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SUMMARY

The cytoskeletal regulators that mediate the
change in the neuronal cytoskeletal machinery
from one that promotes oriented motility to
one that facilitates differentiation at the appro-
priate locations in the developing neocortex re-
main unknown. We found that Nck-associated
protein 1 (Nap1), an adaptor protein thought to
modulate actin nucleation, is selectively ex-
pressed in the developing cortical plate, where
neurons terminate their migration and initiate
laminar-specific differentiation. Loss of Nap1
function disrupts neuronal differentiation. Pre-
mature expression of Nap1 in migrating neurons
retards migration and promotes postmigratory
differentiation. Nap1 gene mutation in mice
leads to neural tube and neuronal differentiation
defects. Disruption of Nap1 retards the ability to
localize key actincytoskeletal regulators suchas
WAVE1 to the protrusive edges where they are
needed to elaborate process outgrowth. Thus,
Nap1 plays an essential role in facilitating neuro-
nal cytoskeletal changes underlying the postmi-
gratory differentiation of cortical neurons, a criti-
cal step in functional wiring of the cortex.

INTRODUCTION

Neurons generated in the proliferative ventricular zones of

the developing cerebral cortex migrate in distinct radial

and tangential routes to the top of the embryonic cortex

where they terminate their migration and start to differen-

tiate into distinct classes of cortical neurons. Dynamic reg-

ulation of neurons’ cytoskeletal machinery in response to

extracellular guidance or positional cues enables appro-

priate neuronal generation, migration, and differentiation

in the developing cerebral cortex. Molecular analyses of
human and mouse cortical developmental disorders ele-

gantly illustrate this. For example, mutations in microtu-

bule-associating protein (abnormal spindle-like micro-

cephaly-associated protein [ASPM]) lead to defective

generation of cortical neurons, whereas mutations in

actin-binding protein filamin a (FLNA) and microtubule-

associated proteins, doublecortin (Dcx) or Lis1 (noncata-

lytic subunit of platelet-activating factor acetylhydrolase

isoform 1b), lead to disrupted initiation and maintenance

of neuronal migration, respectively (reviewed in Marin

and Rubenstein, 2003; Mochida and Walsh, 2004; Rakic,

1990; Hatten, 2002; Ayala et al., 2007). Although the signif-

icance of cytoskeletal dynamics during neuronal genera-

tion and maintenance of migration is well established, the

cytoskeletal regulators and mechanisms that are needed

to convert neurons engaged in oriented migration into neu-

rons that are stably positioned and actively extending

axons and dendrites in the appropriate laminar locations

of the developing cerebral cortex remains unknown.

Here we found that Nck-associated protein 1 (Nap1), an

adaptor protein that is thought to modulate actin nucle-

ation by forming a pentameric complex with WAVE,

PIR121, Abi1/2, and HSPC300 (Baumgartner et al.,

1995; Bladt et al., 2003; Stradal et al., 2004; Hummel

et al., 2000; Bogdan and Klambt, 2003; Soto et al., 2002;

Suzuki et al., 2000), is selectively expressed in the cortical

plate region of the developing cortex, where neurons ter-

minate their migration and begin their final laminar-

specific differentiation, characterized by the elaboration

of distinct axonal and dendritic architecture. Functional

analysis of Nap1 indicate that Nap1-mediated cytoskele-

tal rearrangements in the emerging cortical plate play an

essential role in cortical neuronal differentiation underlying

the formation of functional connectivity in cerebral cortex.

RESULTS

Developmental Expression of Nap1 in Cerebral

Cortex

To study the cytoskeletal dynamics underlying how

neurons terminate their migration and start their final
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Figure 1. Distribution of Nap1 in Devel-

oping Cerebral Cortex

(A–C) In situ hybridization mapping of Nap1 ex-

pression at E16 indicates prominent expres-

sion in the cortical plate region (arrowheads

[A–C]) throughout the entire rostro-caudal ex-

tent (rostral [A], middle [B], and caudal [C]) of

the developing cerebral cortex.

(D–F) In E16 cortex, colabeling with neuron-

specific Tuj-1 antibodies indicates that Nap1

(red) is specifically expressed in the cortical

plate (CP) neurons, not in the intermediate

zone (IZ) region containing the migrating

neurons.

(G and H) Colabeling of differentiating cortical

neurons with axonal (Tau-1) and dendritic

(Map2) markers indicates that Nap1 is present

in both axons (G) and dendrites (H). Yellow indi-

cates colabeled sites.

(I) Nap1 is prominently expressed in the tips of

cortical neurites (arrowhead [I]).

(J–M) Higher-magnification images of Nap1 ex-

pression at the leading edges of differentiating

cortical neurons.

Cortical neurons in panels (I)–(M) were cola-

beled with Tuj-1 antibodies.

(N) Immunoblot analysis of Nap1 expression in

the developing cortex indicates that increase in

Nap1 expression parallels increased neuronal

differentiation.

VZ, ventricular zone; IZ, intermediate zone; CP,

cortical plate. Scale bar: (A–C) 400 mm, (D–F)

250 mm, (G and H) 30 mm, (I) 15 mm, (J–M)

10 mm.
differentiation in the developing cerebral cortex, we map-

ped the embryonic cortical expression profiles of 25 mu-

rine orthologs of Drosophila or C. elegans cytoskeleton-

related genes that are known to regulate distinct stages

of neuronal migration or differentiation. Among the pro-

teins screened, Nck-associated protein 1 was selectively

expressed in the differentiating neurons of the embryonic

cerebral cortex.

In situ hybridization analysis indicates that Nap1 is pri-

marily expressed in the cortical plate (CP) region of the

embryonic cortex (E14–E18), where neurons terminate

their migration and begin their final, layer-specific pheno-

typic differentiation (Figures 1A–1C). Identical expression

pattern of Nap1 is evident in cortical sections from Nap1

indicator mice (Nap1lacZ/+) in which b-gal expression is in-

dicative of endogenous Nap1 expression pattern (see

Figure S1 in the Supplemental Data available online).

Coimmunolabeling with postmitotic neuron-specific Tuj-1

antibodies indicates that Nap1 is expressed specifically

in cortical plate neurons, not by actively migrating neurons

in the intermediate zone (Figures 1D–1F). Nap1 expression

persists in postnatal cortical neurons as they differentiate

and form mature synaptic connections (Figures S1G and

S1H). Co immunolabelling with axonal and dendritic

markers indicate that Nap1 is present in both axons and

dendrites of differentiating cortical neurons. Prominent

Nap1 expression is noticed in neuronal growth cones
430 Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc.
and in dendritic spine-like protrusions along neuritic shafts

(Figures 1G–1M). Immunoblots of whole-cell extracts of

cortices from different embryonic ages indicate a pattern

of increased Nap1 expression corresponding to increased

levels of cortical neuronal differentiation (Figure 1N). To-

gether, these results indicate that during development

Nap1 expression is induced in cortical neurons as they

arrive in the cortical plate and initiate their postmigratory

differentiation, characterized by extension of processes

and formation of functional synaptic connections.

