). 

Section 5 is motivated by another well-known result from dimension theory. 
Hiraguchi [6] proved that dim(P -x) 3 dim(P) - 1 for any poset P and x E P; this 
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is known as the ‘one-point removal theorem’. For the interval number we can 
show that i(P - x) 3 i(P) - 1 if x is a minimal or maximal element of P, but if x is 
an arbitrary element then we only know that i(P - x) 5 i(P)/2. 

2. Fundamental results 

Our first order of business is to establish the dimension bound on the interval 
number. In the first two lemmas we prove some elementary facts that are quite 
useful. 

Lemma 2.1. (a) Zf P and Q are posers on the same set of elements, then 
i(P rl Q) s i(P) + i(Q). 

(b) Zf P is an induced subposet of Q then i(P) S i(Q). 
(c) Any poset P has an optimal representation in which distinct intervals have 

distinct endpoints. 

Proof. (a) P fl Q can be realized by taking representations for P and Q and 
putting them next to each other. 

(b) Given a representation for Q we can obtain one for P simply by deleting 
the intervals used to represent elements in Q - P. 

(c) Let f be an optimal representation for P. If there is a point b serving as an 
endpoint of more than one interval off, we can perturb f slightly so as to reduce 
the number of multiply-used endpoints, without changing the order relations or 
the number of intervals used for any x E P. Let E > 0 be small enough so that b is 
the only point in (b - E, b + E) used as an endpoint. Suppose that b is the right 
endpoint of k intervals and the left endpoint of I intervals. Let al 6 - * - 6 a,,, be 
the left endpoints and c1 s * * - s c, the right endpoints of these intervals, with 

Xl, . * . 7 x, the corresponding elements of P. Note that m = k + 1 - t, where t is 
the number of intervals of the form [b, b]. Also note that those intervals for 
which b is a right endpoint are listed first and those for which it is a left endpoint 
last, with those for which it is both in the middle. Choose m positive numbers, 
O<&i<“’ < E, < E. If ai # b, replace [a,, b] by [ai, b + &,+1-i] in f(Xi)* If 
ci #b, replace [b, ci] by [b - E,, ci] in f (Xi). Finally, let L be a linear extension of 
the subposet of P induced by elements assigned the interval [b, b] in f. If 
ai = ci = b, replace [b, b] by [b - ei, b + ej] in f (Xi) if Xi is the jth element from 
the bottom in L. The new mapping is the desired representation. 0 

Lemma 2.2 (Dushnik and Miller [4]). For any poset P, i(P) = 1 iff dim(P) =Z 2. 
Furthermore, if i(P) = 1, then there is an optimal representation in which all 
intervals used have a common subinterval. 
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Proof. By definition, i(P) = 1 iff there are two functions I: I’* Iw and r: P+ R’, 
corresponding to left and right endpoints in a representation, such that x cp y iff 
Z(X) > I(y) and r(x) < r(y). Viewing 1 in reverse order, this is precisely the 
condition that P have a realizer of size 2. Moreover, when this occurs we may 
require that P assigns positive numbers to the elements of P, and I assigns 
negative numbers. This is because if 1 and r work, then so does the pair 1’ and r’, 
where l’(x) = I(X) - c, r’(x) = r(x) + c, for any x E P, with c being a positive 
constant. Thus the intervals used in the representation have a common 
subinterval around 0. 0 

Theorem 2.3. For any poset P, i(P) s [dim(P)/2]. 

Proof. Let k = dim(P), so that there are k linear extensions of P, say L,, . . . , Lk 

such that P= LIrl. ..nL,. Take PI=L,r3L,, Pz=L3nL4,.... Each $is a 
partial order of dimension ~2, hence i(Pj) = 1. The theorem now follows from 
Lemma 2.1(a). Cl 

We will see shortly that there are posets of arbitrarily high dimension but with 
interval number equal to 2. With these examples in mind, it is not immediately 
apparent that posets exist with arbitrarily high interval numbers. However, a 
fundamental result of Alon and Scheinerman [l] can be applied to prove this, and 
in fact show that the basic inequality in the preceding theorem is best possible. As 
in [l], we say that a family Y of sets has k degrees of freedom iff there is a 
one-to-one function C$ : Y-, Rk and a finite set {pl, . . . ,pr} of polynomials in 2k 
variables, with the following property: For any sets S, T E Y the containment 
S c T is determined by the signs of the values pj(x,, . . . , xk, y,, . . ., yk), 
1 cj < t, where @(S) = (x1, . . . , x,J and @(T) = (yl, . . . , yk). An Y-containment 
order is a poset P with a containment representation which assigns sets in 9’ to 
elements of P. In [l] a counting argument is used to establish the following 
general theorem. 

