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We employed ABI high-density oligonucleotide microarrays containing 31,700 sixty-mer probes (represent-
ing 27,868 annotated human genes) to determine differential gene expression in idiopathic dilated
cardiomyopathy (DCM). We identified 626 up-regulated and 636 down-regulated genes in DCM compared to
controls. Most significant changes occurred in the tricarboxylic acid cycle, angiogenesis, and apoptotic
signaling pathways, among which 32 apoptosis- and 13 MAPK activity-related genes were altered. Inorganic
cation transporter, catalytic activities, energy metabolism and electron transport-related processes were
among the most critically influenced pathways. Among the up-regulated genes were HTRA1 (6.9-fold),
PDCD8(AIFM1) (5.2) and PRDX2 (4.4) and the down-regulated genes were NR4A2 (4.8), MX1 (4.3), LGALS9
(4), IFNA13 (4), UNC5D (3.6) and HDAC2 (3) (pb0.05), all of which have no clearly defined cardiac-related
function yet. Gene ontology and enrichment analysis also revealed significant alterations in mitochondrial
oxidative phosphorylation, metabolism and Alzheimer's disease pathways. Concordance was also confirmed
for a significant number of genes and pathways in an independent validation microarray dataset.
Furthermore, verification by real-time RT-PCR showed a high degree of consistency with the microarray
results. Our data demonstrate an association of DCM with alterations in various cellular events and multiple
yet undeciphered genes that may contribute to heart muscle disease pathways.
© 2009 Elsevier Inc. All rights reserved.
Background

Idiopathic dilated cardiomyopathy (DCM) is the thinning of one or
both ventricle(s) from an unknown cause, with the resultant impaired
cardiac contractility often leading to overt congestive heart failure or
cardiac arrhythmias. While no clear cause is evident in the majority of
cases, DCM is probably an end product of myocardial damage
triggered by a variety of toxic, metabolic or infectious agents [1].
Besides, some forms of familial DCM, in particular, also appear to be
triggered by mutations in genes encoding cytoskeletal, contractile or
other myocardial proteins [2–5]. The ensuing progression of heart
failure is associated with left ventricular remodeling, which manifests
as a gradual increase in left ventricular end-diastolic and end-systolic
volumes, wall thinning and alteration in the shape of the chambers to
a more spherical and less elongated form [6]. Several molecular and
cellular alterations have been identified that contribute to cardiac
muscle contractility and relaxation abnormalities in this process.
ll rights reserved.
These include, among others, the cyclic AMP (cAMP)-dependent
pathways, calcium (Ca2+) homeostasis, neurohumoral activation and
myofibrillar function [7]. Essentially, cAMP-dependent pathways are
desensitized due to alterations in β-adrenoceptors (β-AR), β-AR
kinases and guanine nucleotide binding proteins (G-proteins) [8].
Calcium ion (Ca2+) homeostasis is impaired, characterized by a
reduced sarcoplasmic reticulum Ca2+ reuptake rate, elevated Ca2+

release channel threshold and an increase in sodium ion (Na+)/Ca2+

exchanger expression [9,10]. Myofibrillar function may also be
influenced by a decrease in Mg2+-ATPase activity and in troponin I
phosphorylation, as well as changes in troponin T isoform expression
[9,11–13]. Accumulating data also suggests a link between alterations
and/or deficiencies in cytoskeletal proteins and the progression of
cardiomyopathy to heart failure. Moreover, the remodeling process
appears to be regulated by a number of pathways including cytokines
and growth factors [14].

Despite great efforts to understand the mechanism involved in the
progress of DCM to overt heart failure, the underlying triggering
factors for the disease remain to be elucidated. Accumulating evidence
from gene profiling and other studies implicates diverse pathways,
including among others, the vascular renin–angiotensin system [15],
Gi-coupled receptors [16], TGFβ-activin-A/Smad signaling pathway
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[17], SH2-containing cytoplasmic tyrosine phosphatase (Shp) [18]
and apoptotic signaling [15,17–20], to name a few. While classical
opinion might argue that several of these alterations occur
independently of the underlying etiology of the disease, it has also
become apparent that the greater part of the familiar myocardial
changes is probably triggered by chronic neurohumoral activation
and abnormal mechanical load [21], which greatly promote the
progression of heart failure as part of a vicious circle. However, the
molecular basis for this link remains unclear. Several studies have
been performed using different microarray-based and other techni-
ques to evaluate alterations in gene expression in DCM [22–26], and
recently intraplatform consistency in terms of sample sources as well
as a high level of interplatform concordance with respect to genes
identified as differentially expressed have been demonstrated [27,28].
Hence, deciphering the pattern of alterations in gene expression in
DCM using the microarray system provides a valuable basis for
elucidating some of the mechanisms involved in this vicious circle. In
particular, the ABI high-density oligonucleotide microarray platform
allows analysis of a greater number of genes than most platforms, as
it includes annotated genes from both public and Celera databases.
ABI platform is also a chemiluminescent based array by which signal
is enhanced to fentomol sensitivity which may help to detect rare
mRNAs. It has also been shown that ABI 1700 platform has
substantially higher sensitivity, detecting four times as many changes
in an identical experimental design and results are well correlated
(R2N0.7) with qRT-PCR compared to other microarray platforms [29–
31]. In this study, we therefore sought to establish left ventricular
differential gene expression in DCM employing the ABI 1700
platform, in order to be able to detect a relatively rare class of
mRNAs and obtain further insight into the mechanism of heart
muscle disease pathways.