Defective Neuronal Differentiation following

Inhibition of Nap1

To evaluate the effect of loss of function of Nap1 in cortical

neuronal differentiation, we utilized shRNA-mediated

knockdown of endogenous Nap1 in cortical neurons. We

generated shRNA constructs targeted to different mouse

Nap1-specific regions. As a negative control for the

shRNA constructs, 3 nt mutations were made in each of

the respective targeting sequences. The target sequence

oligos and mutated target sequence oligos were sub-

cloned into pCGLH vector, which contains chicken b-actin

promoter-driven EGFP and H1 promoter for shRNA tran-

scription. Nap1 shRNA, but not the control shRNA, spe-

cifically reduced Nap1 levels (Figure S2). Nap1 shRNA

induced no changes in the expression levels of unre-

lated proteins such as tubulin (Figure S2) or ErbB4
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Figure 2. Suppression of Nap1 Expres-

sion Disrupts Embryonic Cortical Neuro-

nal Differentiation

(A and B) E14.5 cortical neurons were trans-

fected with control (A) or Nap1 shRNA (B).

Compared to control neurons, Nap1-deficient

neurons displayed reduced axonal and den-

dritic growth and branching.

(C) Quantification of neuronal differentiation

defects in Nap1-deficient neurons. Data shown

are mean ± SEM. Asterisk indicates significant

when compared with controls at p < 0.001

(Student’s t test).

Scale bar, 20 mm.
(data not shown). Immunolabeling of control or Nap1

shRNA-transfected neurons with Nap1 antibodies indi-

cates similar reduction in Nap1 expression (data not

shown). Furthermore, in embryonic cortical cells cotrans-

fected with Nap1 or control shRNA (in pCRLH vector ex-

pressing RFP) and full-length Nap1-EGFP fusion plas-

mids, Nap1-EGFP expression was diminished only in

Nap1 shRNA-expressing cells, not in control shRNA-

expressing cells (data not shown). Together, these studies

confirm that Nap1 shRNA constructs can specifically sup-

press endogenous Nap1 protein expression.

To determine the effect of Nap1 in postmitotic differen-

tiation of cortical neurons in vitro, dissociated E14 cortical

neurons were transfected with either control or Nap1

shRNA. Three days later, neurons were immunolabeled

with neuron-specific Tuj1 antibodies to assess the extent

of differentiation. The total length, the number of primary,

secondary, and tertiary branches of both axons and den-

drites, and the number of dendrites on these neurons were

quantified. Axons and dendrites were identified based on

their morphology (Gaudilliere et al., 2004). Suppressing

Nap1 expression in postmitotic cortical neurons signifi-

cantly reduced their ability to elaborate characteristic

axons and dendrites, as indicated by the marked reduction

in the extent, branching, and numbers of dendrites and

axons (Figure 2). Similar retardation of neuronal differentia-

tion was also noticed when Nap1-deficient neurons were

seeded on the cortical plate region of E16 embryonic cor-

tical slices, a relevant substrate where cortical neuronal dif-

ferentiation normally occurs in vivo (data not shown). These

observations indicate that Nap1 deficiency significantly

impaired the ability of neurons to differentiate in vitro.

To determine the effect of Nap1 in postmigratory differ-

entiation of cortical neurons in vivo, E15 embryos were
electroporated with Nap1 or control shRNA, allowed to

survive till postnatal day 2 or 17, and the patterns of neu-

ronal position and dendritic and axonal morphology of

control and Nap1 shRNA-expressing neurons were evalu-

ated. Nap1 knockdown did not affect the positioning of

neurons within the cortical plate. Quantitative analysis of

neuronal position in the cortex indicates no difference

between control and Nap1 shRNA-expressing neurons

(Figure 3K). Furthermore, real-time analysis of migration

of Nap1-deficient and control neurons indicates that

Nap1 knockdown did not affect neuronal migration. Con-

trol neurons migrated at an average rate of 21 ± 2.8 mm/hr,

and Nap1 shRNA-expressing cells migrated at a compara-

ble rate of 19.2 ± 2.4 mm/hr. However, Nap1 knockdown

significantly retarded all aspects of cortical neuronal dif-

ferentiation in vivo (Figure 3). Nap1-deficient neurons dis-

played significantly reduced axonal and dendritic process

extension and branching. Furthermore, the terminal, post-

migratory differentiation and maturation of cortical neu-

rons in cerebral cortex is characterized by the elaboration

of specialized dendritic protrusions essential for synaptic

plasticity, i.e., dendritic spines. We therefore analyzed

the effect of Nap1 on dendritic spine morphology in the

above cortical neurons. Nap1 deficiency profoundly re-

tarded the dendritic spine density in these cortical neurons

(Figure S3). Together, these data demonstrate that Nap1

is critical for neuronal differentiation in the emerging

cortical plate.

Ectopic Expression of Nap1 Promotes Neuronal

Differentiation

If Nap1 expression normally facilitates neuronal differenti-

ation, premature Nap1 induction in migrating neurons in

the intermediate zone (IZ) may lead to changes in
Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc. 431
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Figure 3. Knockdown of Nap1 Disrupts

Embryonic Cortical Neuronal Differenti-

ation In Vivo

Cerebral cortices of E15.5 embryos were

electroporated with control or Nap1 shRNA,

and differentiating neurons in the cortical plate

were analyzed at postnatal day 2 (A–L) or 17

(M–Q).

(A–E) Cortical neurons expressing control

shRNA displayed characteristic axons and

dendrites (arrowheads [A and B]) at their early

stages of development. In higher-magnifica-

tion images of these cells (C–E), apical (arrow-

head [D]), basal dendrites (asterisk [D]), and

axon (arrow [D]) are evident.

(F–J) In contrast, Nap1 shRNA-expressing

neurons displayed significantly reduced axo-

nal and dendritic growth and branching

(arrowheads [F, G, and H–J]).

(K) Analysis of neuronal position indicates no

difference between control and Nap1

shRNA-expressing neurons.

(L) Quantification of dendritic numbers,

length, and branches in control and Nap1-

deficient neurons.

(M–P) At postnatal day 17, extensive dendritic

arborization is evident in control neurons

(arrows [M and N]). Nap1-deficient neurons

(arrowheads [O and P]), however, displayed

reduced dendritic growth and branching.

(Q) Analysis of the extent of neuronal differen-

tiation indicates a substantial reduction in the

complexity of neuronal process growth and

arborization in Nap1-deficient neurons. Data

shown are mean ± SEM. Asterisk indicates

significant when compared with controls at

p < 0.001 (Student’s t test).