Theorem (Alon and Scheinerman [ 11). Let Y be a family of sets with k degrees of 
freedom. Then there exists a (k + 1)-dimensional poset which is not an 9’- 
containment order. 

By using this theorem we can establish the existence of posets with arbitrary 
interval numbers. Our next theorem only proves that such posets exist, but in the 
next section of this paper we will obtain explicit examples, cf. Theorem 3.4. 

Theorem 2.4. For every positive integer k, there exist posets P with dim(P) = 
2k + 1 and i(P) = k. 
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Proof. For our family 9’ of sets let us take all unions of k or fewer intervals on 
the real line R. Each set S E 9’ can be uniquely identified by a 2k-tuple of real 
numbers, namely by listing the endpoints of the intervals in increasing order. In 
case S is the union of fewer than k intervals we can simply adopt the convention 
of listing the pair (b, b) the required number of times, where [a, b] is the 
rightmost interval in S. For S, T E 9’ let @(S) = (xi, . . . , xZk) and +(T) = 

(Yl, * . . 7 yzk). Then we see that S c T iff every i, 16 i c k, there is a j with 
1 s j 6 k and Y2j-i 5 ~2i-1, xZ~ ~y,j. The latter condition can be expressed by the 
two inequalities Xzi-i - y2j_l 3 0 and x2i - y2j G 0, so that S c T is determined by 
the signs of the values of 2k2 polynomials in 4k variables. Thus the family 9’ has 
2k degrees of freedom, and by definition the Y-containment orders are exactly 
the posets P with i(P) G k. By the theorem of Alon and Scheinerman there must 
exist a (2k + 1)-dimensional poset with interval number greater than k. 0 

Poset dimension is a comparability invariant, which means that any two posets 
with the same collection of comparabilities between elements have the same 
dimension, even if they are different orders. In particular, turning a poset 
‘upside-down’ to form its dual does not change the dimension. In contrast, the 
interval number of a poset calz change when we take the dual. However, our next 
result shows that it cannot change by much. Formally, we define the dual of P, 
denoted by P*, to have the same elements as P and with the order relation: x < y 
in P* iffy <x in P. Recall that a bounded poset is one with (necessarily unique) 
minimum and maximum elements. 

Theorem 2.5. For any poset P we have 

i(P) - 1 s i(P*) =S i(P) + 1. 

If P is a bounded poset then in fact i(P) = i(P*). However, there do exist posets P 

with i(p) # i(P*). 

Proof. The lower and upper bounds are easily established by taking the 
complements of intervals in a given representation. To prove equality for 
bounded posets we argue as follows. Let P be bounded and let f be an optimal 
representation. Without loss of generality we can assume that 0 and 1 are 
assigned single intervals, say Z, = [b, c] for 0 and Z, = [a, d] for 1. For x E P with 
x # 0, 1 we define g(x) = Zi -f(x). Note that g(x) has at most i(P) + 1 intervals, 
with equality for some x. Also note that Z, E I1 -g(x) and that a, d E g(x), since 
we may assume distinct endpoints. In other words, each g(x) is flush at a and d 
and has a gap containing Z,. For x # 0, 1 we now define h(x) by taking it to be the 
union of g(x) rl [c, d] and the set (d - a) + g(x) rl [a, b]. The latter set is simply 
g(x) n [a, b] shifted to the right by a distance d - a (i.e. a translation). It is easily 
seen that each h(x) consists of at most i(P) intervals, and the inclusion 
relationships are unchanged. Finally, adding h(0) = [d, d + E) and h(1) = [c, d + 
b - u] yields a containment representation for P*. 
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Fig. 1. 

An example of a poset P with Z(P) f i(P*) is the poset P3 whose diagram is 
indicated in Fig. 1. This poset is the lexicographic composition (cf. below) 
obtained by substituting three copies of the standard 5dimensional poset S, for 
the maximal elements of S3. It will follow easily from the results in Section 4 that 
i(P3) = 3, but Fig. 2 displays a 2-representation for Pz. q 

Poset dimension is well-behaved under various methods for combining posets. 
In the remainder of this section we will concern ourselves with two such 
operations. Let P be an arbitrary poset, and for each x E P let Q, be a poset. We 
assume with no loss of generality that the Q,‘s are pairwise disjoint. The 
lexicographic composition of P and { QX}, denoted by P[{ Q,}], is the poset with 
elements V = UxCp Qx and the partial order relation defined as follows. Let 
U, u E V, say u E Q, and u E QY. Then u < v in the composition iff either x = y and 
u +, V, or x fy and x cpy. If all of the Q, are isomorphic to the same poset Q, 
then we simply denote P[{Qx}] by P[Q]. 

