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ABSTRACT 

Based on an orthogonalization technique, published 
earlier in this journal, a derivation is given of  the 
Levinson algorithm for solving systems with a sym- 
metric positive definite Toeplitz matrix. 

I. INTRODUCTION AND NOTATIONS 

Let A = (a l ,  a 2 . . . . .  a n } be a finite set of  vectors 

in a real m-dimensional vector space V m. 
Let these vectors be related by 

ak = P a k _ l =  p k - l a  1 

where P is a unitary operator in V m. 
We assume that a 1 and P are such that a 1, a 2 . . . . .  a n 
are linearly independent. 

The inner product in V m will be written as (,.). 
The adjoint of a linear mapping L will be L* and its 

transposed L r. A subspace in V m generated by vectors 
x 1, x 2 . . . . .  Xp will be written as [x 1, x 2 . . . . .  Xp]. 

The abbreviations PV (x [ S) and P (x [ S) will be used 
to denote the projecting vector and projection of  the 
vector x into the subspace S. Projections will be ortho- 
gonal. 

2. SUMMARY OF THE ORTHOGONALIZATION 
PROCEDURE 

The orthogonalization procedure given in [1], replaces 
a 1, a 2 .. . . .  a n by a set of orthogonal vectors 

~°1' ~°2 . . . . .  en'  generating the same subspace 

[a 1, a2,..., an]. 

For k =  2, 3 . . . . .  n 

~o k = PV (a k I [a 1, a 2, ... ,  ak_ 1]) 

with ~I = al '  

@k = PV (all [a 2, a 3 . . . . .  ak] ) 

with ~bl= a 1. 

Step k (2 ~ k ~< n) of  the orthogonalization is as 
follows : 

Ck = P~°k- 1 + Vk ~ k -  1 

~kk = ~kk- 1 + Uk PCk-  1 

with 

v k = - (P~0k_ 1, a 1) / (@k- 1' al)" 

(1) 

(2) 

(3) 

As ~0 k E [a 1, a 2 . . . .  , ak], one has : 

k 
~°k =j=~l ~/j'kaj (k = 1, 2 . . . . .  n) (4) 

and if the rlj, k are interpreted as the first k components 

of a vector Yk in ~k n, remaining components being 

zero, the following relation exists : 

Yk = Pn Yk-1 + Vk ~k-1 (5) 

where ~k 1 is the vector Yk-1 with first k -  1 com- 

ponents written in reverse order. 

Pn is a cyclic permutation operator in Ig n which shifts 
component i of  a vector to position i +  1, i <n ,  while 
component n is shifted to position 1. 

F o r k =  1, Y l =  (1, 0 , .  . . . .  O) ¢ (6) 

This orthogonalization procedure can be used to solve 
least squares problems Cm, n x = b with cyclic rectan- 

gular coefficient matrix Cm, n (see [1]). The columns 

in Cm, n are a 1, a 2 . . . . .  an with ai = P m  ai- 1 where 

Pm is the same cyclic permutation operator as Pn but 
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now in F, m instead of 1~ n. The system is solved in n 
steps with in step k 

Xk = Xk- 1 + )'k Yk (7) 

with 

X k = (b, ~0k)/(~o k, ~Ok) (8) 

where x k is the least squares solution of  Cm, k x = b 

and x I = ((b, al)  / (a 1, al), 0 . . . . . .  0) r .  

The residual vector s k = b - Cm, k Xk = b - Cm, nXk 

is updated as follows : 

Sk = Sk - 1 - Xk ~°k 

and 

II s k II 2 2 = Ilsk_ 1 II - I Xk 12 II ~okll 2 

when squared norm of residual vector is desired. 

3. FURTHER CONSEQUENCES OF THE ORTHO- 
GONALIZATION PROCEDURE 

3.1. Write p k in (3) as 

v k = - ~Skla k (9) 

with 
J3k = (P~°k- 1' al)  (10) 

ak = ( ~ k - l '  al)" (11) 

The parameter a k satisfies the following relation : 

ak  + 1 = ak + vk ~k' k = 2, 3,. . . ,  n-1 (12) 

Indeed, 

a k +  1 = (~b k, a 1) 

= (~bk_ 1 + v k P~Ok_l, al)  due to (2), 

= ( ~ k - l '  a l)  + Vk (P~°k-l' a l )  

-- ak  + Vk ~k due to (11) and (10). 

With (12), a k in (11) can be calculated without 

evaluating an inner product, except for k = 2 when 

a 2 = (~bl, a l )  = (al,  al)  = (~01, ~01). (13) 

3.2. In general, relation (13) is valid for values of  k 
greater than 2, or 

¢k = (@k-l '  a l)  = (~°k- 1' ~°k- 1) (14) 

Indeed, assume that (14) is true for k -  1 so that 

ak_ 1 = (~Ok_ 2, a l )  = (~0k_ 2, ~0k_ 2) (15) 

are equalities. Then : 

(~°k-l' ~°k-1) = (~°k-l' P ~ k - 2  + Vk-1 ~bk-2), due 

to (1) 

= (~0k_l, P~0k_2), as 9k_ 1 is ortho- 

gonal to ~0k_ 2 

= (P~0k_ 2 + Vk_ 2, P~0k_2), due to (1) 

