SOME BASIC OBSERVATIONS ON KELLY'S CONJECTURE FOR GRAPHS

Bennet MANVEL
Colorado State Ciniversit Fort Collins. Colo. s0521, USA

Recerved 9 June 973

Abstract

P.I. Kelly first mentioned the por vbility of determining agraph from su'graphs obtaned by deleting several points. While suct probiems have received a great deal oi attention in the sase of detetrons of single points, the problem for several points is virtually untouched. This paper contans some basic results on that problem, including the negative observation that for every k, there exist two non-somorphic graphs with the same collection of k-point subgraphs.

0. Introduction

The following conjecture arose from a comment in Kelly's paper [2] on reconstruction of trees from point-deleted subgraphs:

Kelly's conjecture. For any positive integer n, there exists a number $\nu(n)$ such that any graph with at least $w(n)$ points is uniquely determined by its collection of n-point-deleted subgraphs.

Empirical data suggest that $\nu(2)=6$, while an earlier conjecture (apparently due to Ulam, but appearing firs: in Kelly's paper) clains that $v(1)=3$. The purpose of this paper is to make a few basic observations on Kelly's conjecture for arbitrary n, somewhat in the veir. of Harary's observations in |1| on the case $n=1$.

1. Results for general n

If G is a graph with points 1 through p, then $G\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ will denote the graph on $p \cdots k$ points obtained from G by deleting points $i_{1}, i_{2}, \ldots, i_{k}$ (and edges incident with them).

Theorem 1.1. Let Gand H be graphs with p and k points. respectivels. $\mu=\mu(H$. (i) 'he mumber of subgraphs of G isomorphic to H. and $\mu\left(i_{1}, i_{2}, \ldots, i_{n}\right)=\mu\left(H, G\left(i_{1}, i_{2}, \ldots, i_{n}\right)\right)$. Then each subgraph H of G will be counted once in each of the $C(p-k, n)$ subgraphs which confain all of its points, sc © $(p-k, n) \mu=\Sigma \mu\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, where the sum is over all n-tuples af gints of G.

Taking $H=\mu_{2}$ in the theorem. we can ind q, the number of lines of G.

Corellary 1..2. If $q\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ is the m mber of lines of $G\left(i_{1}, i_{2} \ldots, i_{1}\right)$ with $n \leq p-2$, then $q=2 C\left(i_{1}, i_{2}, \ldots, i_{n}\right)(C(p-2, n)$.

The method used in [1] to find the degiee sequenee of G, in case $n=1$, is not applicable here. If the manimum degree of G is small enough, hovever, the degree sequence a ay be easily derived. Let N(if) denote the number of n-stars in G and $M(n)$ denote the number of points of G with degree n, with the convention that each line is counted wice in N(1).

Corollary 1.3. If the numiors M(i) are known for $i>p \ldots n \ldots$.... 1 or for $i<n$, the the degree sequence of θ can be fand from is collection af nupoint delered subgraphs.

Proof. By Theorem 1. 1 , we know the numbers $N(p-n-k), k \geq 1$, so if the $M(i), i>p-n-1$, are known, we can derive the degree sequence inductive:y using the formulas

$$
M(p-k)=N(p-k)-\sum_{i=1}^{k-1} C(p-i, p-k) M(p-i), \quad k \geq 1
$$

Corollary 1.4. If $\Delta(G) \leq p-n-2$ or $\delta(G) \geq n+1$, then the degree sequence of G can be found from its collection of n-point deleted subgraphs.

Proof. Notice that $\Delta(G)$ is less than $p-n-1$ if and only if $N(p-n-1)$ $=0$, a fact which is known by Theorem 1.1. In that case, the numbers $M(i)$ for $i \geq p-n-1$ are all zero, so Corollary 1.3 applies. For $\delta(G) \geq$ $n+1$, wo notice that the complement of G has $\Delta(G) \leq p-n \quad 2$, and
since the deleted subgraphs of the complement are tex complements of the deleted subgrapis of G, the degree sequence of the cosaplement (and, therefore, that of (i) can be found.

The proof of Corollary 1.4 is so simple that it would seem reasonable to relax the condition on Δ. The following examples show that when Δ ss small in relation to p that cannot be done. Let

$$
\begin{aligned}
& i=U(m, 2 i) K_{1, m}, \\
& H=U\left(m, 2 i+1 i K_{1, n n} \quad 2,1\right.
\end{aligned}
$$

where the first union goes from $i=0$ to $t=\left\{\left.\frac{1}{2} m \right\rvert\,\right.$ and the second from $i=0$ to $i=\left\{1[m-1) \mid\right.$, and we agree that $A_{1,0}$ denotes an isolated point. Then G and H will each have $p=(m+2)^{2 m-2}$ points, and their collections of n-point deleted subgraphs are the same if $n=p \cdots m$. Since the max mum degree of G is m and that of H is $m-1$. this class of examples shows that Corollary 1.4 is, in a sense, best possible. Since G and $/ /$ are non-isomorphic, they generalize some known small counterexamples.