We also consider the cartesian product of two posets. Given posets P and Q, 
P x Q denotes the poset on the set of ordered pairs V = {(x, y) 1 x E P and 
y E Q}, with the partial order (xi, yi) c (x2, y2) iff x1 cpx2 and y1 se y2. 
Hiraguchi [5] proved that 

dim(P[Q]) = max{dim(P), dim(Q)}. 

Hiraguchi [6] also established 

dim(P x Q) < dim(P) + dim(Q) 

Baker [2] proved that dim(P x Q) = dim(P) + dim(Q) if the posets P and Q are 

2 

$ cz ----- ----- _---- 
Fig. 2. 
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bounded (a poset P is bounded iff there exist elements 0,l E P such that 0 c x G 1 
for all elements x E P). Our next two results show that i(P) behaves similarly. 

Theorem 2.6. For any posets P, Q: 

V[Q]) s max{V), [dim(Q)/21 ). 

Proof. First we will show that if dim(Q) <2i(P) then i(P[Q]) = i(P). Let 
k = i(P) and let f be a k-representation for P. We may assume that every element 
x E P gets exactly k intervals; let J(X) denote the jth interval for X. Let 

L,, . . * 7 Lzk be a collection of linear orders realizing Q. For 1 c j G k put 
Rj = Lzj-1 II L,, SO that dim(Rj) s 2. We consider each j = 1, . . . , k in turn, and 
construct an interval representation for P[Q] in the following way. For a given j, 
1 ~j G k, and for x E P let Q(x) be the copy of Q that is substituted for x, with 
Lj(x) and Rj(x) defined to be copies of Lj and Ri labeled by the elements of Q(X). 
By Lemma 2.2 let g be a l-representation for Rj(x) such that all of the intervals 
used in g have a common subinterval. We can assume that the intervals in f have 
distinct endpoints, with E > 0 being the minimum distance between endpoints of 
intervals in 5 Now substitute g(Rj(x)), appropriately translated, for 4(x). We 
make the common subinterval for g(R,(x)) equal to 4(x), and the maximum 
extent of g(Rj(x)) can be placed within &/2 of the endpoints of &x). Since 
Q(x) = n,“=, Rj(x), the relations within Q(x) are established correctly, and since 
each interval in g(Rj(x)) contains J(x) and meets no other interval of f, the 
relations between Q(X) and Q(y) for different x, y E P are inherited correctly 
from 5 We thus obtain an interval representation for P[Q] that uses no more 
than k intervals per element. Hence i(P[Q]) s i(P), and since P is an induced 
subposet of P[Q] we must have equality. 

Now consider the case where dim(Q) > 2i(P). Put t = dim(Q) and let 

L,, . . . > L, be linear orders that realize Q. We pair them off to obtain [t/2] posets 
Rj that are of dimension no more than 2 and that realize Q. We can apply the 
construction of the preceding paragraph to the first k Rj’S, where k = i(P). This 
gives us a k-representation for P[Q’], where Q’ = nF=, Rj. We then take a linear 
extension L of P and a corresponding l-representation for L, and for each j > k 
construct a l-representation for L[R,]. Since 

f'[Ql = JTQ’I n Wk+d II - - . n Wrrnll 
these representations combine to provide a [t/2]-representation of P[Q]. 0 

Theorem 2.7. Zf P and Q are any pose&, then i (P x Q) c i(P) + i(Q). 

Proof. Let f and g be optimal representations for P and Q, respectively, 
translated to disjoint parts of the line. For each x E P we create IQ1 copies of 
f(x), assigning one copy to each element in {(x, y) 1 y E Q}. Similarly, for each 
y E Q we create IPI copies of g(y), assigning one copy to each of {(x, y) 1 x E P}. 
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We use these assignments to define h((x, y)). We have h((x,, y,) E h((q, y2)) iff 
the portions assigned from f and g obey the inclusion, which is true iff 
f(xi) zf(x,) and g(yJ E g(yJ, i.e. x1 <x2 and y, dy2. Hence h is an (i(P) + 
i(Q))-representation for P x Q. 0 

3. Special classes 

We begin this section by considering a poset known as the ‘standard poset of 
dimension n’, which nevertheless has interval number 2. The poset S, consists of 
2n elements i, i, 1 c i c n, with the order relation x < y iff x = i and y = j for 
some j # i. It was first shown in [4] that dim(&) = n. The lower bound is easy to 
see, because if a linear extension L of S, establishes i < i, then for all other j # i it 
must satisfy Z-C; Hence at least n extensions are needed to establish the 
incomparabilities between the i and i. On the other hand, it turns out that we 
always have i(.S,J G 2. 

Proposition 3.1. The interval number of the standard n-dimensional poset satisfies 
i(S,) = i(S,) = 1, and i(S,J = 2 for every n 2 3. 

