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Abstract. P.J. Keily first mentioned the po wibility of determining a graph {rom sudgraphs ob-
tained by deleting several points. While such prublems have received a great Jdeal of attention in
the case of delestons of single points, the problem for several points is virtually untouched. This
paper contains some basic results on that problem, including the negative observation that for
every k, there exist two nonasomorphic graphs with the same collection of X-point subgraphs.

0. Introduction

The following conjecture arose from a comment in Kelly's paper { 2]
on reconstruction of trees from point-deleted subgraphs:

Kelly's conjecture. For any positive integer n, there cxists a number
p(n) such that any graph with at least v(n) points is uniquely determined
by its collection of n-point-deleted subgraphs.

Empirical data suggest that ¥(2) = 6, while an earlier conjecture (ap-
parently due to Ulam, but appearing first in Kelly's paper) claims that
v(1) = 3. The purpose of this paper is to make a few basic observations
on Kelly's conjecture for arbitrary n, somewhat in the veir. of Harary’s
observations in [ 1] on the case n = 1.

1. Results for general n
If G is a graph with points | through p, then G(i, . {5, ..., iy ) will de-

note the graph on p - & points obtained from G by deleting points
iy> 1y, ... iy (and edges incident with them).
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Theorem 1.1. Let G and H be graphs with p and k points, respectively,
= . Gy e number of subgraphs of G isomaorphtic to H, and

pliy g i )= W, Gy, L D). Then cach subgraph H o G will be
counted anec i each of the C(p - k. n) subgraphs which contain all of
its points, s C(p —k, M = Zuliy, iy ... i, ). where the sum is over all
n-tuples of points of G

Taking £/ = £, in the theorem, we can find ¢ the number of hnes of
G.

Corcllary 1.2.0f quiy . iy, ..., i, ) is che r :ruber of lines of
Gy, by b withn < p- 2 then g = Loy, by, 00,)iCp - 200,

The method used in [ 1] to find the degiee sequence of G, in case
n =1, is not applicable here. If ike maririum degree of ¢ is small
enough. however, the degree sequence imay be easily derived. Let N(¢:1)
denote the number of n-stars in & and M(n) denote the number of paints
of G with degree 7, with the coavention that each line is countad twice
in.N(1}.

Corollary 1.3. If the numbers M(iyare known fori>p — n - 1 or for
i < n, theq the degree sequence of & can be found from ics collection of
n-point deleied subgraphs.

.
Proof, By Theorem 1.1, we know the numbers N(p - - k). k= 1, 50
if the M{dy, i > p - n — 1, are known, we can derive the degree sequence
inductiveiy using the formulas

k-1
Mp—ky=N@p-k)- 20 Cp—i,p~KMp—ir. k1.

izl

Corollary 1.4. If A(G)Sp ~n— 20r8(G)2 n + 1, then the degree se-
quence ¢f G can be found from its collection of n-point deleted sub-
graphs,

Proof. Notice that A(G)islessthanp —n — j ifand only if N(p —n - 1)
= (), a fact which is known by Theorem 1.1. In that case, the numbers
Miyfori > p — n — 1 are all zero, so Corollary 1.3 applies. For 8(G) >
n + |, we notice that the complement of G has A(G)< p - n - 2, and



8. Manvel, Kelly's conjecture Jor graphs 183

since the deleted subgraphs of the complement are Ce complemeants of
the deleted subgrapis of G| the degree sequence of the complement
(and, therefore, that of () can be found.

The proof of Corollary 1.4 is so simple that it would seem reasonable
to relax the conditton on A, The following examples show that when A
s small in relation to p that cannot be done. Let

G=UCm, 20DK

i.m - R

H=UCom, i+ LK, o .
where the first union goes from i =0 to: = [ §m] and the second from
:=0toi=[don - D). and we agree that K, ; denotes an isolated
point. Then G and # will cach have p = (m + 2)2™ =2 points, and their
collections of n-pownt deleted subgraphs are the same ifr =p - m.
Since the maxamum degree of G ism and that of Hism — 1, this class
of examples shows that Corollary 1.4 1s, in a sense, best possible. Since
G and H are non-isomorphic. they generahize some known small coun-
terexampies.