Materials and methods

Study patients

For the gene expression and subsequent experiments, 300 mg of
tissue were harvested from left ventricles of five DCM hearts excised
from patients (3 male and 2 female; 42.3±6.3 years) with end-stage
heart failure undergoing cardiac transplantation at our institution. All
samples were procured from identical myocardial loci to ensure
optimal uniformity. The patients had New York Heart Association class
3–4 symptoms, and received anti-heart failure treatment and/or
inotropic support. None of the patients was on a left ventricle assist
device or any other mechanical support. Four healthy hearts procured
from organ donors (three male and 1 female; 34.1±4.7 years) who
died of traffic accidents with no history of cardiac disease served as
controls. The mean age of the controls was not significantly different
from that of the patients (p=0.37). These hearts had originally been
intended for transplantation, but failed to get suitable matching
recipients. At the time of harvesting, whole hearts were explan-
ted after preservation in cold cardioplegia, followed by imme-
diate dissection into small portions, snap-frozen in liquid nitrogen,
and maintained at −80 °C until use. Minimum time possible
(usuallyb3 h) was allowed between harvesting donor hearts and
freezing the samples in liquid nitrogen. Fully informed consent was
obtained from all patients or family members before participating in
the study. This study was performed in accordance with the
Declaration of Helsinki as adopted and promulgated by the US
National Institutes of Health as well as rules and regulations laid down
by our Institutional Ethics Committee.

Expression array analysis

Total RNA was isolated from similar left ventricular biopsies using
Applied Biosystems (ABI) Totally RNA Isolation Kit (ABI-Ambion,
Foster City, CA, USA), quantified with the NanoDrop® ND-1000
Spectrophotometer (Nanodrop Inc., Wilmington, DE, USA) and further
analyzed by RNA 6000 Nano Assay using 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Digoxigenin-UTP labeled cRNA
was generated and amplified from 1 μg of total RNA using Applied
Biosystems (ABI) Chemiluminescent RT-IVT Labeling Kit v 1.0. The
array hybridization was performed for 16 h at 55 °C and detection,
image acquisition and analysis were performed using ABI Chemilu-
minescence Detection Kit on ABI 1700 Chemiluminescent Microarray
Analyzer (ABI, Foster City, CA, USA).

Real-time RT-PCR

In order to validate our microarray results, confirmatory quanti-
tative real-time RT-PCR (qRT-PCR) was performed using the ABI 7500
Sequence Detection System (ABI, Foster City, CA, USA). For this
purpose, 50 ng total RNA procured from the same microarray study
samples were transcribed into cDNA using Sensiscript Kit (QIAGEN
Inc., Valencia, CA, USA) under the following conditions: 25 °C for
10min, 42 °C for 2 h, and 70 °C for 15min in a total volume of 20 μl. Six
differentially expressed genes (CRYM, NR4A2, PDK4, RASD1, TNNI3K,
and AIFM1) were randomly selected and primers designed using
Primer3 software. After primer optimization, the PCR assays were
performed in 6 μl of the cDNA using the QIAGEN Quantitet SyBR Green
Kit, employing GAPDH as the endogenous control gene. All reactions
were conducted in triplicates and the data was analyzed using the
delta delta CT method [32].

Data analysis

Hybridization images were analyzed using the ABI 1700 Chemilu-
minescent Microarray Analyzer software v 1.1, with the detection
threshold set at signal to noise (S/N) ratioN3 (a value that indicates
99.9% confidence level for the signal being above the background
level, “present” probes) and quality flag b5000. The open source
Bioconductor packages, ab1700, limma, multtest and affy (Fred
Hutchinson Cancer Research Center, Seattle, WA, USA) and Partek
Genomics Suite (Partek Inc.) were employed to normalize the data via
quantile normalization and to determine significant differences in
gene expression levels between DCM patients and normal controls
[33]. When comparing DCM patients and normal controls to identify
the differentially expressed genes, we used a combination of three
criteria. We considered genes that are “present” in at least half of the
samples in either group. Given the nature of the data, and statistical
tests selected, adjusting for multiple testing errors is critical. We used
Benjamini-Hochberg [34] step-up procedure to control the false
discovery rate (FDR). As an alternative approach, we employed the
two-class SAM procedure to estimate the FDR [35]. Significantly
modulated genes were defined as those with absolute fold change
(FC)N1.8 and controlling FDR at 5%. A validation data set was
generated from an independent study by Barth et al. [22] using
Affymetrix HG-U133A array, and the raw data was analyzed by using
dChip [36] and open source R/Bioconductor packages. The dChip
outlier detection algorithm was used to identify outlier arrays (all
arrays passed), and probes “present” in at least 50% of the samples in
either group were filtered. The data was normalized by the GC Robust
Multi-array Average (GC-RMA) algorithm [37,38]. Unpaired t-tests
were performed to determine significant differences in gene expres-
sion levels between patients and normal controls, Multi Experiment
Viewer (MeV4.0) [39] was used to perform two-dimensional
hierarchical clustering employing Euclidean distance as well as
Pearson correlation with average linkage clustering. Functional
annotation and biological term enrichment analysis were performed
using DAVID Bioinformatics Resources [40], Expression Analysis
Systematic Explorer (EASE) [41], Protein ANalysis Through Evolu-
tionary Relationships (PANTHER™) classification systems [42], and
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Ingenuity Pathways Analysis (IPA) 6.3 (Ingenuity Systems, Mountain
View, CA). Gene Set Enrichment Analysis/MSigDB was used to
determine whether an a priori defined set of genes showed
statistically significant, concordant differences between the 2 groups
(DCM vs normal). Statistical analyses were performed with the
MATLAB software packages (Mathworks, Natick, MA, USA), R and
Bioconductor and PARTEK Genomics Suite (Partek Inc., St. Lois, MO,
USA).