Proof. By Lemma 2.2, i(S,) = i(&) = 1. For n 2 3, since dim($) = n by Lemma 
2.2 we must have i(S,J 2 2. For the upper bound, we represent the element i by 
an interval [i - 4, i + 41 and for i use the union of two intervals [0, i - 41 U 

[i + t, n + 11. This yields a 2-representation for S,,. Figure 3 displays such a 
2-representation for S,. 0 

Another class of posets with arbitrarily high dimension but bounded interval 
number are the interval orders. Given two intervals Z, = [ul, u2] and Z, = [vi, v,], 
we say that Z, dominates Z, iff u2 < vl. Dominance is antisymmetric and transitive, 
and hence induces a partial order on any set of intervals. An interval order is a 
poset isomorphic to a set of intervals with the ordering induced by dominance. 
Bogart, Rabinovich, and Trotter [3] have shown that there exist interval orders of 
arbitrarily large dimension, using an elegant application of Ramsey’s theorem. 

3 
4 
5 
?- 

i 
S- 

4- 
3- 

7.- 
I- 

Fig. 3. 
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Our next result states that the interval number of an interval order is never more 
than 2. We are grateful to Jim Schmerl for simplifying our original proof. 

Theorem 3.2. If P is an interval order, then i(P) c 2. 

Proof. Fix a dominance representation f for the interval order P, say that for 
x E P we have f(x) = [ a,, b,]. As for an interval representation, we may assume 
that all endpoints of intervals in a dominance representation of an interval order 
are distinct. Let E > 0 be such that every pair of endpoints is separated by at least 
2.5 Define a function g on P by 

g(x) = (-m, a, - El U [a,, &I 

where x E P; instead of m we could use any large enough number. Now it is easily 
seen that g(x) c g(y) iff b, < a,, - E. Since f is a dominance representation with 
endpoints separated by at least 2.5, the latter inequality holds iff x < y. Thus g is 
an interval representation for P using no more than 2 intervals per element. Cl 

For an arbitrary poset P, the interval dimension of P, denoted by idim( is 
defined to be the smallest number k such that there exist k interval orders 

Pi, . . . 7 Pk that realize P. Interval dimension is well-defined, and idim < 
dim(P) because linear orders are interval orders. 

Corollary 3.3. For an arbitrary poset P we have i(P) c [3 idim(P)/2]. 

Proof. Suppose that we have two interval orders. By the preceding theorem we 
can construct interval inclusion representations for them with the property that 
the left-most intervals for every element have a common left endpoint. We can 
reflect one of these representations so that the common endpoints of the two 
representations face each other. We identify these common endpoints, obtaining 
a representation using 3 intervals per element. Hence idim < 2 implies that 
i(P) c 3, and we obtain the bound claimed by pairing off interval orders in a 
minimal realizer for P and applying Lemma 2.1(a). 0 

For positive integers n we put [n] = (1, 2, . . . , n}. We let B, denote the 
Boolean algebra of subsets of [n], with the order relation given by inclusion. We 
determine i(B,) exactly and thereby obtain explicit examples that demonstrate 
the tightness of the inequality in Theorem 2.3. 

Theorem 3.4. For the Boolean algebra B, on n elements, i(B,) = [n/21. 

Proof. Komm [9] proved that dim(B,) = It. Hence our upper bound follows from 
Theorem 2.3. To prove the lower bound, first define BA = B, - (8, [n]} for n > 1. 
We show by induction on n that i(BA) 3 [n/2]. This proves the lower bound, 
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because BL is a subposet of B,. Bi is the two element antichain and hence is 
2-dimensional, so i(Bi) = 1. B; is the standard example S,, which is 3- 
dimensional, and thus i(B;) = 2. For the induction step we show that a 
representation for BL, n 3 4, using at most k intervals per subset, induces a 
representation for BA-2 that uses no more than k - 1 intervals per subset. 

To see this, fix such a representation f for BL. Consider the intervals assigned 
to the singleton sets 1,2, . . . , n. Because we may assume that all endpoints are 
distinct, there is a unique leftmost interval among these, i.e. an interval 
Zi = [ui, ZQ] such that u1 is strictly to the left of all the other intervals for 
singletons. Similarly, there is a unique interval Z2 = [vi, u2] to the right of all the 
other intervals for singletons. We may assume that Zi sf({ 1)) and Z, sf({n}). Let 
Z denote the interval [ui, vz]. Now consider the subposet P of BA induced by the 
set 

{X E B:, ( { 1, n} c X c [n]}. 

The intervals assigned to X E P must cover both Z, and Z2. Sincef(X) is the union 
of no more than k intervals and it covers both Z, and Z,, then g(X) = Z -f(X) 
consists of no more than k - 1 intervals. Note that P is isomorphic to BL__*, which 
is self-dual. Since g uses at most k - 1 intervals per subset, our proof is completed 
by showing that g is a representation for the dual poset P*. 