Theorem 1.5. ior every positive anteger k. there exists a positive integer natd wo ne:i-isemorphic graphs G and H on $:+k$ points. which have the same collectioms of n-point deleted subgraphs

Thus, the bairs of graphs G and $/ /$ show that large graphs are not in general determined by small subgraphs. The graphs G and H also show that disconnected graphs are not always reconstructible from deleted subgraphs, arid they serve as counterexamples to any improvement of the bound in the following theorem.

Theorem 1.6. If it is known that G is a disconnectrd graph whth largest crmponent comaining no more than $p-n$ points, then (i can be recomstructed from its n-point deleted subgraphs.

Proof. This is an easy consequence of Theorem 1.1, as follows. The connected subgraphs of maximum size, found using Theorem 1.1 , will just he the largest components of G. The next-smaller connected subgraphs, with subgrapis of the components already found deleted, are the next-
smaller components. Continuing this process, all compenents of G may be found.

This theorem is of little use for general n since disconnected graphs are hard to recognize.

2. Resuits for $n=$?

The simple observation in the case $A:=1$ thet G is connected iff at least two delsted subgraphs are connect d tids no analoguc for $n>1$. For $n=2$, however, there is a direct ar, ument to setfle that question.

Theorem 2.1. If G has at least 6 peints. the' 2 -pomint deleted subgrayhs determine whether or not G is connecsed

Proof. If G has no isolates, the re is at must one connected subgraph $G(i, j)$ if G is disconnected, and a connected graph has two or more such connected subgraphs. On the other hand, it G has isolates, it is clearly disconnected. Thus. we reed merely decide whether or not θ has isolates. That is trividi by Corollary 1.4 unless $\Delta(G)=p-3 . p-2$ or $p-1$. But in those cases. vur pose that $(i$ is connected and consider a spanting tree of G containing a point of degree Δ. Looking at cases. we can always find at liast $C(\Delta, 2)$ ways to delete two points and leave a tree. In fact, if $\Delta=p-3$, we can find $C(\Delta, 2)+1$. Now for $p \geq 7$. those numbers are greater than $p-1$, so G has more than $p \cdots 12$-pomt deleted subgraphs with-io isolate. If, on the other hand, G has an isolate, then clearly a^{+}inost $p-1$ subgraphs fail to have one. So we are done if $p \geq 7$. For $p=6$, we merely note that 6 -point graphs can be reconstructed by inspecting all cases, and we have done so.

This theorem is shatp sin, e the 5 -point graph $C_{4} \cup K_{1}$ has the same 2-point deleted subgraphs as the tree on 5 points with a point of degree 3. Theorems 1.6 and 2.1 combine to give us the following result:

Corollary 2.2. Disconnected gruphs with $p>6$ points and no ($p-1$ - point component are reconstructible from their 2-point deleted stubgraphs.

The exclusion of graphs with two components, one an isolate, is vital here. Note that the one-point conjecture for arbitrary graphs would follow from that case.

Several classes of graphs can be easily recognized in the 2 -point deleted case.

Theorem 2.3 The following types of graphs can be identified as such by their 2-pesint deleted subgraphs:
(a) tre's $^{(p \geq 6)}$,
(b) unicyclic $(p>5)$,
(c) regielar ($p \geq 5$).
(d) bipartice $(p \geq 6)$.

Proof. Cases (a) and (b) follow from Theorem 2.1 and Corollary 1.2, and Case (c) follows from Corollary 1.4. In Cases (b) and (c), the bound has been lowered from $p=6$ to $p=5$ by examining the 5 -point graphs. Case (d) requires some argument.

By Corollary 2.2, we can assume ($;$ is either connected or else it is an isolate and a connected graph. In the latter case, Theorem 1.1 can tell us whether or not G has any odd cycles of length $p-2$ or less. If it does not, then it is either bipartite or consists of an isolate and a $p-1$ cycle ($p-1$ odd), a case which is easily recognized since we know the degree sequence of G.

Thus, we are left with the case that G is connected. Again we can recognizs if G has odd cycles of length less than $p-1$. If not, then G is bipartise, or is itsiff an odd cycle, or is an odd cycle plus one point, which may or may not be adjacent to a point of the cycle. All of these cases are easily handled since we know the degree sequence of G and whether or not G is connected.

References

[1] F. Harary. On the seconstruction of a graph frome a collection of subgraphs, in: M. Fiedler. ed. Theory of Graphs and is Applications (Prague, 1964, reprinted Academic Press, New York, 1964) 47-52.
[2] P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957) 961968.