Scale bar: (A, B, F, G, and L–O) 30 mm, (C–E

and H–J) 15 mm.
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migration and premature initiation of neuronal differentia-

tion. To test this, we ectopically induced Nap1 in migrating

neurons in the intermediate zone using NeuroD promoter,

which is active in postmitotic, migratory neurons (F. Pol-

leux [UNC Neuroscience Center], personal communica-

tion; Huang et al., 2000). By prematurely expressing

Nap1 in migrating neurons before they arrive in the cortical

plate, we asked if the induction of Nap1 will promote pre-

mature initiation of postmigratory differentiation state.

Embryonic day 14 or 15 mouse cortices were in utero elec-

troporated with either NeuroD promoter-Nap1-IRES-

EGFP or control NeuroD promoter-IRES-EGFP plasmids.

Forty-eight hours after electroporation, cerebral cortices

were removed, vibrotome sliced, and immunolabeled

with markers that are normally expressed by neurons

that are undergoing postmigratory layer-specific differen-

tiation in the cortical plate (e.g., Tbr-1[layer VI], Brn-1[layer

II-IV]). Compared to controls, migration of Nap1-express-

ing neurons was significantly curtailed. Quantification of

the extent of neuronal migration indicates that most of

the Nap1-expressing neurons are found in the lower inter-

mediate zone, whereas control neurons migrate well into

the upper IZ and CP (Figures 4A, 4C, 4E, and 4F). Impor-

tantly, control neurons in the intermediate zone display the

characteristic morphology of migrating neurons, with

leading and trailing processes (Figures 4I and 4J). In con-

trast, Nap1-expressing neurons tend to have multiple

long, branched processes, characteristic of differentiating

neurons (Figures 4K–4P). Furthermore, the majority of

Nap1-expressing neurons, but not control neurons, in

the intermediate zone expressed molecular markers that

are characteristically expressed by differentiating, postmi-

gratory neurons in the cortical plate. When Nap1 was in-

duced during early embryonic stages, a significantly

higher number of Nap1-expressing neurons in the IZ ex-

pressed Tbr-1, a T domain transcription factor normally

expressed in early-generated glutaminergic cortical neu-

rons (Figures 4B and 4G; Hevner et al., 2001). Similar in-

duction of Brn-1, a POU domain transcription factor nor-

mally expressed in upper-layer cortical neurons

(McEvilly et al., 2002; Sugitani et al., 2002), was evident

when Nap1 was electroporated during late embryonic

stages (Figures 4D and 4H). Together, these observations

suggest that ectopic Nap1 expression retards neuronal

migration and promotes neuronal differentiation in vivo.

To further explore Nap1’s role in neuronal differentiation,

the intermediate zone containing control GFP or Nap1-

overexpressing neurons was microdissected from the

electroporated cortical slices, dissociated, plated at low

density on laminin, and neuronal differentiation was moni-

tored at different time points. We hypothesized that if Nap1

facilitates neuronal differentiation, we should notice rapid

emergence of morphological differentiation in Nap1-ex-

pressing, but not control, neurons. Immediately after

attachment, both control and Nap1-expressing neurons

display a smooth cell soma and are morphologically undif-

ferentiated. However, within a few hours in vitro, in contrast

to control neurons, Nap1-expressing neurons rapidly dis-
play signs of morphological differentiation, as indicated

by extension of multiple processes (Figure 5). These in vitro

observations further suggest that cell-autonomous Nap1

expression promotes neuronal differentiation.

Induction of Nap1 by BDNF

What induces Nap1 in the differentiating neurons of the

cortical plate? Context-dependent activity of extracellular

cues in the developing CP, such as brain-derived neuro-

trpohic factor (BDNF), are required to trigger cortical neu-

ronal differentiation (McAllister et al., 1996; Ghosh et al.,

1994; Reichardt, 2006) and thus may induce Nap1 in cor-

tical neurons. To examine this, dissociated E16 cortical

neurons were treated with 1, 5, 10, 15, and 25 ng/ml

BDNF for 48 hr, and the levels of Nap1 expression in these

cells were analyzed by immunoblotting. BDNF induced

a dosage-dependent increase in Nap1 levels (Figure 6A).

This increase in Nap1 was abolished when BDNF activity

was blocked with TrkB receptor bodies (TrkB-IgG, Cabelli

et al., 1997; Figure 6A). To examine if Nap1 function is es-

sential for BDNF’s effect on neuronal differentiation, dis-

sociated E16 cortical neurons were first transfected with

either control or Nap1 shRNA and then maintained in

BDNF (25 ng/ml) supplemented or normal media. Two

days later, neurons were immunolabeled with neuron-

specific Tuj1 antibodies to assess the extent of differenti-

ation. BDNF induced neuritic growth and differentiation in

control neurons, but a BDNF effect was absent in Nap1-

deficient neurons (Figures 6B and 6C). These data sug-

gest that extracellular factors such as BDNF, which are

known to play an essential role in the final post migratory

differentiation of neurons in cerebral cortex, can induce

Nap1 expression in cortical neurons as they initiate their

postmigratory terminal growth and differentiation in their

appropriate laminar locations. Nap1 expression and func-

tion is critical to mediate the BDNF-induced differentiation

of cortical neurons.

Functional Domains of Nap1

Having established the functional significance of Nap1 in

cortical neuronal differentiation, we sought to determine

the domains of Nap1 that are critical for its function. Ini-

tially, we generated serial deletion fragments of Nap1

fused to EGFP (pCMV-DNap1-EGFP), transfected Cos7

cells with Nap1 fragments, and analyzed the cellular local-

ization of different Nap1 fragments. The full-length Nap1

localized to the membrane edges (arrowheads, Fig-

ure S4B). Deletion of one putative membrane-association

domain at the C terminus (1019 aa fragment) did not alter

the localization to the membrane edges. However, deletion

of all four membrane-association domains in the C-termi-

nal region led to the association of the deleted Nap1 (910

aa and 898 aa fragments, Figures S4D and S4E) with acet-

ylated tubulin-positive, stable microtubules. Shorter dele-

tion fragments either associate with membrane edges (707

aa and 480 aa fragments, Figures S4F and S4G) or were

diffusely distributed throughout the cell (315 aa and

67 aa fragments, Figures S4H and S4J). Intriguingly, a
Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc. 433
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Figure 4. Ectopic Expression of Nap1 in Migrating Neurons in the Intermediate Zone Promotes Premature Neuronal Differentiation

NeuroD promoter is active in postmitotic, migratory neurons of the intermediate zone. E14 or E15 embryonic cortices were electroporated with Neu-

roD promoter-Nap1-IRES-EGFP or NeuroD promoter-IRES-EGFP, and the position of GFP+ neurons and the expression of neuronal differentiation

markers in GFP+ neurons in the IZ were analyzed 48 hr later. Nap1 expression significantly retards the migration of neurons generated at E14 (A and E)

or E15 (C and F). Significantly higher numbers of Nap1-expressing neurons in the IZ also express markers (Tbr1, Brn1) that are normally expressed by

differentiating neurons in the CP (B, D, G, and H). Higher-magnification images of GFP-immunolabeled neurons in the intermediate zone indicate that

control neurons display the characteristic morphology of migrating neurons, with leading (arrow [I and J]) and trailing processes (arrowhead [I and J]),

whereas Nap1-overexpressing neurons in the IZ tend to have multiple, branched processes (arrowheads [K–M]), characteristic of differentiating

neurons. (N–P) Quantification of neurons with multiple processes, total process length, and branch numbers suggests that premature expression
434 Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc.
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Figure 5. Nap1 Overexpression Pro-

motes Neuronal Differentiation

(A and B) Dissociated, control GFP or Nap1-ex-

pressing neurons from the intermediate zone

of embryos electroporated with Nap1-IRES-

EGFP or EGFP were plated on laminin and re-

peatedly monitored for several hours. Phase

light images of GFP-expressing neurons were

collected. Immediately after adhesion, both

control (A) and Nap1-expressing neurons (B)

have smooth, round cell bodies. However, in

contrast to control neurons, Nap1-expressing

neurons rapidly extend multiple processes

(arrowheads), suggesting that Nap1 expres-

sion promotes neuronal differentiation.

