Short Communications

A DERIVATION OF THE LEVINSON ALGORITHM FOR SOLVING LINEAR SYSTEMS WITH SYMMETRIC POSITIVE DEFINITE TOEPLITZ MATRIX

R. De Meersman (*)

ABSTRACT

Based on an orthogonalization technique, published earlier in this journal, a derivation is given of the Levinson algorithm for solving systems with a symmetric positive definite Toeplitz matrix.

1. INTRODUCTION AND NOTATIONS

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of vectors in a real m -dimensional vector space V^{m}.
Let these vectors be related by

$$
\mathrm{a}_{\mathrm{k}}=\mathrm{P} \mathrm{a}_{\mathrm{k}-1}=\mathrm{P}^{\mathrm{k}-1} \mathrm{a}_{1}
$$

where P is a unitary operator in V^{m}.
We assume that a_{1} and P are such that $a_{1}, a_{2}, \ldots, a_{n}$ are linearly independent.
The inner product in V^{m} will be written as (,). The adjoint of a linear mapping L will be L^{*} and its transposed L^{τ}. A subspace in V^{m} generated by vectors $x_{1}, x_{2}, \ldots, x_{p}$ will be written as $\left[x_{1}, x_{2}, \ldots, x_{p}\right]$.
The abbreviations $P V(x \mid S)$ and $P(x \mid S)$ will be used to denote the projecting vector and projection of the vector x into the subspace S. Projections will be orthogonal.

2. SUMMARY OF THE ORTHOGONALIZATION PROCEDURE

The orthogonalization procedure given in [1], replaces $a_{1}, a_{2}, \ldots, a_{n}$ by a set of orthogonal vectors
$\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$, generating the same subspace
$\left[a_{1}, a_{2}, \ldots, a_{n}\right]$.
For $k=2,3, \ldots, n$
$\varphi_{k}=P V\left(a_{k} \mid\left[a_{1}, a_{2}, \ldots, a_{k-1}\right]\right)$
with $\varphi_{1}={ }^{a_{1}}$,

$$
\psi_{k}=P V\left(a_{1} \mid\left[a_{2}, a_{3}, \ldots, a_{k}\right]\right)
$$

with $\psi_{1}={ }^{a_{1}}$.
Step $k(2 \leqslant k \leqslant n)$ of the orthogonalization is as follows :

$$
\begin{align*}
& \varphi_{\mathrm{k}}=P \varphi_{\mathrm{k}-1}+\nu_{\mathrm{k}} \psi_{\mathrm{k}-1} \tag{1}\\
& \psi_{\mathrm{k}}=\psi_{\mathrm{k}-1}+\nu_{\mathrm{k}} P \varphi_{\mathrm{k}-1} \tag{2}
\end{align*}
$$

with

$$
\begin{equation*}
\nu_{k}=-\left(\mathrm{P} \varphi_{\mathrm{k}-1}, \mathrm{a}_{1}\right) /\left(\psi_{\mathrm{k}-1}, \mathrm{a}_{1}\right) \tag{3}
\end{equation*}
$$

As $\varphi_{k} \in\left[a_{1}, a_{2}, \ldots, a_{k}\right]$, one has :

$$
\begin{equation*}
\varphi_{k}=\sum_{j=1}^{k} \eta_{j, k_{j}} \quad(k=1,2, \ldots, n) \tag{4}
\end{equation*}
$$

and if the $\eta_{j, k}$ are interpreted as the first k components of a vector y_{k} in $\mathbb{R}^{\mathbf{n}}$, remaining components being zero, the following relation exists :

$$
\begin{equation*}
y_{k}=P_{n} y_{k-1}+\nu_{k} \tilde{\mathrm{y}}_{\mathrm{k}-1} \tag{5}
\end{equation*}
$$

where \tilde{y}_{k-1} is the vector y_{k-1} with first $k-1$ components written in reverse order.
P_{n} is a cyclic permutation operator in $\mathbf{R}^{\mathbf{n}}$ which shifts component i of a vector to position $i+1, i<n$, while component \mathbf{n} is shifted to position 1.
For $\mathrm{k}=1, \mathrm{y}_{1}=(1,0, \ldots, 0)^{\tau}$
This orthogonalization procedure can be used to solve least squares problems $\mathrm{C}_{\mathrm{m}, \mathrm{n}} \mathrm{x}=\mathrm{b}$ with cyclic rectangular coefficient matrix $C_{m, n}$ (see [1]). The columns in $C_{m, n}$ are $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{i}=P_{m} a_{i-1}$ where P_{m} is the same cyclic permutation operator as P_{n} but