Results

Global gene expression analysis

The mRNA expression was analyzed using the ABI human whole
genome array version 2. The ABI Human Genome Survey Microarray
contains 31,700 sixty-mer oligonucleotide probes representing 27,868
individual human genes. Approximately 19,000 of these probes were
detectable based on the above criteria. We have found 1309 probes, of
which 655 probes (626 genes) were up-regulated and 654 probes
(636 genes) were down-regulated, whose expression varied at least
1.8-fold and were statistically significant at a false discovery rate of
b5% between DCM patients and normal controls (Supplementary
Table 1). The hierarchical clustering in both dimensions (samples and
genes) clearly distinguished individuals as either DCM or controls
(Fig. 1). The 50 most significantly altered genes (N3-fold change) are
listed in Tables 1A and 1B.

Gene ontology analysis

The gene ontology and functional analysis of DCM specific up/
down-regulated genes were performed using the Ingenuity knowledge
base (Fig. 2A). The biological functions assigned to the data set are
ranked by significance (− log P value). As demonstrated in Fig. 2A,
highly significant functions include lipid metabolism, cell death, amino
acid metabolism, small molecule biochemistry, molecular transport,
cellular growth and proliferation, nucleic acid metabolism, tissue
development, and cellular development. We further identified altered
biological processes, molecular functions and pathways among the
differentially expressed genes using PANTHER™ classification systems
[42]. The numbers of genes identified in each of the three categories
were calculated and compared using the binomial test to determine if
thereweremore genes than expected in the differentially regulated list
[43]. Based on this analysis, genes related to electron transport
(p=1.9×10−16), oxidative phosphorylation (p=4.7×10−16), protein
metabolism and modification (p=3.4×10−9), carbohydrate metabo-
lism (p=1.3×10−8), fatty acid metabolism (p=1.2×10−7), cell
proliferation and differentiation (p=1.7×10−3) belonged to the
most significantly enriched among the up-regulated genes. Genes
related to signal transduction (p=6.1×10−7), cell communication
(p=5.6×10−5), mesoderm development (p=4.2×10−3), mRNA
transcription (p=1. 4×10−4), cell surface receptor-mediated signaling
(p=1.5×10−3), developmental processes (p=1.3×10−2) and cell
adhesion (p=8.7×10−3) were the most significantly enriched among
the down-regulated genes (data not shown). Biological themes
associated with the differentially expressed genes were also identified
by using three gene ontology categories of biological processes,
molecular functions and cellular components. The most significantly
overrepresented GO categories (EASE scoreb0.01) among the up-
regulated genes were related to catalytic activity, electron transport,
mitochondrial metabolism and energy pathways, whereas among the
down-regulated genes were those associated with cell adhesion, signal
Fig. 1. Heatmap of genes that were significantly modulated due to DCM. Hierarchical clust
expressed genes are indicated in red, intermediate in black, and weakly expressed in green
transduction, binding and transcription, which was consistent with the
categories identified by PANTHER.

We also investigated biological pathways significantly represented
among the differentially expressed genes. The most significantly
overrepresented pathways included the TCA cycle, asparagine and
aspartate biosyntheses, apoptosis signaling, Parkinson's disease, cell
cycle, and salvage pyrimidine ribonucleotide pathways enriched
among the up-regulated genes, and TGF-β signaling, p53, apoptosis
signaling, Ras, integrin signaling and Alzheimer's disease-presenilin
pathways among the down-regulated genes (Table 2). The IPA analysis
of DCM specific genes (up/down-regulated) also revealed that citrate
cycle, mitochondrial dysfunction, oxidative phosphorylation and TGF-
β signaling are among the most significantly altered canonical
pathways (Fig. 2B). The Gene Set Enrichment Analysis/MSigDB
further complements the ontology analysis with significant enrich-
ment of gene sets or pathways related to cytoplasm, mitochondrial
genes, Alzheimer disease, metabolism and oxidative phosphorylation.

Gene interaction network analysis

To obtain a deeper insight into the interactions of the dysregu-
lated genes among the various pathways, the DCM specific genes
were mapped to the gene networks using the Ingenuity knowledge
base. These genes were mapped primarily to top networks (Fig. 3A
and B) related to, among others, cell death, cellular growth and
proliferation, cardiovascular and nervous system development and
function, post-translational modification, protein folding, cell cycle,
tissue development, lipid metabolism and small molecule
biochemistry.

Among the differentially expressed genes, 32 were apoptosis-
related and 13 were associated with mitogen-activated protein kinase
(MAPK) activities. Also noteworthy was the large number of up-
regulated genes pertaining to oxidoreductase activity, synthases,
ribosomal proteins, nucleic acid binding, mitochondrial function and
metabolism on the one hand, and the down-regulated genes involved
in homeobox transcription, signal transduction, receptor signaling,
growth, extracellular matrix or DNA-binding on the other. Further-
more, the most highly (N4-fold change) elevated genes included
pyruvate dehydrogenase kinase, isozyme 4 (PDK4), malonyl-CoA
decarboxylase (MLYCD), the programmed cell death (AIFM1 also
known as apoptosis-inducing factor or mitochondrial programmed
cell-death protein 8), ubiquitin B (UBB), human troponin I subtype 3
(TNNI3) interacting kinase (TNNI3K), mitochondrial branched chain
aminotransferase 2 (BCAT2), crystalline-mu (CRYM), and peroxire-
doxin 2 (PRDX2), while the most significantly down-regulated genes
included the pyruvate dehydrogenase kinase, isoenzyme 4 (NR4A2),
dexamethasome-induced RAS encoding subtype 1 gene (RASD1),
B-cell receptor-inducible gene BIC(MIRHG2), myxovirus 1 (MX1),
interferon A13 (IFNA13), unc-5 homolog D (UNC5D), histone
deacetylase 2 (HDAC2) and potassium voltage-gated channel, mem-
ber 2 (KCNQ2) genes, just to name a few.