To prove this, it suffices to show that for any X, Y E P, we have X E Y iff 

g(Y) Eg(X). If X E Y, then f(X) of, since f restricted to P is a containment 
representation for P. Hence g(Y) = Z -f(Y) E g(X) = Z -f(X). On the other 
hand, if X $ Y, then choose Z E X - Y. Since {Z} $ Y and f({Z}) E Z, there must 
be a portion of the interval Z that is covered by f(X) but not by f(y). But this 
means that g(Y) $ g(X), which completes the proof. 0 

Remark. In the proof of the theorem, the reason it is necessary to deal with BA 
instead of B, directly is because it is natural to represent [n] by a single interval 
covering all other intervals. In that case Z -f([n]) = 0, which causes difficulty 
because we require a non-empty set for each element in a representation. 

Besides the Boolean algebras themselves, there are other natural subposets of 
B, for which we have determined the interval number. Let B,(k) denote the 
subposet of B, consisting of the l-sets and the k-sets in [n] with the order induced 
by inclusion. Note that S,, = B,(n - 1). As we saw earlier, i(S,J = 2 for n > 3. This 
fact is a special case of the following theorem, which will appear in a future 
paper. 

Theorem (Madej and West). Zf k c (n/2); or k > n - (n/2)5, then 

i(B,(k)) = min{k, n - k + l}. 
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Corollary 3.5. For every k 2 1 there is a poset of height one with interval number 
k. 

The posets B,(k) provide some interesting examples. 

Example 3.6. i(B,(3)) = i(B,(4)) = 2. Fig. 4 shows that i(B,(4)) S 2. Since S, is a 
subposet of B,(3), we have dim(B,(3)) 24. Since B,(3) c B,(4), we have 

2 G i(B,(3)) S i(B,(4)) G 2. 

Example 3.7. Any optimal representation of B,(3) assigns at least 2 intervals to 
some minimal element. This example is important because at first glance one 
might think that for any poset P one can find an optimal representation that uses 
a single interval for every minimal element. By way of contradiction, assume we 
have a 2-representation for B,(3) that uses a single interval for every minimal 
element. We can assume that the intervals for the singletons appear with left end 
points in the order 1, 2, 3, 4, 5. Since {1,3,5} is allowed only 2 intervals, it must 
contain either the interval for 2 or the one for 4, unless one of the singleton 
intervals contains another, either of which is a contradiction. 

4. Lower bounds 

In this section we prove a difficult technical result about interval repre- 
sentations that has far-reaching consequences. Chronologically, the first conse- 
quence was the construction of our first posets with arbitrarily large interval 
number. These include posets whose interval number differs from their duals. 
The main result of this section also implies that the bound on the interval number 
of a lexicographic composition is best possible, and is used to prove that the 
problem of computing the interval number of a poset is NP-complete. We begin 
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with two lemmas concerning the arrangement of intervals in representations. By a 
maximal interval for x E P (or in f(x)) we mean an interval Z cf(x) such that if 
.Z cf(x) is an interval with Z E J, then Z = J. 

Lemma 4.1. Let f be a k-representation of P such that: 
(i) every x E P is assigned exactly k disjoint maximal intervals, and 

(ii) for x, y E P, no interval assigned to y contains two of the intervals assigned 
to x. 

Then k 3 [dim(P)/2]. 

Proof. We may assume that all endpoints of intervals in f are distinct. Define 
fi(x) = [ai( hi(x)] to be the ith interval from the left of those assigned to x. The 
conditions of the hypothesis imply that x < y if and only if J(x) of; for every i, 
i =S i s k. For each i, then, we obtain two linear extensions of P: the ordering 
given by {b&x) 1 x E P} and the reverse of the ordering given by {ai 1 x E P}. 
Over all i, these form 2k linear extensions realizing P; hence k 2 [dim(P)/2]. 0 

Suppose f is an interval representation of a poset P. Given x E P, we can 
change f to obtain another function g on P by adding to f(x) the interval between 
the ith and (i + 1)th maximal intervals in f(x). We then say that g is obtained 
from f by filling the ith gap for x. We also say that a subset X E P is full if every 
optimal representation of P uses i(P) intervals for some element of X. 

Lemma 4.2. Let P be a poset with i(P) = k, and let X be a full subset of P. Zf f is 
an optimal representation of P, then there exists x E X such that: 

(i) fuses k intervals for x, and 

(ii) if g is obtained from f by filling any gap for x, then g is not an interval 
representation of P. 

Proof. Let go = f, and let g,,, . . . , g, be a maximal sequence of k-representations 
for P obtained from f by successively filling gaps for elements of X that are 
assigned k intervals. I.e., if go, . . . , g, is such a sequence, and gj uses k intervals 
for some x E X such that filling some gap for x in g, yields a k-representation g of 
P, then we let gi+l =g; otherwise, the sequence terminates. We must have 

m < 1x1, else glxl is a k-representation of P using fewer than k intervals for every 
element of the full subset X. With m < 1x1, there is some x E X such that g, uses 
k intervals for x. 