[^0]now in $\mathbb{R}^{\mathbf{m}}$ instead of $\mathbb{R}^{\mathbf{n}}$. The system is solved in n steps with in step k
\[

$$
\begin{equation*}
\mathbf{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}-1}+\lambda_{\mathrm{k}} \mathrm{y}_{\mathrm{k}} \tag{7}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
\lambda_{k}=\left(b, \varphi_{k}\right) /\left(\varphi_{k}, \varphi_{k}\right) \tag{8}
\end{equation*}
$$

where x_{k} is the least squares solution of $C_{m, k} x=b$ and $x_{1}=\left(\left(b, a_{1}\right) /\left(a_{1}, a_{1}\right), 0, \ldots, 0\right)^{T}$.
The residual vector $s_{k}=b-C_{m, k} x_{k}=b-C_{m, n} x_{k}$ is updated as follows :

$$
s_{k}=s_{k-1}-\lambda_{k} \varphi_{k}
$$

and

$$
\left\|s_{k}\right\|^{2} \doteq\left\|s_{k-1}\right\|^{2}-\left|\lambda_{k}\right|^{2}\left\|\varphi_{k}\right\|^{2}
$$

when squared norm of residual vector is desired.

3. FURTHER CONSEQUENCES OF THE ORTHOGONALIZATION PROCEDURE

3.1. Write ν_{k} in (3) as

$$
\begin{equation*}
v_{\mathrm{k}}=-\beta_{\mathrm{k}} / a_{\mathrm{k}} \tag{9}
\end{equation*}
$$

with

$$
\begin{align*}
& \beta_{k}=\left(\mathrm{P} \varphi_{\mathrm{k}-1}, \mathrm{a}_{1}\right) \tag{10}\\
& a_{\mathrm{k}}=\left(\psi_{\mathrm{k}-1}, \mathrm{a}_{1}\right) . \tag{11}
\end{align*}
$$

The parameter a_{k} satisfies the following relation :

$$
\begin{equation*}
a_{\mathrm{k}+1}=a_{\mathrm{k}}+\nu_{\mathrm{k}} \beta_{\mathrm{k}}, \quad \mathrm{k}=2,3, \ldots, \mathrm{n}-1 \tag{12}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
a_{k+1} & =\left(\psi_{k}, a_{1}\right) \\
& =\left(\psi_{k-1}+\nu_{k} P \varphi_{k-1}, a_{1}\right) \text { due to (2) } \\
& =\left(\psi_{k-1}, a_{1}\right)+\nu_{k}\left(P \varphi_{k-1}, a_{1}\right) \\
& =a_{k}+\nu_{k} \beta_{k} \text { due to (11) and (10). }
\end{aligned}
$$

With (12), a_{k} in (11) can be calculated without evaluating an inner product, except for $k=2$ when

$$
\begin{equation*}
a_{2}=\left(\psi_{1}, a_{1}\right)=\left(a_{1}, a_{1}\right)=\left(\varphi_{1}, \varphi_{1}\right) \tag{13}
\end{equation*}
$$

3.2. In general, relation (13) is valid for values of k greater than 2 , or

$$
\begin{equation*}
a_{\mathrm{k}}=\left(\psi_{\mathrm{k}-1}, \mathrm{a}_{1}\right)=\left(\varphi_{\mathrm{k}-1}, \varphi_{\mathrm{k}-1}\right) \tag{14}
\end{equation*}
$$

Indeed, assume that (14) is true for $k-1$ so that

$$
\begin{equation*}
a_{k-1}=\left(\psi_{k-2}, a_{1}\right)=\left(\varphi_{k-2}, \varphi_{k-2}\right) \tag{15}
\end{equation*}
$$

are equalities. Then :

$$
\begin{align*}
\left(\varphi_{\mathrm{k}-1}, \varphi_{\mathrm{k}-1}\right)= & \left(\varphi_{\mathrm{k}-1}, \mathrm{P} \varphi_{\mathrm{k}-2}+\nu_{\mathrm{k}-1} \psi_{\mathrm{k}-2}\right), \text { due } \\
& \text { to (1) } \\
= & \left(\varphi_{\mathrm{k}-1}, \mathrm{P} \varphi_{\mathrm{k}-2}\right), \text { as } \varphi_{\mathrm{k}-1} \text { is ortho- } \\
& \text { gonal to } \psi_{\mathrm{k}-2} \\
= & \left(\mathrm{P} \varphi_{\mathrm{k}-2}+\nu_{\mathrm{k}-2}, \mathrm{P} \varphi_{\mathrm{k}-2}\right), \text { due to (1) } \\
= & \left(\varphi_{\mathrm{k}-2}, \varphi_{\mathrm{k}-2}\right)+\nu_{\mathrm{k}-1}\left(\psi_{\mathrm{k}-2}, \mathrm{P} \varphi_{\mathrm{k}-2}\right) \tag{16}
\end{align*}
$$