Independent validation set analysis

As a validation of our results, we analyzed an independently
performed microarray dataset for DCM from Barth et al. [22] using
Affymetrix short oligo array using the analysis procedure defined in
the “Materials and methods” section on the new dataset. The data is
composed of 12 samples for non-failing heart (n=5) and DCM
heart patients (n=7). We found 1223 genes differentially
expressed between DCM and normal controls. The validation
ering clearly separated individuals as either DCM patients or normal controls. Highly
. Only 100 of the most significantly altered genes are shown for readability.
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Table 1A
Top 50 genes that were most significantly increased in expression in DCM.

Probe ID UniGene ID Symbol Gene_name FCa

184159 Hs.75640 NPPA natriuretic peptide precursor A 24.27
101060 Hs.8364 PDK4 pyruvate dehydrogenase kinase, isozyme 4 16.44
127385 Hs.461571 MLYCD malonyl-CoA decarboxylase 9.23
212992 Hs.356190 UBB ubiquitin B 7.21
115431 Hs.25829 RASD1 RAS, dexamethasone-induced 1 7.18
199204 Hs.567501 AIG1 androgen-induced 1 7.12
119696 Hs.3192 PCBD1 pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1) 7.03
168813 Hs.17860 OGDHL oxoglutarate dehydrogenase-like 6.94
111748 Hs.501280 HTRA1 HtrA serine peptidase 1 6.87
117167 Hs.204041 AHSA1 AHA1, activator of heat shock 90 kDa protein ATPase homolog 1 (yeast) 6.73
118421 Hs.480085 TNNI3K TNNI3 interacting kinase 6.68
146066 Hs.494186 C9orf95 chromosome 9 open reading frame 95 5.85
211439 Hs.500756 GOT1 glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1) 5.83
162178 Hs.512670 BCAT2 branched chain aminotransferase 2, mitochondrial 5.71
209321 Hs.518834 B3GALT2 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 2 5.54
122333 Hs.529276 FLJ21901(FASTKD1) 5.46
112942 Hs.479491 C1orf139(GPR177) chromosome 1 open reading frame 139 5.46
161710 Hs.924 CRYM crystallin, mu 5.31
205457 Hs.424932 AIFM1 programmed cell death 8 (apoptosis-inducing factor) 5.25
146299 Hs.567431 SIRT5 sirtuin (silent mating type information regulation 2 homolog) 5 (S. cerevisiae) 5.24
214987 Hs.12084 TUFM Tu translation elongation factor, mitochondrial 5.06
214864 Hs.184492 ELAVL1 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 1 (Hu antigen R) 4.98
200831 Hs.499916 FAM48A family with sequence similarity 48, member A 4.93
158867 Hs.523454 TPP1 tripeptidyl peptidase I 4.92
155357 Hs.183428 SSPN sarcospan (Kras oncogene-associated gene) 4.91
202365 Hs.524234 FNDC5 fibronectin type III domain containing 5 4.87
115589 Hs.460184 MCM4 MCM4 minichromosome maintenance deficient 4 (S. cerevisiae) 4.79
210061 Hs.486596 NHSL1 NHS-like 1 4.79
195766 Hs.155729 ETFDH electron-transferring-flavoprotein dehydrogenase 4.77
182995 Hs.379636 UNC45B unc-45 homolog B (C. elegans) 4.76
124513 Hs.172510 C1orf88 chromosome 1 open reading frame 88 4.74
217302 Hs.524750 NUP98 nucleoporin 98 kDa 4.56
202618 Hs.8526 B3GNT6 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 4.51
158513 Hs.432121 PRDX2 peroxiredoxin 2 4.43
102257 Hs.508848 HNRPC(HNRNPC) heterogeneous nuclear ribonucleoprotein C (C1/C2) 4.21
190596 Hs.529353 ACSS1 acyl-CoA synthetase short-chain family member 1 4.17
213069 Hs.279709 TRIM63 tripartite motif-containing 63 4.16
107417 Hs.13434 ATPAF2 ATP synthase mitochondrial F1 complex assembly factor 2 4.05
115807 Hs.76394 ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial 4.05
100079 Hs.113684|Hs.567290 HSPD1 heat shock 60 kDa protein 1 (chaperonin) 4.04
218816 Hs.101174|Hs.569810 MAPT microtubule-associated protein tau 4.00
203523 Hs.79064 DHPS deoxyhypusine synthase 3.98
134459 Hs.508720 RAB20 RAB20, member RAS oncogene family 3.95
179728 Hs.472737 TOP1 topoisomerase (DNA) I 3.88
101676 Hs.7296 C17orf71 chromosome 17 open reading frame 71 3.88
169529 Hs.555973 MRPS25 mitochondrial ribosomal protein S25 3.79
169750 Hs.183070 STAMBP STAM binding protein 3.73
144908 Hs.474982 ACO2 aconitase 2, mitochondrial 3.71
195306 Hs.157106 JMJD2C jumonji domain containing 2C 3.65
162286 Hs.534540 ZFAND2B zinc finger, AN1-type domain 2B 3.65