(C–E) Quantification of neuronal differentiation

after 7.5 hr in vitro indicates that Nap1 expres-

sion promotes process extension and branch-

ing. Data shown are mean ± SEM (n = 6); aster-

isk, significant when compared with controls at

p < 0.01 (Student’s t test).
200 aa fragment that contains one membrane-association

domain from the N-terminal region localized to the micro-

tubule organizing center (Figure S4I). This serial deletion

analysis suggest that distinct domains of Nap1 may play

a role in the specific targeting or association of Nap1 to dis-

tinct cellular compartments (i.e., membrane edges, micro-

tubules, or microtubule organizing center) during neuronal

development. Surprisingly, Nap1, in addition to its previ-

ously suggested role in actin dynamics, may also be capa-

ble of modulating microtubule cytoskeleton.

Defective Neuronal Differentiation in Nap1 Mutant

Mice

Since Nap1’s localization on membrane edges might be

critical for its function to induce process outgrowth during

neuronal differentiation in the cortical plate, we generated

a Nap1 mutant mouse line from ES cells in which the func-

tion of the Nap1 gene has been disrupted by insertional

mutagenesis with b-geo reporter (Leighton et al., 2001;

BayGenomics), resulting in the deletion of the Nap1 C-ter-

minal region essential for the membrane localization of

Nap1. The insertion site was mapped to the intronic region

flanked by exons 24 and 25 (Figure 7A). The resulting pro-

tein is thus a fusion containing the N-terminal 898 amino

acids of Nap1 (DC Nap1), fused to the 1291 aa of the b-

geo reporter (Figures 7A and 7B). Northern analysis with

a Nap1 probe demonstrates the presence of wild-type

Nap1 transcript in the wild-type, but not in the homozy-

gote embryos (Figure 7D). Immunoblot analysis confirms

the absence of wild-type Nap1 protein and the presence

of a mutant Nap1-DC-b-gal fusion protein in homozygous

mutants (Nap1lacZ/lacZ) (Figure 7C).

Analysis of litters derived from heterozygous crosses

demonstrate that by embryonic day 8.5 (E8.5), Mendelian
ratios of wild-type, heterozygous, and homozygous em-

bryos are detected; however, there was a drastic de-

crease in the number of homozygotes by E10.5, and no

live Nap1lacZ/lacZ embryos were found at E11.5. Phenotyp-

ically normal Nap1lacZ/lacZ embryos could be recovered

through E7.5, but embryos recovered from E8.5–E10.5

had varying degrees of morphological abnormalities

ranging from severe neurulation defects to complete re-

sorption. The most common phenotype observed in

Nap1lacZ/lacZ E10.5 embryos is the strikingly open, undu-

lating neural folds, which remain unfused along most of

the rostral extent of the embryo, up to the mid spine

(Figure 7E). Wild-type littermate controls at this stage dis-

play complete closure of the cranial neural tube and spinal

cord (Figures 7F and 7G). 12.4% of heterozygote mice

show an open neural tube phenotype; however, most het-

erozygous animals survive to adulthood (Figure 7H). His-

tological analysis of these mutant heterozygous animals

at E9.5 demonstrated dramatic abnormalities in the telen-

cephalic neuroepithelium (Figures 7I and 7J). Apical local-

ization of actin filaments in neuroepithelial cells during

neural tube closure is essential to complete this process

(Copp et al., 2003; Rakeman and Anderson, 2006). Analy-

sis of actin distribution with phalloidin labeling indicates

that, in contrast to WT embryos, apical accumulation of

actin filaments needed for neural tube closure is severely

disrupted in Nap1 mutants (Figure 7H00). To evaluate the

neural tube defect further, we crossed Nap1 heterozy-

gotes to ACTB-EGFP mice, expressing EGFP in all tissues

under chicken b-actin promoter, to generate Nap1lacZ/+,

ACTB-EGFP mice. These mice were intercrossed to

generate Nap1lacZ/lacZ, ACTB-EGFP embryos. Live con-

focal imaging of apposing neural folds in the head region

of these embryos indicate that the movement of
of Nap1 in migrating neurons promotes premature differentiation of neurons. Data shown are mean ± SEM (n = 6); asterisk, significant when compared

with controls at p < 0.01 (Student’s t test). VZ, ventricular zone; IZ, intermediate zone; CP, cortical plate. Dotted lines in panels (A) and (C) indicate pial

(top) and ventricular (bottom) surfaces.
Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc. 435
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neuroepithelial cells toward midline needed for neural tube

closure is disrupted in Nap1 mutants (see Movies S1–S3).

The early embryonic lethality prevents the use of this

mouse model to study Nap1’s role in cortical neuronal dif-

ferentiation in vivo. However, to understand how Nap1

may influence neuronal differentiation, wild-type and

Nap1 mutant E9.5 telencephalic neuroepithelial cells,

which eventually give rise to cortical neurons, were cul-

tured for 4 days to allow for the generation of class III b-tu-

bulin (Tuj-1) positive neurons in vitro. Wild-type neurons

display the characteristic differentiated phenotype with

elongated axons, dendrites, growth cones, and dendritic

spines (Figures 8A and 8B). In contrast, Nap1 mutant neu-

rons are severely defective in their ability to differentiate

and extend axons and dendrites (Figures 8C–8F). Instead,

Nap1 mutant neurons extend short, ill-defined stumps of

neurites. These data further support the hypothesis that

Nap1 plays an essential role in the final phenotypic differ-

entiation of cortical neurons.

Figure 6. BDNF Induced Nap1 Expression in Embryonic Cor-

tical Neurons

(A) E14 cortical neurons were treated with different concentrations of

BDNF (0–25 ng/ml) for 2 days. Immunoblot analysis of Nap1 expres-

sion in these neurons indicates a dosage-dependent effect of BDNF

on Nap1 protein level. The effect of BDNF was abolished when

BDNF activity was neutralized with TrkB-IgG. Immunblotting for actin

indicates equal loading.