Theorem 1.5, Fur cvery positive integer Kk, there exists a positive integer
nand two nea-isomaorphic graphs G and H on v ¥ &k points. which have
the same collections of n-point deleted subgraphs ot

Thus, the pairs of graphs G and // show that large graphs are not in
general determined by small subgraphs. The graphs ¢ and / alsc show
that disconnected graphs are not always reconstructible from deleted
subgraphs, and they serve as counterexamples to any improvement of
the bound in the following theorem.

Theorem 1.6. 1/ it is known that G is a disconnected graph with largest
component coniaining no more then p - n paints, then G can be re-
comstructed from its n-point deleted subgraphs.

Proof. This is an easy consequenve of Theorem 1.1, as fHlows. The con-
nected subgraphs of maximum size, found using Theorem 1.1, will just
be the largest components of . The next-smaller connected subgraphs,
with subgraphs of the compenents already found deleted, are the next-
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smaller components. Contitiuing this process, all compenents of ¢ may

be found.

This theorem is of little use for general # since disconnected graphs
are hard to recognize.

2. Resuits forn =2

The simple observation in the case # = | thit ¢ is connected iff at
least two deleted subgraphs are connect »d ks no analogue for n > 1.
For # = 2, however, there is a direct ar.umerit to settle that quest.on.

Theorem 2.1. If G has at least 6 points, the 2-point deleted subgrap:hs
determine wkether or ot G is connecied

Proof. If G h.as no isolates, there is a1 most one connected subgraph
G, jyif G is disconnected, and a connected graph has two or more
such connected subgraphs. On tiwe other hand. it G has isolates, it s
clearly disconnected. Thus, we reed merely decide whether or not
has isoiates. That is trivia! by Corollary 1.4 unless MiG)=p - 3. p - 2
or p — 1. But in those cases. suppose that ¢ is connected and coensider
@ spanning tree of G containing i point of degree &. Looking at cuscs,
we can always find at last C(AQ, 2) ways to delere two points and leave
atree. Infact, if & =p — 3, we can find C(A. 2) + i. Now for p 27
those numbers are greater thar o ~ 1, so G has more than p - | 2-pomnt
deleted subgraphs w@,:«.sj‘xsélate. If. on the other kand, G has an isolate,
then clearly st:708t p — | subgraphs fail to have one. So we are dene if
p = 7. For p =6, we merely note that 6-poirt graphs can be reconstruc-
ted by inspecting all cases, aind we have done so.

This theorem is shorp since the S-point graph C, v K, has the same
2-point deleted subgraphs as the tree on S points with a point of degree
3. Theorems 1.6 and 2.1 conmibine to give us the following result:

Corollary 2.2. Disconnecred graphs with p 2 6 points and no (p -- 1 ¥
phint component are reconstructible from their 2-point deleted subgraphs.
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The exclusion of graphs with two components, ore an isolate, is vital
ere. Note that the one-point conjecture for arbitrary graphs would fol-

low from that casc.

Several classes of graphs can be casily recognized in the 2-poiant dele-
ted case.
Theorem 2.3 The following types of graphs can be identified as such b
their 2-point deleted subgraphs:

(a) trevs (p 2 6),

(b) unicyclic (p 2 35),

(v) regudar (p 2 5),

(d) bipartite (p 2 6).

Proof. Cases (a) and (b) follow from Theorem 2.1 and Corollary 1.2,
and Case (¢) follows from Corollary 1.4. In Cases (b) and (¢), the bound
has been lowered from p = 6 to p = 5 by examining the 5-point graplis.
Case (d) requires some argument.

By Corollary 2.2, we can assume (- is either connected or else it is an
isolaze and a connected graph. In the latter case, Theorem 1.1 can tell us
whether or not G has any odd cycles of length p — 2 or less. If it does
not, then it is either bipartite or consists of an isolate and ap -- 1 cycle
(p - 1 odd), a case which is easily recognized since we know the degree
sequence of G. ' .

Thus, we are left with the case that G is connected. Again we can re-
cognize if (¢ has odd cycles of length less than p — 1. If not, then G 15
bipartive, or is its.if an odd cycle, or is an odd cycle plus one peint,
which may or may not be adjacent to a point of the cycle. All of these
cases are easily handled since we know the degree sequence of G and
whether or not G is connected.
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