= (~°k-2' ~°k-2) + Vk-1 (@k-2' Pgk_ 2) 

(16) 

The second inner product in (16) can be written as : 

(P-l~Ok_ 2, ~0k_ 2) = (P- l~k_  3 + Vk_ 2 ~°k_ 3, ~°k_ 2) 

= (P-l@k-3'  ~k'-2) 

= (P-I~ 1, ~0k_ 2) 

= (p-la 1, ~Ok_ 2) 

= (al' P % - 2 ) ,  

after repeated application of (2), multiplied by p-1. 
Hence, 

(~°k-l' ~°k- 1) = (~°k-2' ~1¢-2) + Vk-1 (al '  P~°k-2) 

= ak -1  + Vk-1/~k- 1' due to (15) 

and (lO) 
= a k ,  due to (12) 

= (~bk_ 1, al)  due to (11) 

This shows that (14) is also valid for L As (14) is true 
for k = 2 due to (13), (14) is true for all k > 2. 

3.3. With the new formulas (9), (12) and (14), the 
algorithm published in [1] for solving Cm, n x = b in 

the least squaressense, can be simplified as follows : 

Part I : initialization. 

1. Yl = 1.0 (remaining components are zero), see (6). 

2. a 2 = (a 1, al). 

3. x I = (b, a l ) / a  2 (remaining components are zero). 

4. s 1 = b - x  l a  1 ,Hsl[ [  2 = l l b H  2 - x ~ a  2. 

5.~01 = t ~ l = a l .  

Part 2 : to be repeated for k = 2, 3 . . . . .  n 

6 .3  k = (Pm ~°k-l' al)" 

7. v k = - ~ k / a k .  

8. ~k = Pm 9k -1  +Vk # k - l "  
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9. a k + l =  ak + v k  ~k 

10. X k = (b, ~Ok)/ak+ 1. 

11. s k = Sk_ 1 - Xk ~°k, Ilskll 2 

12. Yk = Pn Yk-1 + Vk ~k-1  " 

13. x k =Xk_  1 +XkY k- 

14. Ok = Ok-1 + Pm %-1" 

= I lSk_l l l2-X~ak+l  • 

4. A DERIVATION OF THE LEVINSON ALGO- 
RITHM FOR THE CALCULATION OF LEAST 
SQUARES FILTERS 

We assume an ordinary inner product 
m 

(y, z) = j  =~1 nj ~'j in F, m. 

Usually, the system Cm, n x = b is solved via the 

normal equations : 

Rx = g, R C r r b = m,n Cm, n '  g = C m ,  n " (17) 

In (17), R is a n, n symmetric positive definite Toeplitz 
matrix. 
The quantities 

rj = (a 1, aj) = (aj, al) ,  j = 1, 2 . . . . .  n (18) 

are the elements in the first row and column of R. 
They completely determine R due to the Toeplitz 
structure which implies that dements parallel to the 
main diagonal are all equal. In general one has : 

ri, j = (a i, a j ) =  rlj_i I + 1 '  i , j  = 1, 2 . . . . .  n. 

The components of  g are : 

g j = ( a j ,  b), j = l , 2 , . . . , r L  (19) 

In order to solve (17), Levinson's algorithm is used 
[2]. This algorithm exploits the Toeplitz structure of 
R so that the number of operations are an order less 
than for ordinary elimination methods. 
The algorithm in 3.3 can be expressed in the dements 
rj and gj resulting in Levinson's algorithm. 

First, note that for k > 2 : 
k - 1  

Ok=(Pmek_l,al)=( Z nj, k_lPmaj, al) 
j - 1  

k -1  
= Z nj, k_ l ( a j ÷  1 , a l )  

j = l  

k - 1  
or 3k = ~ r/j, k -  1 rj + 1 (20) 

j = l  

due to (18) and (4). 

Next, 

k k 
( b , ¢ k ) =  (b,j__~ 1 nj, kaj)=j__2; 1 r/j, k g  j (21) 

due to (19) and (4). 

The algorithm in 3.3 can now be written as follows : 

Part 1 : initialization. 

1. Yl = 1.0 (remaining components are zero). 

2. a 2 = r 1, see (13) and (18). 

3. x I = g l /a2  (remaining components are zero), 
see (19). 

4. IlSll12 = IIbll 2 -  x 2 
1 a2" 

Part 2 : to be repeated for k = 2, 3', . . . .  n. 

k - 1  
5. 3 k = = ~ 1  nJ 'k -1  r j + l '  see (20). 

J 

6. v k = -[3k / a k .  

7. a k +1 = ak + vk Ok- 

8. Yk = Pn Yk-1 + Vk ~ k - 1 "  

k 
Z r/j, k g j ) / a k + l ,  see (21). 9"Xk = ( j = l  

2 
10. Ilskll 2 = IlSk_ 1 II 2 - X k a k +  1 . 

11. x k =Xk_  1 + X k Y  k. 

This is Levinson's algorithm as given in [2].  When the 
original right hand side b is used to initialize Ilsll 2 in4,, 
formula 10. can be used to update the sum of squares 
of residuals. It is then not necessary to calculate the 
residual vector explicitly through substitution of  the 
solution in b - Cm, n ~" 

NOTE 

More references dealing with Toeplitz matrices may 
be found in [1]. 
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