(B) BDNF promotes growth and differentiation of embryonic cortical

neurons expressing control, but not Nap1 shRNA.

(C) Analysis of neuronal differentiation indicates that Nap1 deficiency

significantly retards BDNF-induced neurite growth and branching.

Data shown are mean ± SEM (n = 3); asterisk, significant when com-

pared with controls at p < 0.01 (Student’s t test).
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Cellular Mechanisms Underlying Nap1 Function

To evaluate the cellular mechanisms underlying Nap1’s

role in neuronal differentiation, we first analyzed the cyto-

skeletal organization of Nap1 mutant neuroepithelial cells.

Since the early embryonic lethality of Nap1 mutants pre-

cludes the use of neurons, we used the telencephalic neu-

roepithelial cells that give rise to neurons in these studies.

A significant disruption in actin cytoskeletal organization

was noticed in Nap1 mutant cells. In contrast to wild-

type cells, actin filaments preferentially formed actin bun-

dles around the cell cortex of the Nap1 mutant cells (Fig-

ures 9A and 9B). 94.6% (±1.5%) of the mutant cells have

actin filaments arrayed around the edges of the cells,

compared to 2.96% (±1.6%) of the wild-type cells. Fur-

thermore, the ratio of tyrosinated tubulin (i.e., newly poly-

merized tubulin) to acetylated tubulin (aged, stable form of

tubulin) increases in Nap1 mutants, and the acetylated tu-

bulin fibers often form circular meshworks in Nap1 mu-

tants (Figures 9C, 9D, and 9G). Importantly, Nap1 mutant

cells are mostly devoid of lamellipodia (Figures 9H–9J).

Live imaging of wild-type and Nap1 mutant neuroepithelial

cells indicate that WT cells display no defects in lamellipo-

dial formation or activity, whereas Nap1 mutants are de-

void of lamellipodia and instead extend long, spiky pro-

cesses that resemble flaccid filopodia (see Movies S4

and S5). In Nap1 mutant cells, immunoreactivity for cor-

tactin, a marker of peripheral lamellipodia, is absent

from the cell periphery, demonstrating that indeed these

cells lack lamellipodia (Figures 9H and 9I). C-terminal de-

leted Nap1 (pCIG-DNap1-IRES-EGFP) overexpressing

wild-type cells displayed a disrupted actin cytoskeletal

phenotype similar to that of Nap1 mutant cells. shRNA-

mediated knockdown of Nap1 in wild-type cells also dis-

rupted actin and tubulin cytoskeletal organization and la-

mellipodial formation (Figures 9E, 9F, and 9J). Conversely,

expression of full-length Nap1 (pCIG-Full Nap1-IRES-

EGFP) rescued the Nap1 mutant phenotype (Figure 9J).

To further test the role of Nap1 in lamellipodial forma-

tion, we tested the ability of wild-type, Nap1 mutant, or

Nap1 shRNA-expressing cells to form lamellipodia in re-

sponse to PDGF. PDGF activates the Rac pathway and in-

duces the formation of lamellipodia as well as ring ruffles

(Krueger et al., 2003). Serum-starved wild-type and

Nap1-disrupted cells were challenged with 10 ng/ml

PDGF to assess their ability to form lamellipodia (Fig-

ure S5). 36% of wild-type cells produced lamellipodia in

response to PDGF treatment, but only 1.7% or 3.2% of

the Nap1 mutant or Nap1 shRNA cells, respectively,

formed lamellipodia under the same conditions (Fig-

ure S5). Nap1-disrupted cells are deficient in their ability

to generate both dorsal and peripheral lamellipodial

ruffles, two different types of lamellipodia noticed in cells

undergoing active process extension (Suetsugu et al.,

2003; Abercrombie et al., 1970). Deficits in lamellipodial

activity were also noticed when Nap1 mutant cells were

presented with PDGF-coated beads (data not shown). To-

gether, these data demonstrate that Nap1 protein is es-

sential for the formation and activity of lamellipodia.
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Figure 7. Generation and Characterization of Nap1 Mutant

Mice

(A) Genomic structure of Nap1 locus on mouse chromosome 2 and

insertion of gene trap vector pGT1lxf (BayGenomics) between exons

24 and 25. Wild-type Nap1 protein is approximately 125 kD, whereas

mutant truncated-fusion protein is approximately 241 kD.

(B) Brain extract from 3-week postnatal wild-type (WT/WT) and hetero-

zygous (Nap1LacZ/WT) mice was subjected to immunoprecipitation (IP)

followed by western blot (WB) analysis with an anti-b-galactosidase

antibody. Truncated Nap1-b-gal fusion protein is expressed in

Nap1LacZ/wt, but not in WT brains. Similar analysis using Rosa 26 brain

extract is shown as a control.

(C) Extract from E9.5 homozygous (Nap1LacZ/LacZ) and wild-type mice

were similarly subjected to immunoprecipitation followed by western

blotting with a C-terminal-specific anti-Nap1 antibody to demonstrate

the absence of wild-type Nap1 protein in homozygous mutant

embryos.
Lamellipodial activity and active, multiple-membrane

protrusions are essential steps in the initiation of neurite

growth that occurs as neurons transform from a migratory

to postmigratory differentiation state in cerebral cortex. It

is thought that during lamellipodial formation, Rac1 activa-

tion triggers active WAVE1 [(WASP (Wiskott-Aldrich syn-

drome protein)-family verprolin homologous protein1]

complex to localize to membrane protrusions, causing ac-

tin nucleation in the protrusive edges of motile cells. The

regulation of the subcellular localization of WAVE1 plays

an important role in the functional activity of WAVE1

(Eden et al., 2002, Stradal et al., 2004). Nap1, which forms

a complex with WAVE1, is hypothesized to play a role in

the functional status or subcellular targeting of WAVE1.

Given the aberrant lamellipodial phenotype of the Nap1-

disrupted cells, we tested the effect of Nap1 on WAVE1 lo-

calization. Biochemical analysis of WAVE1 expression in

Nap1 mutants indicates that Nap1 mutant cells maintain

the expression of WAVE1 (data not shown). We then im-

munolabeled wild-type and Nap1 mutant cells with anti-

WAVE1 antibodies and analyzed the pattern of WAVE1 lo-

calization. In contrast to wild-type cells, WAVE1 does not

localize to the membrane ruffles at the leading, protrusive

edges of the Nap1 mutant cells (Figure 10A). Similar defi-

cits in WAVE1 localization are also evident in Nap1

shRNA-expressing cells (Figure 10B). This deficit was res-

cued by the re-expression of full-length Nap1 (Figure 10B).

To determine if Nap1 is essential to appropriately target

WAVE1 to protrusive edges, we analyzed WAVE1 protein

movement in wild-type, Nap1 mutant, and Nap1 shRNA-

expressing cells. We generated WAVE1 fused with Kaede,

a photoconvertible fluorescent protein that can be

(D) Total RNA from wild-type, heterozygous, and homozygous em-

bryos were analyzed by Northern blot using a Nap1 C-terminal probe,

demonstrating the lack of wild-type transcripts in mutants. b-actin is

shown as a loading control.