a FC was calculated between the mean values of control and DCM.
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dataset showed a significant number of genes (pb10−5) in common
with our analysis results. Significance of overlaps was calculated
using hypergeometric distributional assumption [44] and P values
were adjusted using Bonferroni correction for multiple comparisons
[45]. In addition, unsupervised clustering was performed using our
signature gene list to cluster Barth et al. [22] data. We found that
using our signature gene list was sufficient to separate individuals
in Barth et al.'s study as either DCM patients or normal controls
(Supplemental Fig. 1).

Furthermore, almost 70% of all GO categories from our analysis
were retained in the validation dataset (p∼0), and a significant
number of overrepresented GO categories was in common. Of note,
metabolism, catalytic activity, ribosome, energy derivation by oxida-
tion, protein metabolism, muscle development, and biosynthesis
come up as significantly enriched GO categories in both the validation
and our analyses. The gene set enrichment analysis (GSEA) showed
highly significant enrichment of sets related to cytoplasm, neuronal
stem cell, Alzheimer's disease and protein metabolism. The simila-
rities between our results and the independent validation results
argues against random chance accounting for the observed enrich-
ment of these gene sets.

Validation of selected differentially expressed genes

We next used quantitative real-time PCR (qRT-PCR) to validate
selected differentially expressed genes, CRYM, NR4A2, PDK4, RASD1,
TNNI3K and AIFM1. QRT-PCR analysis revealed a highly significant
correlation (r=0.97, P valueb0.01) between the microarray and the
qRT-PCR data (Fig. 4), thus demonstrating the reliability of our gene
expression measurements. These sets of genes and their interaction
networks are shown (Supplementary Fig. 1A–E).

Discussion

The present study investigates alterations in gene expression
associated with heart muscle disease using DCM as a study model.
While the sample sizes employed in this study are comparatively
small, it should be noted that all tissues were procured from identical



Table 1B
Top 50 gene that were most significantly decreased in expression in DCM.

Probe ID UniGene ID Gene symbol Gene_name FCa

123450 Hs.165258 NR4A2 nuclear receptor subfamily 4, group A, member 2 −4.83
221732 Hs.161851 KCNQ2 potassium voltage-gated channel, KQT-like subfamily, member 2 −4.78
179577 Hs.535591| LOC375251 −4.72
652781 Hs.388313 MIRHG2 −4.67
155850 Hs.81256 S100A4 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin,

murine placental homolog)
−4.39

215752 Hs.65641 SAMD9 sterile alpha motif domain containing 9 −4.29
209986 Hs.517307 MX1 myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (mouse) −4.25
162446 Hs.275086|Hs.380135 PRDM10|FABP1 PR domain containing 10|fatty acid binding protein 1, liver −4.23
217544 Hs.352220 MGC23270 −4.23
207085 Hs.445496 MAP3K9 mitogen-activated protein kinase kinase kinase 9 −4.11
171927 Hs.154057 MMP19 matrix metallopeptidase 19 −4.11
159046 Hs.81337 LGALS9 lectin, galactoside-binding, soluble, 9 (galectin 9) −4.10
200670 Hs.500066 TADA2L transcriptional adaptor 2 (ADA2 homolog, yeast)-like −4.03
132165 Hs.533471 IFNA13 interferon, alpha 13 −4.02
224571 Hs.516971 FKHL18(FOXS1) forkhead-like 18 (Drosophila) −4.02
145309 Hs.532345 ZFYVE9 zinc finger, FYVE domain containing 9 −4.02
206143 Hs.437877 AMHR2 anti-Mullerian hormone receptor, type II −3.96
223807 Hs.252543 IKIP −3.90
691815 Hs.196484 C1orf178 chromosome 1 open reading frame 178 −3.86
223796 Hs.190877 C9orf66 chromosome 9 open reading frame 66 −3.80
102968 KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog −3.69
158586 Hs.317659 DPPA4 developmental pluripotency associated 4 −3.66
141970 Hs.238889 UNC5D unc-5 homolog D (C. elegans) −3.64
126259 Hs.567576 RNF219 chromosome 13 open reading frame 7 −3.60
114684 Hs.506829 LASS6 LAG1 longevity assurance homolog 6 (S. cerevisiae) −3.58
107450 Hs.448664 TMEM80 transmembrane protein 80 −3.57
129347 Hs.381312 OR2K2 olfactory receptor, family 2, subfamily K, member 2 −3.51
177348 Hs.159628 SERPINA4 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 4 −3.45
141595 Hs.164797 TREML2 triggering receptor expressed on myeloid cells-like 2 −3.39
127023 Hs.554529 OR4A15 olfactory receptor, family 4, subfamily A, member 15 −3.39
145949 Hs.371987 NFAT5 nuclear factor of activated T-cells 5, tonicity-responsive −3.37
171525 Hs.821 BGN biglycan −3.32
169674 Hs.131151 PSMD9 proteasome (prosome, macropain) 26S subunit, non-ATPase, 9 −3.32
102572 Hs.279209 CCDC41 coiled-coil domain containing 41 −3.28
224005 Hs.73680|Hs.470488 CMYA3(XIRP2) cardiomyopathy associated 3 −3.27
111499 Hs.434720|Hs.55016 EPS8L2 EPS8-like 2 −3.24
198318 Hs.201641 BASP1 brain abundant, membrane attached signal protein 1 −3.21
110723 Hs.549368 LOC439913 −3.19
134951 Hs.106511 PCDH17 protocadherin 17 −3.18
212531 Hs.69360 KIF2C kinesin family member 2C −3.10
194003 Hs.172928 COL1A1 collagen, type I, alpha 1 −3.08
171591 Hs.552755 LOC255025 −3.08
165806 Hs.534293 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 −3.05
195643 Hs.167017 GABBR1 gamma-aminobutyric acid (GABA) B receptor, 1 −3.02
167343 Hs.576884|Hs.118161 C10orf11 chromosome 10 open reading frame 11 −3.01
180037 Hs.76364 AIF1 allograft inflammatory factor 1 −3.00
143136 Hs.333274 CALN1 calneuron 1 −2.99
133640 Hs.302346 FLJ13391(FAM176A) −2.98
230512 HDAC2 histone deacetylase 2 −2.97
135102 Hs.517941 HYPB(SETD2) −2.97