The second inner product in (16) can be written as :

$$
\begin{aligned}
\left(\mathrm{P}^{-1} \psi_{\mathrm{k}-2}, \varphi_{\mathrm{k}-2}\right) & =\left(\mathrm{P}^{-1} \psi_{\mathrm{k}-3}+\nu_{\mathrm{k}-2} \varphi_{\mathrm{k}-3}, \varphi_{\mathrm{k}-2}\right) \\
& =\left(\mathrm{P}^{-1} \psi_{\mathrm{k}-3}, \varphi_{\mathrm{k}-2}^{\prime}\right) \\
& =\left(\mathrm{P}^{-1} \psi_{1}, \varphi_{\mathrm{k}-2}\right) \\
& =\left(\mathrm{P}^{-1} \mathrm{a}_{1}, \varphi_{\mathrm{k}-2}\right) \\
& =\left(\mathrm{a}_{1}, \mathrm{P} \varphi_{\mathrm{k}-2}\right)
\end{aligned}
$$

after repeated application of (2), multiplied by P^{-1}.
Hence,

$$
\begin{aligned}
\left(\varphi_{\mathrm{k}-1}, \varphi_{\mathrm{k}-1}\right)= & \left(\varphi_{\mathrm{k}-2}, \varphi_{\mathrm{k}-2}\right)+\nu_{\mathrm{k}-1}\left(\mathrm{a}_{1}, \mathrm{P} \varphi_{\mathrm{k}-2}\right) \\
= & a_{\mathrm{k}-1}+\nu_{\mathrm{k}-1} \beta_{\mathrm{k}-1}, \text { due to (15) } \\
& \text { and (10) } \\
= & a_{\mathrm{k}}, \text { due to (12) } \\
= & \left(\psi_{\mathrm{k}-1}, \mathrm{a}_{1}\right) \text { due to (11) }
\end{aligned}
$$

This shows that (14) is also valid for k. As (14) is true for $k=2$ due to (13), (14) is true for all $k>2$.
3.3. With the new formulas (9), (12) and (14), the algorithm published in [1] for solving $C_{m, n} x=b$ in the least squares sense, can be simplified as follows :

Part 1 : initialization.

1. $y_{1}=1.0$ (remaining components are zero), see (6).
2. $a_{2}=\left(a_{1}, a_{1}\right)$.
3. $x_{1}=\left(b, a_{1}\right) / a_{2}$ (remaining components are zero).
4. $s_{1}=b-x_{1} a_{1},\left\|s_{1}\right\|^{2}=\|b\|^{2}-x_{1}^{2} a_{2}$.
5. $\varphi_{1}=\psi_{1}=a_{1}$.

Part 2 : to be repeated for $k=2,3, \ldots, n$
6. $\beta_{k}=\left(P_{m} \varphi_{k-1}, a_{1}\right)$.
7. $\nu_{\mathrm{k}}=-\beta_{\mathrm{k}} / a_{\mathrm{k}}$.
8. $\varphi_{\mathrm{k}}=\mathrm{P}_{\mathrm{m}} \varphi_{\mathrm{k}-1}+\nu_{\mathrm{k}} \psi_{\mathrm{k}-1}$.
9. $a_{\mathrm{k}+1}=a_{\mathrm{k}}+\nu_{\mathrm{k}} \beta_{\mathrm{k}}$
10. $\lambda_{k}=\left(b, \varphi_{k}\right) / a_{k+1}$.
11. $s_{k}=s_{k-1}-\lambda_{k} \varphi_{k},\left\|s_{k}\right\|^{2}=\left\|s_{k-1}\right\|^{2}-\lambda_{k}^{2} a_{k+1}$.
12. $\mathrm{y}_{\mathrm{k}}=\mathrm{P}_{\mathrm{n}} \mathrm{y}_{\mathrm{k}-1}+\nu_{\mathrm{k}} \mathrm{y}_{\mathrm{k}-1}$.
13. $\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}-1}+\lambda_{\mathrm{k}} \mathrm{y}_{\mathrm{k}}$.
14. $\psi_{\mathrm{k}}=\psi_{\mathrm{k}-1}+\nu_{\mathrm{k}} \mathrm{P}_{\mathrm{m}} \varphi_{\mathrm{k}-1}$.