(E) Scanning electron micrograph (SEM) of the dorsal surface of an

E9.5 Nap1LacZ/LacZ mutant embryo, where the neural folds (NF) remain

unfused and wavy along the entire length of the anteroposterior axis.

Anterior is to the left. (E0) Anterior view of the cranial neural folds, which

are completely open and curled over at the edges. White arrow indi-

cates ventral midline.

(F and G) SEM of the dorsal surface (F) and anterior view (G) of the neu-

ral tube in a wild-type E9.5 embryo. The neural folds have completely

closed, and the surface appears smooth.

(H) SEM of the dorsal surface of a E10.5 embryo, which displays a neu-

rulation defect. The luminal surface is completely exposed, and the

edges of the neural folds have curled outward. (H0 ) b-gal expression

in Nap1LacZ/WT embryos indicates Nap1 expression in the developing

neural tube (arrow). (H00) E9.5 wild-type and mutant embryos were

labeled with phalloidin, and the midline regions of anterior neural

tube areas were imaged. Actin accumulation in the apical region of

neuroepithelial cells is evident in wild-type (arrows), but not Nap1 mu-

tant (arrowhead) embryos.

(I) H&E-stained section of a wild-type E9.5 embryo. Note the closed

cranial neural tube (*).

(J) Section from a E9.5 heterozygous animal, which demonstrates

a neural tube defect. Note the neural folds which appear to curl out-

ward and remain unfused (*).
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Figure 8. Defective Neuronal Differentia-

tion in Nap1 Mutants

Telencephalic neuroepithelial cells from wild-

type and Nap1 mutant mice were maintained

in vitro to generate neurons. Compared to

wild-type neurons ([A and B] arrows), Nap1 mu-

tant neurons (C) are severely defective in their

ability to extend axons and dendrites. Higher-

magnification images of Nap1 mutant neurons

(D and E) illustrate the ill-defined, short, stubby

processes extended by these mutant neurons

(arrowheads [D and E]). (F) Assessment of neu-

ronal differentiation (i.e., percentage of neurons

with processes greater than 20 mm length) indi-

cates drastic deficits in Nap1 mutant neurons.

Data shown are mean ± SEM; asterisk, signifi-

cant when compared with controls at p > 0.001

(Student’s t test). Scale bar: (A–C) 20 mm, (D

and E) 7 mm.
spectrally changed from green to red with UV light (Ando

et al., 2002). Both wild-type and Nap1 mutant cells were

transfected with WAVE1-Kaeda. Some of the wild-type

cells were also co transfected with WAVE1-Kaede and

Nap1 shRNA. Localized green to red conversion of

WAVE1 in transfected cells was induced with a 200 ms

pulse of UV light. Time-lapse analysis of the movement

of photoconverted WAVE1 (red) indicates that in wild-

type cells WAVE1 gets targeted to and moves toward pro-

trusive membrane edges, whereas in Nap1-disrupted

cells WAVE1 movement to membrane edges is severely

retarded, thus confirming the essential role of Nap1 in

the appropriate cellular localization of WAVE1 (Figures

10C and 10D and Movies S6–S8).

DISCUSSION

The change in the neuronal cytoskeletal machinery from

one that promotes oriented motility to one that facilitates

elaboration of axons and dendrites is a critical step in
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the emergence of functional organization of neurons in

cerebral cortex. What are the cytoskeletal regulators

essential to affect this transition? Here we show that

Nap1, an adaptor protein that modulates actin/microtu-

bule cytoskeletal organization, is selectively expressed

in the cortical plate region of the developing cortex,

where neurons terminate their migration and initiate their

final laminar-specific differentiation. Nap1 is induced by

BDNF, an essential mediator of cortical neuronal differ-

entiation. Loss of Nap1 function inhibits postmigratory

neuronal differentiation, whereas premature expression

of Nap1 in migrating neurons retards their migration

and promotes their differentiation. Furthermore, Nap1

mutation disrupts both actin and microtubule organiza-

tion and the appropriate targeting of cytoskeletal regula-

tors of process extension such as WAVE1. These find-

ings imply that expression of Nap1 and the resultant

changes in cytoskeletal dynamics are critical for the ter-

minal, postmigratory differentiation of neurons in the de-

veloping cerebral cortex.
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Figure 9. Actin, Microtubule Cytoskeletal Organization, and Lamellipodial Formation Are Disrupted in Nap1 Mutants

(A and B) Dissociated cells from the telencephalic neuroepithelium of E9.5 wild-type and Nap1 mutant embryos were stained with phalloidin (green)

and deoxyribonuclease (red). Phalloidin staining indicates F-actin, whereas deoxyribonuclease labels free actin monomers. Compared to WT cells

(A), actin filaments (green) accumulate at the edges of Nap1 mutant cells (B). (C and D) Immunolabelling of WT and mutant cells with anti-acetylated

tubulin antibodies indicates disrupted acetylated tubulin organization in Nap1 mutants. Compared to the orderly array of stable microtubules in the

WT cells ([C] white arrowhead), acetylated microtubule strands appear to be disrupted and form concentric rings in Nap1 mutant cells ([D] blue ar-

rowhead). Similar disruptions in actin (red, E) and acetylated tubulin organization (blue arrowhead, F) are also evident in Nap1 shRNA-expressing cells.

Immunoblot analysis of acetylated tubulin and tyrosinated tubulin in WT and Nap1 mutant telencephalon indicates that Nap1 mutation reduced the

level of stable, acetylated microtubules (blue arrowhead [G]). (H–J) Analysis of lamellipodial formation in Nap1-disrupted cells. Primary neuroepithelial

cells from wild-type (H) and Nap1 mutant embryos (I) were labeled with phalloidin (green) and anti-cortactin antibodies (red). Wild-type cells generate

normal lamellipodia as seen by cortactin immunoreactivity and phalloidin staining (arrowheads [H]), whereas cells from Nap1 mutant cells generate

abundant spiky protrusions (I), but not many lamellipodia. (J) Quantification of Nap1 effect. Analysis of cells with lamellipodia indicates a 90% reduc-

tion in lamellipodial formation in Nap1 mutant cells. Expression of C-terminal-deleted Nap1 or Nap1 shRNA in wild-type neuroepithelial cells also

leads to loss of lamellipodia. Expression of full-length Nap1 rescues the mutant phenotype. Number of cells/group > 3000. Data shown are

mean ± SEM; asterisk, significant when compared with controls at p < 0.001 (Student’s t test). Scale bar: (A, B, and E) 25 mm, (C, D, and F) 3 mm,

(H and I) 30 mm. Also see Movies S4 and S5.
Cytoskeletal Regulation during Neuronal Migration

and Differentiation in the Cerebral Cortex

Molecular analysis of human cortical developmental defi-

cits suggests that dynamic regulation of neural cytoskele-

ton determines distinct aspects of the generation, migra-

tion, and differentiation of neurons in cerebral cortex.