We claim that any g obtained directly from f by filling a gap for this x is not an 
interval representation of P. Because the sequence fills gaps only in images that 
use the full allotment of k intervals, g,(x) = f(x). Hence we may 
consider the h obtained from g, by filling the same gap for x that turns f into g. 
by definition of g,,,, h is not an interval representation of P. Since h differs from 
g,,, only by enlarging the set assigned to x, we have two ways h could fail to 
represent P. 
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(1) If there is a u E P with h(u) E/Z(X) but u fx, we have g(u) =f(u) s 

k(u) E k(x) = g(x), and g fails to be a representation in the same way as h. 
(2) If there is a u E P with x < u but h(x) $ h(v), we have g(v) =f(v) G h(v), 

so g(x) = h(x) $ g(v), and again g fails to be a representation in the same way as 
h. Cl 

If X is a full subset of P, we say that an element of X with the properties 
guaranteed by Lemma 4.2 is separated by f. We will use such elements to force a 
lower bound on interval number for certain subposets of lexicographic products. 
The general lexicographic product P[ { Q,}] is obtained by expanding x into Q, for 
each x E P. For simplicity of notation in the proofs below, we assume that the Qx 
are defined on disjoint sets of elements. Then the elements of P[{Qx}] are the 
union of these sets, and u c v if and only if u, v E Q, and u <oxv, or u E Q,, 
v E Q, with x <P y. Given X E P, we write Px[{Qx}] to impose the requirement 
on P[{Qx}] that lQxl = 1 for x $X. 

Theorem 4.3. Let X be a full subset of P, and suppose dim(Q,) > 2i(P) for each 
x E X. Then i(P’) > i(P), where P’ = Px[{Qx}]. 

Proof. Suppose i(P) = k. Because P is an induced subposet of P’, we have 
i(P’) 3 k. Suppose P’ has a k-representation f ‘. If U s P’ consists of one element 
u, from each Qx such that x E X, we use fU to denote the representation of P 
obtained from f’ by selecting the intervals for elements of {ux} U (P -X). 
‘Selecting’ means setting f&x) = f ‘(24,) f orxeX. ForafixedxEXanduEQ,, 
we let F(u) = {fU 1 u e U}. 

We claim first that there exists x E X such that for all u E Q, there is an f E F(u) 
such that x is k-separated by f. If not, then for each x E X there exists u, E Q, 
such that no f E F(u,) k-separates x. let U be the collection {u, 1 x E X} so 
generated, and consider fU. This representation of P belongs to F(u,) for each 
x E X, so fU separates no x E X. This contradicts Lemma 4.2 for the full subset X, 
so the claim must hold. 

Let x be a fixed element of X guaranteed by the preceding paragraph. For each 
u E Q,, we can find f E F(u) such that x is k-separated by f; this implies that f’ 
uses k intervals for every u E Q,. We now claim that if u, v E Qx, then no interval 
in f’(v) contains a pair of intervals in f’(u). If this fails for u, v, choose f E F(u) 
such that x is k-separated by f. Let g be obtained from f by filling the gap between 
two intervals in f(x) that are a pair of intervals in f’(u) covered by a single 
interval in f’(v). Since x is k-separated by f, g is not a representation of P. Since 
g differs from f only by enlarging the set assigned to x, it can fail to represent P in 
two ways: 

(1) there exists y E P with g(y) s g(x) but y #x in P, or 
(2) there exists y E P with x < y but g(x) $g(y). 



The interval inclusion number of a partially ordered set 273 

In either case, since f E F(u), we have g(y) =f(y) =f’(w) for some w E Q,,, 
and we will contradict the fact that f’ is a representation of P’. The first case then 
yields f’(w) sg(x) cf’(v) but w fu in P’. In the second case, we have 
f’(v) zg(x) $g(y) =f’(w). Since ‘u E Qx, this yields v < w in P’ but 

f’(u) $f’(w). 
Restricted to Q,, f’ now satisfies the hypotheses of Lemma 4.1. We conclude 

that [dim(Q,)/2] c k, contrary to hypothesis. Hence no k-representation of P’ 
exists. 0 

Theorem 4.3 implies that the inequality of Theorem 2.6 is best possible. Note that 
the set of all elements of P always forms a full subset of P. 

Corollary 4.4. 1f dim(Q) < 2i(P) + 1, then 

i(P[Q]>=max{i(P), [dim(Q)/21}. 