4. A DERIVATION OF THE LEVINSON ALGORITHM FOR THE CALCULATION OF LEAST SQUARES FILTERS

We assume an ordinary inner product
$(y, z)=\sum_{j=1}^{m} \eta_{j} \zeta_{j}$ in \mathbb{R}^{m}.
Usually, the system $C_{m, n} x=b$ is solved via the normal equations :

$$
\begin{equation*}
\mathrm{Rx}=\mathrm{g}, \mathrm{R}=\mathrm{C}_{\mathrm{m}, \mathrm{n}}^{\tau} \mathrm{C}_{\mathrm{m}, \mathrm{n}}, \mathrm{~g}=\mathrm{C}_{\mathrm{m}, \mathrm{n}}^{\tau} \mathrm{b} \tag{17}
\end{equation*}
$$

In (17), R is a n, n symmetric positive definite Toeplitz matrix.
The quantities

$$
\begin{equation*}
r_{j}=\left(a_{1}, a_{j}\right)=\left(a_{j}, a_{1}\right), j=1,2, \ldots, n \tag{18}
\end{equation*}
$$

are the elements in the first row and column of R. They completely determine R due to the Toeplitz structure which implies that elements parallel to the main diagonal are all equal. In general one has :

$$
r_{i, j}=\left(a_{i}, a_{j}\right)=r_{|j-i|+1}, i, j=1,2, \ldots, n
$$

The components of g are :

$$
\begin{equation*}
\mathrm{g}_{\mathrm{j}}=\left(\mathrm{a}_{\mathrm{j}}, \mathrm{~b}\right), \quad \mathrm{j}=1,2, \ldots, \mathrm{n} \tag{19}
\end{equation*}
$$

In order to solve (17), Levinson's algorithm is used [2]. This algorithm exploits the Toeplitz structure of R so that the number of operations are an order less than for ordinary elimination methods.
The algorithm in 3.3 can be expressed in the elements r_{j} and g_{j} resulting in Levinson's algorithm.
First, note that for $k>2$:

$$
\begin{align*}
\beta_{k} & =\left(P_{m} \varphi_{k-1}, a_{1}\right)=\left(\sum_{j-1}^{k-1} \eta_{j, k-1} P_{m} a_{j}, a_{1}\right) \\
& =\sum_{j=1}^{k-1} \eta_{j, k-1}\left(a_{j}+1, a_{1}\right) \\
\text { or } \beta_{k} & =\sum_{j=1}^{k-1} \eta_{j, k-1} r_{j+1} \tag{20}
\end{align*}
$$

due to (18) and (4).

Next,

$$
\begin{equation*}
\left(b, \varphi_{k}\right)=\left(b, \sum_{j=1}^{k} \eta_{j, k} a_{j}\right)=\sum_{j=1}^{k} \eta_{j, k} g_{j} \tag{21}
\end{equation*}
$$

due to (19) and (4).
The algorithm in 3.3 can now be written as follows :
Part 1 : initialization.

1. $y_{1}=1.0$ (remaining components are zero).
2. $a_{2}=r_{1}$, see (13) and (18).
3. $\mathrm{x}_{1}=\mathrm{g}_{1} / a_{2}$ (remaining components are zero), see (19).
4. $\left\|s_{1}\right\|^{2}=\|b\|^{2}-x_{1}^{2} a_{2}$.

Part 2 : to be repeated for $k=2,3, \ldots, n$.
5. $\beta_{k}=\sum_{j=1}^{k-1} \eta_{j, k-1} r_{j+1}, \sec (20)$.
6. $\nu_{\mathrm{k}}=-\beta_{\mathrm{k}} / a_{\mathrm{k}}$.
7. $a_{\mathrm{k}+1}=a_{\mathrm{k}}+\dot{\nu_{\mathrm{k}}} \beta_{\mathrm{k}}$.
8. $y_{k}=P_{n} y_{k-1}+\nu_{k} \check{y}_{k-1}$.
9. $\lambda_{k}=\left(\sum_{j=1}^{k} \eta_{j, k} g_{j}\right) / a_{k+1}$, see (21).
10. $\left\|s_{k}\right\|^{2}=\left\|s_{k-1}\right\|^{2}-\lambda_{k}^{2} a_{k+1}$.
11. $x_{k}=x_{k-1}+\lambda_{k} y_{k}$.

This is Levinson's algorithm as given in [2]. When the original right hand side b is used to initialize $\|s\|^{2}$ in 4 ., formula 10. can be used to update the sum of squares of residuals. It is then not necessary to calculate the residual vector explicitly through substitution of the solution in $b-C_{m, n} x$.

NOTE

More references dealing with Toeplitz matrices may be found in [1].

ACKNOWLEDGEMENT

The author wishes to thank Texaco Belgium for their permission to publish this paper.

REFERENCES

1. R. De Meersman, "A method for least squares solution of systems with a cyclic rectangular coefficient matrix', This Journal, 1, pp. 51-54, 1975.
2. S. Treitel and S. A. Robinson, "The design of high resolution digital filters", IEEE Trans. on Geoscience Electronics, 4, pp. 25-38, 1966.

[^0]: (*) S. A. Texaco Belgium N. V., Ghent Research Laboratory, John F. Kennedylaan 31, 9020^{*} Ghent - Belgium