a FC was calculated between the mean values of control and DCM.
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myocardial loci, to ensure optimal uniformity in cell content. This
procedure should produce comparatively reliable and informative
results with the microarray platform employed, in particular, if
considered together with similar gene expression studies employing
different platforms [46–48]. Most importantly, a validation analysis
demonstrated great concordance of our results with other data sets
using a different microarray platform. Besides ABI 1700 system has a
unique approach in identifying the dysregulated genes since it targets
genes from both Celera and Public databases and utilizes chemilumi-
nescently enhanced detection that is likely to determine relatively
rare mRNAs. Also, our confirmatory qRT-PCR experiments displayed
very good correlation with the microarray results, adding to the
validity of the present observations. This is in concordance with some
recent studies showing linear relationship for real-time and conven-
tional reverse transcription and therefore validity of robustness of
mRNA quantification using either microarrays or quantitative RT-PCR
[49]. Hence the aim of the present work is to identify potentially novel
and signature genes for DCM, in order to gain further insight into the
mechanism of heart muscle disease pathways.

We identified differentially expressed probes satisfying the set
criteria of S/N ratio N3 in N50% of the samples, a 5% FDR and absolute
fold change N1.8 in DCM patients compared to controls. These
observations are consistent with the study of Guo et al. [28], in
which gene lists ranked by fold change and filteredwith non-stringent
statistically significant tests were more reproducible across platforms
than those generated through other analytical procedures. Our study
reveals several differentially and highly expressed genes and gene
families, themajority of which encode apoptotic, cell proliferation and
differentiation, homeostatic and mitochondrial energy metabolizing
proteins. In general, genes and pathways involved in apoptosis,
growth, communication and cardiomyoctye structure were down-
regulated, whereas those involved in energy metabolic processes, cell



Fig. 2. Functional (A) and canonical pathway (B) analysis of DCM specific genes. X-axis indicates the significance (− log P value) of the functional/pathway association that is
dependent on the number of genes in a class as well as biologic relevance. The threshold line represents a P value of 0.05.
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survival, cell cycle, ion transport were up-regulated. Thus, our study
furnishes supporting evidence for the prevalence of apoptosis in DCM,
as indicated by the presence of DNA fragmentation in conjunction
with changes in apoptotic signaling components [50,51]. These results
are also consistent with other microarray and small-scale studies
demonstrating changes in related genes, including cytokines, tumor
necrosis factor (TNF)-induced genes, MAPKs, cell survival and stress
response genes as well as other components of apoptotic signaling
pathways [52–54]. Taken together, these data strongly implicate
perturbations in death-related signaling in the pathogenesis of DCM.

Other similarly described changes in DCM thus far involve genes
contributing to diverse cellular processes, including transcription [55],
sarcomeric and cytoskeletal function [24,56], extracellular matrix
remodeling [57], membrane transport [23], ion channels [55] and
immune responses [22]. Also consistently implicated in this disease is
the alteration in myofilament function in conjunction with depressed
myofibrillar ATPase activity [58] and increased myofilament Ca2+

sensitivity, which presumably contribute to slowed or incomplete
muscle relaxation, and therefore depression of the force-frequency
relation [12]. In this regard, it is noteworthy that altered post-
translational modification of particularly the phosphorylation state of
troponins I and T, and possiblymyosin light chain, has been postulated
as the most important mechanism of myofilament dysfunction in
DCM, with possible contributions of other modifications, such as
oxidation and glycation [13]. Therefore, the down-regulation of
extracellular matrix genes and the increase in cell structural and
myofilament gene expression established in this and various other
studies substantiate the potential involvement of cardiomyocyte
modification(s) as an integral component of events occurring in DCM.

Apart from modifications of the contractile muscle structure,
changes in mitochondrial gene expression were also evident, ranging
from the up-regulation of genes involved in energy metabolism, such



Table 2
Overrepresented pathways among up/down-regulated genes.