During neurogenesis, a microtubule-associating protein

(ASPM) is expressed specifically in the VZ and is thought

to modulate the spindle activity of the neuronal progenitor

cells, resulting in the generation of appropriate numbers of

postmitotic neurons (Bond et al., 2002). As newly gener-

ated neurons exit the VZ and embark on their journey to-

ward the CP, appropriate expression of actin-binding pro-

tein FLNA regulates the initiation of migration (reviewed in

Marin and Rubenstein, 2003; Mochida and Walsh, 2004).

Once neurons begin their migration, genes regulating mi-

crotubule cytoskeleton, including Lis1, Dcx, doublecortin-
like kinase (Dclk), Ndel1, MAP1b, MAP2, Tau, and

mPAR6a, play an essential role in the maintenance of ori-

ented neuronal motility (Solecki et al., 2004; Deuel et al.,

2006; Koizumi et al., 2006; Shu et al., 2006; Ayala et al.,

2007; Hatten, 2002). MAP1b, Tau, Filamin1, Nde1, and

Dcx in migrating neurons are putative substrates for cy-

clin-dependent kinase 5 (Cdk5), which together with its

activating subunits, p35 and p39, functions to modulate

normal neuronal migration in cerebral cortex (Ayala

et al., 2007).

Though these observations clearly demonstrate that

developmental-stage-specific expression and function

of multiple cytoskeletal regulators critically influence the

generation and migration of neurons, the cytoskeletal

changes or regulators essential to convert neurons that

are engaged in oriented motility into neurons that are ca-

pable of extending axons and dendrites in the developing
Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc. 439
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Figure 10. Defective Localization of WAVE1 to Protrusive Membrane Edges in Nap1 Mutant Cells

(A) Wild-type and mutant telencephalic neuroepithelial cells were labeled with phalloidin (green) and anti-WAVE1 antibodies (red). In WT cells, WAVE1

predominantly localizes to lamellipodial membrane edges (arrowhead [A]), whereas in Nap1 mutant cells, WAVE1 localization to lamellipodial protru-

sion is mostly absent.

(B) Quantification of cells with WAVE1 localization on membrane edges indicates a significant deficit in Nap1 mutant or Nap1-deficient cells. Expres-

sion of C-terminal-deleted Nap1 or Nap1 shRNA in wild-type neuroepithelial cells leads to disrupted WAVE1 localization. This deficit can be rescued

by expression of full-length Nap1.

(C and D) Tracking of WAVE1 localization in Nap1-disrupted cells. Wild-type, Nap1 mutant, or Nap1 shRNA-expressing cells were transfected with

WAVE1-Kaede (green). After localized photoconversion with a UV laser, time-lapse images of photoconverted WAVE1-Kaeda (red) were obtained. In

wild-type cells, WAVE1 actively moved toward the protrusive edges of the cells (arrows [WT panels] [C]; Movie S6). In contrast, WAVE1 movement is

significantly retarded in Nap1 mutants (arrows [Nap1 mutant panels] [C]; Movie S7) and in Nap1 knockdown cells (arrows [Nap1 shRNA panels] [C];

Movie S8). Time after photoconversion is indicated in minutes. (D) Measurement of relative fluorescent intensities of WAVE1-green and WAVE1-red in

defined areas within the photoconverted spots indicates that in WT cells both types of WAVE1 trafficked normally, whereas in Nap1 mutants or Nap1

shRNA-expressing cells, movement of WAVE1 is highly restricted. Also see Movies S6–S8. Data shown are mean ± SEM; asterisk, significant when

compared with controls at p < 0.01 (Student’s t test).
cortex are unclear. Our analyses show that Nap1 is a cyto-

skeletal regulator essential for this step in the developing

cerebral cortex. Suppression of Nap1 expression or muta-

tions in Nap1 significantly retards neuronal differentiation

(Figures 2, 3, and 8). Nap1 knockdown does not affect

the migration or the placement of neurons. Cohorts of

neurons that arrive in the cortical plate at the same time

begin their morphological differentiation at the same

time (Bayer and Altman, 1991; Miller, 1981). Thus, the dif-

ferences in differentiation noticed between control and

Nap1-deficient neurons are unlikely due to delayed migra-

tion and resultant late initiation of differentiation by Nap1-

deficient neurons. Furthermore, ectopic, premature in-

duction of Nap1 in migrating cortical neurons retards their

migration and promotes premature neuronal differentia-

tion (Figures 4 and 5). Together, these studies suggest
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that Nap1 plays an essential role in the timely differentia-

tion of neurons once they get to the cortical plate.

How does Nap1 modulate cortical neuronal differentia-

tion? As a neuron undergoes terminal differentiation in dis-

tinct layers of the emerging cortical plate, it essentially

transforms from a motile cell with a leading and trailing

process into one that is nonmotile but with multiple pro-

cesses and branches. This requires generation of multiple

membrane protrusive structures and coordinated

changes in actin and microtubule cytoskeleton in re-

sponse to activity-dependent or extracellular neuronal dif-

ferentiation cues expressed in the developing cortical

plate. The induction of Nap1 in cortical plate, which is ca-

pable of organizing both actin and microtubule cytoskele-

ton (Figure 9), its ability to influence the cellular targeting of

major cytoskeletal regulators of process outgrowth such
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as WAVE1 (Figure 10), and its essential role in inducing

membrane protrusions (Figure 9 and Figures S4–S6),

may thus lead to postmigratory differentiation of neurons

in the cerebral cortex. Consistent with this hypothesis,

Nap1 is induced by BDNF, a potent activity-dependent

cortical neuronal differentiation signal.

Nap1’s Function during Neural Tube Development

Nap1 mutation in Nap1lacZ/llacZ mice clearly disrupts neu-

ral tube formation (Figure 7; Rakeman and Anderson,

2006). Although small amounts of normally spliced Nap1

can apparently be generated in Nap1 gene trap insertion

mutants (Rakeman and Anderson, 2006; Leighton et al.,

2001) and Nap1 C-terminal deleted protein may have

gain-of-function effects, a similar neural tube defect was

also noticed following loss-of-function missense mutation

in the evolutionarily conserved L17P residue at the Nap1 N

terminus (Rakeman and Anderson, 2006). Normally, pri-

mary neural tube closure is initiated at the hindbrain/cervi-

cal boundary and proceeds in both rostral and caudal di-

rections. Brain closure also depends on secondary

closure events initiated at the midbrain/forebrain bound-

ary and at the rostral tip of the forebrain (Copp et al.,

2003). In Nap1 mutants, neural tube is open along most

of the rostro-caudal extent (Figure 7), indicating a failure

of normal neural tube closure events.