The theorem also provides recursive constructions of posets with interval 
number k for all k. Given a poset P with interval number k and dimension 
2k - 1, let X be a full subset of P, and let Q be a poset with dimension 2k + 1. 
Letting Q, be a copy of Q for each x E X, and letting P’ = Px[{Qx}], we have 
i(Px[{Qx}]) 3 k + 1. By Hiraguchi’s Theorem [5], we have 

dim(P’) c dim(P[{Qx}]) = max{dim(P), me? dim(Q,)}, 

so our dimension bound implies i(P’) = k + 1. 

Example 4.5. The construction described above yields a relatively small poset 
with interval number 3. The 3-dimensional ‘crown’ 5, has interval number 2, and 
any optimal representation of it assigns two intervals to at least one of the 
maximal elements. Let X be the three maximal elements of S,. For each x E X, 
set Qx = S,, the smallest 5-dimensional poset. By Theorem 4.3, P3 = (S,),[{Q,}] 
has interval number 3. It has 33 elements. The smallest known poset of interval 
number 3 has 28 elements, and is the subposet of B7 consisting of the 5-sets and 
l-sets. That poset will be discussed in a later paper. Meanwhile, P3 is an example 
of a poset such that i(P) #i(P*), whose existence was claimed in Section 2. 
Figure 2 displays a 2-representation of Pz. 

Our final application in this section concerns the complexity of i(P). It is well 
known that recognizing 2-dimensional posets is a polynomial-time problem [lo], 
so testing i(P) = 1 is in P. However, this is the limit of polynomial-time 
computation. 

Theorem 4.6. For any fixed k 3 2, the problem of testing whether i(P) s k is 
NP-complete. 
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Proof. We can verify in polynomial time whether a proposed representation of P 
is in fact a k-representation of P, so our problem is in NP. To prove it 
NP-complete, we transform from the partial order dimension problem. Yan- 
nakakis [14] showed that testing dim(P) s r is NP-complete for any fixed r 2 3. 
Fix k * 2, and set r = 2k. To test whether dim(P) G r, we form the lexicographic 
composition Q = Z?,,[P]. Because k is fixed, this is a polynomial-time construc- 
tion. If dim(P) s 2k, then dim(Q) = 2k by Hiraguchi’s Theorem, and i(Q) s k. 
On the other hand, dim(P) > 2k implies Z(Q) > k, by Theorem 4.3. Hence 
dim(P) s r if and only if i(Q) c k, and the theorem follows from the NP- 
completeness of partial order dimension. 

5. Removal theorems 

One theme in dimension theory is the examination of how fast dim(P) can 
decrease when elements are removed from P. Hiraguchi [6] proved the ‘one-point 
removal theorem’: dim(P -x) 2 dim(P) - 1. In this section we investigate the 
analogous question for i(P). 

The up-set U(x) and down-set D(x) of an element x E P are the elements 
greater than and the elements less than x, respectively. The definitions extend to 
arbitrary subsets Xc P by U(X) = lJxcx U(x) and D(X) = UExD(x). For 
convenience, we also define u(X) = X U U(X) and D(X) = X U D(X) An order 
ideal is a subset X c P such that x E X and y < x imply y E X. A dual order ideal is 
an order ideal in P*. 

For the special case of removing a maximal or minimal element, the desired 
bound holds. 

Theorem 5.1. Zf x is a minimal or maximal element of P, then i(P -x) 3 i(P) - 1. 

Proof. Let f be an optimal representation of P -x. If x is minimal, let L be a 
linear extension of I!?(X). If x is maximal, let L be a linear extension of P - D(x), 
and add an interval for x covering all off (P - x). Outside f (P - x), place a stack 
of nested intervals that is a l-representation of L. Because Z?(x) and P-D(x) 
are dual order ideals, every element whose image must contain an interval in the 
representation of L does so, so this is a representation showing i(P) s i(P - x) + 

1. El 

These bounds are tight, in that removing a minimal or maximal element can 
decrease the interval number. The simplest example of this is S,, having interval 
number 2. This is an ‘irreducible’ 3-dimensional poset, meaning that deletion of 
any element reduces the dimension to 2. Hence i(S, - x) = i(S,) - 1 for all x E &. 

The result above for removal of minimal elements can be generalized to 
removal of a chain X that is an ideal or dual order ideal: i(P -X) > i(P) - 1. 
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One uses a linear extension of D(X) or P - D(X) constructed so that if X is 
minimal (maximal) any element of a(X) is below (above) all elements of X 
unrelated to it. 

In general, adding a minimal or maximal element can increase dimension, but 
adding a unique minimum or maximum element, called 0 or 1, cannot. The 
corresponding behavior for interval number is slightly different. 

Theorem 5.2. Let P U (1) and P U (0) denote the posets obtained from P by 
adding a maximum or minimum, respectively. Then: 

(a) i(P U (1)) = i(P); and 
(b) i(P U (0)) s i(P) + 1, with equality possible. 