Pathways List hitsa Expected valueb P valuec

Overrepresented pathways among up-regulated genes
TCA cycle 7 0.44 4.40E−07
Asparagine and aspartate biosynthesis 4 0.2 5.32E−05
Fructose galactose metabolism 4 0.32 3.37E−04
ATP synthesis 4 0.37 5.74E−04
Methylmalonyl pathway 2 0.1 4.54E−03
Glycolysis 4 0.74 6.88E−03
Vitamin B6 metabolism 2 0.12 6.98E−03
Methylcitrate cycle 2 0.12 6.98E−03
Acetate utilization 2 0.22 2.12E−02
Threonine biosynthesis 1 0.05 4.81E−02
Cell cycle 3 0.81 4.91E−02
Salvage pyrimidine ribonucleotides 2 0.42 6.66E−02
Parkinson disease 6 2.86 6.97E−02

Overrepresented pathways among down-regulated genes
TGF-beta signaling pathway 11 3.67 1.42E−03
p53 pathway feedback loops 2 5 1.53 1.97E−02
Ornithine degradation 1 0.02 2.43E−02
EGF receptor signaling pathway 8 3.57 2.92E−02
Interleukin signaling pathway 13 7.49 4.12E−02
Angiogenesis 10 5.49 5.25E−02
Integrin signaling pathway 10 5.54 5.51E−02
Alzheimer disease-presenilin pathway 7 3.4 5.72E−02

a The number of genes in respective PANTHER classification categories.
b The expected value is the number of genes expected in the differentially expressed

genes for this PANTHER category, based on the reference list.
c P values for each category were calculated from the binomial test statistic.
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as the citric acid cycle and ATP synthesis, and those important in
maintaining energy metabolic pathways, such as MLYCD or PDK4, to
alterations at the level of oxidative phosphorylation (e.g. TNNI3K) and
transamination (e.g. BCAT1). Similar changes have also been
described by other investigators in genes related to oxidative
phosphorylation [59], mitochondrial ADP/ATP transport and adenine
nucleotide translocase (SLC25A4) [60,61], for example. In this regard,
it should be noted that changes in DCMhave also been associated with
more economical and efficient energy utilization by the contractile
machinery, which may offer myocardial protection [58]. Interestingly,
in our study, metabolic pathways were by far the most significantly
altered and well-represented among the over-expressed biological
processes, implicitly placing them at the centre of events occurring in
this disease. Therefore, there appears to be a heightened level of
metabolic activity, which may be ascribable to adaptive or compensa-
tory mechanisms in this disease process.

In addition to the above well-characterized pathways and
processes, we also discovered changes in genes thought to be
physiologically dormant, which may not necessarily fit into the
picture of the failing heart. These include the attenuation in functional
expression of genes encoding growth factors, such as TGF-β, EGF and
FGF, as well as numerous unclassified molecular functions on the one
hand, and the up-regulation of those encoding homeobox transcrip-
tion factors and processes, such as protein, nucleoside, nucleotide,
nucleic acid metabolisms and cardiac development, on the other. This
scenario points to a functional state inwhich regulatory processes that
naturally occur in early stages of cardiac development are suppressed,
while those that may be attributed to sustention of cellular integrity
are elevated or possibly stimulated under these disease conditions.
Our findings are consistent with similar microarray studies postulat-
ing specific role of various transcription factors in heart failure [62,63].
This implies therefore, that the dormancy of these entities in an adult
heart serves definable functional purpose(s), which can be mobilized
or may alternatively contribute to the shaping the disease pathway(s)
to heart failure.

Interestingly, a large number of genes were similarly uncovered
with currently undefined cardiac-related function. These include the
up-regulated HTRA1, AIFM1, CRYM and PRDX2 genes and the down-
regulated NR4A2, LGALS9, IFNA13, MX1, UNC5D, and HDAC2 in DCM.
To date, the HTRA1 has been associated with, among others,
Alzheimer's disease [64,65], various neoplasms [66,67] and regulation
of several signaling pathways [68]. The AIFM1 is a mitochondrial
oxidoreductase which has been implicated in neurological disorders,
andmay influence homeostasis possibly by interactingwith apoptosis-
related signaling protein [69–72]. The PRDX2 is a peroxidoreductase
that catalyzes oxidation-reduction reactions and has been implicated
in Down's syndrome [72], Alzheimer's disease [73] and various forms
of neoplasms [74]. The protein may be involved in the regulation of
apoptosis and response to oxidative stress [75], possibly by influencing
oxidoreductase enzyme activities [67,69,76], among others. The CRYM
has also been associated with various forms of cancer [77]. Of the
down-regulated genes, the LGALS9 has been linked with various
neoplasms and positive regulation of I-κB kinase/NF-κB cascade, Ras
signalling and protein amino acid phosphorylation [78,79]. It probably
inhibits cell growth in a fashion that is regulated by NF-κB [80]. The
MIRHG2 [81], UNC5D [82] and HDAC2 [83,84] have similarly been
associatedwith different types of cancer. However, the functional roles
particularly with respect to cardiovascular function of their putative
protein products remain largely ill-defined.

Thus, it appears that several altered pathways, processes and yet
undefined genes described in the present study are also implicated
in various non-cardiac disorders. These actions may be related to
alterations in apoptotic signaling components, such as MAPKs,
p90RSK, NF-κB, caspase-3 and Src, that have in turn been partly
implicated in the pathogenesis of heart muscle disease [50,53,85].
The concomitant up-regulation and down-regulation of the apopto-
tic signaling components points to a dual role for this pathway,
possibly contributing to both the progression of the disease to heart
failure and to compensatory/adaptive mechanisms in response to
the ventricular overload [80,86,87]. Besides, it has also been
suggested that in HF, apoptosis may be interrupted and is therefore
potentially reversible [20]. This might also explain in part some of
these apparently incongruous signalling events under these disease
conditions.