Proof. (a) Given an optimal representation f of P, adding a single interval 
covering all off(P) and assigned to 1 yields an optimal representation of P U {l}. 

(b) The upper bound follows from Theorem 5.1. To see that equality is 
possible, let P = P: be dual of the poset of Example 4.5. There we exhibited a 
2-representation of P3*; now we show i(P: U (0)) = 3. If not, let f be a 
2-representation of P: U (0) ; we obtain a contradiction using Lemma 4.1. 

To construct P:, we associate a copy of S, with each minimal element of S, and 
form the lexicographic composition. Let the copies of S, be Q,, Q2, Q3, and 
denote the maximal elements of P; by i, 2, and 3, where x <i if and only if 
x E UT=, Q, - Qi. We may assume that intervals in f all have distinct endpoints, 
and that f assigns a single interval Z to the unique minimal element 0 (if not, 
simply delete all but one interval from f (0)). Let a, b be the leftmost and 
rightmost points belonging to intervals off that contain I. We can assume that the 
points a, b belong to f(x), f(y) for some x, y E Q, U Q2 U Q3, so there exists 
i E {1,2, 3) such that a, b r$ f (QJ. Let J = [a, b]. Because the intervals with 
endpoints a, b both contain Z, we have .Z c_ f (i). Since Z c f (x) for all x E Qi but x 
and i are incomparable, every x E Qi must be assigned two disjoint intervals, one 
of which is contained in R! - Z and meets R -J. Therefore, for any x, y E Qi, 
neither interval for y contains both intervals for x. Hence Lemma 4.1 applies to 
f (QJ and yields 2 3 [dim(Qi)/2], which contradicts dim(&) = 5. 0 

Note that a slight modification to the construction in Proposition 3.1 shows that 

i(& U (0)) = i(&), so that the more complex example in Theorem 5.2(b) seems 
necessary. 

For the general case of single point removal, we have what seems to be a weak 
bound on the change in interval number. 

Theorem 5.3. For any x E P, i(P -x) s i(P)/2. 
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Proof. Let f be an optimal representation of P-x, with i(P -x) = k. We 
construct a 2k-representation of P. From f we obtain induced k-representations 
for the subposets Q, = P - D(x) and Qz = Z?(D(x)) - I?(x). Call the former g,. 
Translating the latter by a large enough fixed constant, we obtain a k- 
representation g, of Qz that is disjoint from gl(Q1). Let Q3 be a linear extension 
of u(x), and let g3 be a l-representation of Q3 such that the minimal element x is 
assigned an interval containing g2(Q ) 2 , and none of the intervals intersect gl(Q,). 

We claim that the mapping g given by g(y) = g,(y) Ug,(y) Ug,(y), with 
g,(y) = 0 if y $ Qi, is a 2k-representation of P. Note that Q, II Q2 = U(D(x)) - 
u(x) - D(x). These elements are assigned at most 2k intervals, the elements of 
U(x) receive at most k + 1 intervals, x receives one interval, and all other 
elements belong to exactly one of Q,, Qz and receive at most k intervals. It 
remains to be shown that the relations or incomparabilities between y, z E P are 
correctly established by g. 

First consider pairs involving at least one element of the ideal D(x). Elements 
of D(x) appear only in Qz, so this subposet is correctly represented. Because 
D(x) is an ideal, no element of D(x) dominates an element not in D(x), and g 
respects this. An element of P - D(x) that dominates nothing in D(x) appears 
only in Q,, so no relation between it and any of D(x) is established. An element 
of P - D(x) that dominates all of D(x) appears in Q3 = o(x), so its image 
contains all of g(D(x)). A n e ement 1 of P - D(x) dominating some but not all of 
D(x) appears in Q1 and Qz. The relations are correctly established in g(Q*), and 
because D(x) is an ideal, the additions to g(P - D(x)) from g1 do not change 
them. 

Of the remaining pairs, consider those that contain an element of U(x). If both 
elements belong to U(x), they are in Q, and Q3; the relation or incomparability is 
established in g, and not disturbed by g,. If y E U(x) and z E P - u(x) - D(x), 
then z >y because U(x) is a dual ideal. Hence g(z) not containing g3(y) is no 
problem, and the relation is correctly established in g,. 

If y = x, then g(y) is a single interval. It is contained in and only in g(z) for all 

2 E U(x), contains g(D(x)), and fails to contain any other g(z), since all other z 
belong to Q,. 

We are left only with y, z E P - U(x) - D(x) - {x}. Both elements appear in 
Q,, where the relation or incomparability is correctly established. Because Q2 is a 
dual ideal in P - u(x), the intervals in gz(z) cannot destroy a desired relation 
z < y. This completes consideration of all possible pairs. Cl 
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