The fact that some of the above genes are similarly associated with
neurodegenerative disorders, such as Alzheimer's disease, Hunting-
ton's disease or Down's syndrome, attracts speculations with respect
to the relevance of their existence in the myocardium. Interesting in
this regard is also a recent finding of a mouse model of hypertension
revealing the induction of Alzheimer's disease pathways [88]. It is
therefore appealing to hypothesize common underlying mechanism
(s) leading to or triggered by these biological processes with a missing
link connecting cardiac disease pathways with these disorders. It is
also noteworthy that the formation of amyloid plaques in Alzheimer's
disease is associated partly with perturbations in Ca2+ metabolism, a
pivotal second messenger in the regulation of cardiac contractility.
Moreover, mitochondrial dysfunction and particularly oxidative stress
are well-established major players in Alzheimer's disease [89,90] and
possibly Down's syndrome [91], pointing to the likelihood of an inter-
regulation of these disorders at the level of mitochondrial function or
second messenger signal transduction. Hence, these observations
necessitate more precisely focused studies to enhance our under-
standing of the missing links coupling such diverse forms of human
disease with one another.

A further important question remains as to whether or not the
observed alterations in gene expression are exclusive for DCM per se,
heart muscle disease as a whole, or could be eventually ascribable to
heart failure in general. Although the current studywas not directed at
addressing this issue, it is noteworthy that investigations involving
global gene expression in DCM and heart failure thus far have yielded
varying results. While some investigators purport disease-specific
alterations in gene expression [25], others view these changes as
ultimately describing the events associated with heart failure. It has



Fig. 3. Functional network analysis of DCM specific genes. Top two scoring gene interaction networkswith high relevancy scores (significance: score=48) for the DCM specific genes.
A score of three indicates that there is 1/1000 (score=− log (P value)) chance that the focus genes are assigned to a network randomly. Green indicates down-regulated, red, up-
regulated. The color intensity is correlated with fold change. Straight lines are for direct gene to gene interactions, dashed lines are for indirect ones.
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also been argued that the alterations in gene expression in explanted
DCM hearts are reflective of events pertaining to the progression of
heart failure rather than the heart muscle disease per se [25,55,85,92].
However, while these studies commonly discuss the sharing of
alterations in gene expression under different disease conditions,
they do not necessarily preclude the possibility of yet undefined
changes in signaling pathways exclusively related to DCM being
discernible from events specifically pertinent to end-stage heart
failure, in general. Indeed, differences have been described in gene
expression between ischemic heart disease (IHD) and DCM
[26,54,85,93]. On the other hand, it is believed that remodeling is a
feature of both IHD and DCM, suggesting common mechanisms for
their progression to cardiac dysfunction. However, it has also been
asserted that, although heart failure emanating from these two
diseases results in similar clinical endpoints, it progresses through
different remodeling and molecular pathways [55]. Hence, further
studies are necessary to ascertain the events determining various
disease pathways to overt heart failure.

In summary, evaluation of global gene expression patterns
provides a molecular depiction specific to DCM, yields insights into
the pathophysiological aspects of heart muscle disease, and identifies
novel genes and pathways whose cardiac-related functions have yet
to be deciphered. The present study demonstrates not only con-
comitant activation of signaling components regulating partly
counteractive mechanisms involved in cell death, survival and
homeostasis, but also novel gene expression previously unknown to



Fig. 4. Confirmation of the microarray gene expression for six randomly selected
differentially expressed genes by qRT-PCR. Ratio of expression for each gene in DCM
group to normal control (fold change) was log2 transformed for microarray data and
real-time RT-PCR. Dark bars represent microarray hybridizations, and, and grey bars
represent values from qRT-PCR. The error bar represents standard deviation (SD) over
three experiments.
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be related to cardiac function. The resemblance of DCM with
disorders, such as cancer or neurodegenerative disorders, in the
pattern of differential expression of several genes, molecular func-
tions and pathways points to a link of these diseases at the level of
apoptotic signaling, energy metabolism and maintenance of cellular
structural integrity.
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Glossary

ANT(SLC25A4): adenine nucleotide translocase
β-AR: β-adrenoceptor
BCAT2:mitochondrial branched chain aminotransferase 2
MIRHG2: B-cell receptor-inducible gene
BMP: bone morphogenic protein
CRYM: crystalline-mu
EGF: epidermal growth factor
FDR: false discovery rate
FGF: fibroblast growth factor
HCM: hypertrophic cardiomyopathy
HDAC2: histone deacetylase 2
HTRA1: human high-temperature requirement factor A1
IFNA13: interferon A13
KCNQ2: potassium voltage-gated channel, member 2
LGALS9: lectin, galactose binding, soluble 9
MAPK:mitogen-activated protein kinase
MLYCD:malonyl-CoA decarboxylase
MX1:myxovirus subtype 1
NF-κB: nuclear factor κB
NR4A2: pyruvate dehydrogenase kinase, isoenzyme 4
p90RSK: p90 Ribosomal S6 Kinase
AIFM1:mitochondrial programmed cell-death protein 8
PDK4: pyruvate dehydrogenase kinase, isozyme 4
PRDX2: peroxiredoxin 2
RASD1: dexamethasome-induced RAS encoding subtype 1 gene
SERCA: sarco-endoplasmic reticulum Ca2+-ATPase
TCA: tricarboxylic acid
TGFR-β: transforming growth factor-β receptor
TNF: tumor necrosis factor
TNNI3: human troponin I subtype 3
TNNI3K: TNNI3 interacting kinase
UBB: ubiquitin B
UNC5D: unc-5 homolog D
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