Completion of the neural tube closure depends on la-

mellipodial protrusions from the apical cells of the appos-

ing neural folds. Interdigitation of these lamellipodial pro-

trusions from across the midline facilitates cell-cell

recognition and adhesion, leading to the fusion of the neu-

ral folds and the formation of neural tube (Copp et al.,

2003). The defective lamellipodial activity in Nap1 mutant

neuroepithelial cells (Figure 9, Figure S5, and Movies S4

and S5) may have disrupted this essential process for neu-

ral tube closure in Nap1 mutants.

Cellular and Molecular Mechanisms Underlying

Nap1 Function

Nap1’s ability to promote neuronal differentiation may

depend on its ability to appropriately target or control

the functional status of associated components of

cytoskeletal machinery essential for neuronal process

elaboration and maintenance. Nap1 is a member of the

WAVE complex. Nap1, which interacts directly with

Sra1/PIR121 (which binds to GTP-bound Rac1) and Abi1

(which binds the SH3 domain of Nck), forms a tetrameric

complex containing Sra1/PIR121, Abi1/2, and HSPC300

to regulate WAVE1 activity (Kitamura et al., 1996, 1997;

Kobayashi et al., 1998; Hummel et al., 2000; Soto et al.,

2002; Yamamoto et al., 2001; Eden et al., 2002).

WAVE1, in contrast to the related WASP proteins, which

are autoinhibitory and are activated by binding GTP-

bound Cdc42 to participate in the formation of filopodia,

is constitutively active and acts downstream of Rac1 to

initiate lamellipodia formation (Biyasheva et al., 2004;

Blagg and Insall, 2004; Cory and Ridley, 2002; Machesky

et al., 1999; Miki et al., 1998; Nakagawa et al., 2001;
Innocenti et al., 2004; Kunda et al., 2003; Rogers et al.,

2003; Rohatgi et al., 2000; Steffen et al., 2004). Nap1

containing WAVE complex regulates the functional status

and cellular targeting of WAVE1. Upon activation of Rac

and resultant changes in WAVE complex, WAVE1 binds and

activates Arp2/3, leading to actin polymerization and

branched actin filament formation at protrusive mem-

brane edges and subsequent lamellipodial extension

(Blanchoin et al., 2000; Eden et al., 2002; Gautreau

et al., 2004; Bogdan and Klambt, 2003; Stradal et al.,

2004; Innocenti et al., 2004; Kunda et al., 2003; Millard

et al., 2004; Rogers et al., 2003; Steffen et al., 2004;

Svitkina and Borisy, 1999).

The localization of WAVE1 at the edges of extending

processes is essential to drive the localized activation of

Arp2/3 complex and actin polymerization at the protrusive

edges (Hahne et al., 2001; Nakagawa et al., 2001). Of the

three highly homologous members of WAVE proteins

(WAVE1-3), only WAVE1’s expression is limited to the de-

veloping brain (Dahl et al., 2003; Sossey-Alaoui et al.,

2003). Loss of WAVE1 function disrupts cerebral cortical

development and functions such as learning and memory

(Dahl et al., 2003; Soderling et al., 2007). Nap1 appears to

be essential not only for the targeting of WAVE1 to the

membrane but also for the stability of WAVE1 (Rakeman

and Anderson, 2006; Steffen et al., 2004). Reduction in

WAVE protein levels were noticed in Nap1 mutants or

Nap1 shRNA-expressing melanoma cells (Steffen et al.,

2004; Rakeman and Anderson, 2006). However, the lack

of WAVE targeting to the protrusive edges, not the re-

duced WAVE levels, appears to underlie the lamellipodial

defects in Nap1-deficient cells (Steffen et al., 2004). Nap1

deficiency also disrupts the membrane localization of

other WAVE complex components Sra1 and Abi1 (Steffen

et al., 2004). In addition to being regulated by Nap1-Abi1/

2-PIR121-HSPC300 complex (Echarri et al., 2004; Eden

et al., 2002; Gautreau et al., 2004; Innocenti et al., 2004;

Rakeman and Anderson, 2006; Steffen et al., 2004),

WAVE1 can also be phosphorylated by Cdk5. Cdk5 can

thus downmodulate WAVE1’s ability to activate Arp2/3-

dependent actin polymerization during formation of neu-

ronal cell protrusions such as dendritic spines (Kim

et al., 2006). Furthermore, Cdk5 and its regulatory subunit,

p35, can form a complex with PIR121, Nap1, and WAVE1

(Kim et al., 2006). Inactivation of Nap1 disrupts not only

WAVE1 function (Figure 10) but may also inappropriately

activate formins (Insall and Jones, 2006; Rakeman and

Anderson, 2006). Thus, Nap1, by acting as a nodal point

member of multiple complexes regulating the functional

status of key cytoskeletal regulators such as WAVE1,

may coordinate the cytoskeletal rearrangements needed

to transform neurons from a migratory to postmigratory

differentiation state.

Postmigratory, differentiating cortical neurons undergo

extensive neurite growth and guidance to generate the

appropriate axon-dendritic architecture and connectivity.

In general, microtubule polymerization is thought to

drive neurite growth and elongation, whereas actin
Neuron 54, 429–445, May 3, 2007 ª2007 Elsevier Inc. 441
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polymerization is critical for the ability of neurite growth

cones to respond to guidance cues in the environment.

Coordination of both actin and microtubule dynamics is

essential for the differentiating cortical neurons to form

and maintain appropriate patterns of connections in the

embryonic cortex (Dent and Kalil, 2001; Marsh and Le-

tourneau, 1984; Strasser et al., 2004; Rochlin et al.,

1999). Nap1’s ability to organize actin cytoskeleton and

regulate microtubule stability places it in a unique position

to influence both microtubule and actin dynamics during

this process. Though the exact nature of actin-microtu-

bule crosstalk and coordination during cortical neuronal

differentiation is yet to be fully elucidated, induction of

Nap1 may influence neuronal cellular domains such as ac-

tin arcs or axon branch points, where actin and microtu-

bules were found to modulate each other’s organization

and function during neuronal extension (Dent and Kalil,

2001; Schaefer et al., 2002). Elucidating how Nap1 differ-

entially associates with and modulates the organization of

actin and microtubule compartments in differentiating

neurons will be essential to further delineate Nap1’s signif-

icance during corticogenesis.

The growth and differentiation of cortical neurons rely

on activity-dependent neurotrophic factor (e.g., BDNF)

signaling (McAllister et al., 1996; Ghosh et al., 1994;

Reichardt, 2006). As such, the induction of Nap1, an es-

sential cytoskeletal component of neuronal differentiation

machinery, by BDNF in differentiating cortical neurons

may involve correlated neuronal activity. Selective expres-

sion of Nap1 in cortical plate neurons and the resultant for-

mation of multimeric complexes (e.g., Nap1-WAVE1,

Nap1-Cdk5) capable of distinct cytoskeletal regulation

may usher in the cytoskeletal rearrangements that are

essential to change the neuronal cytoskeletal machinery

from one that promotes oriented motility to one that facil-

itates elaboration of axons and dendrites and intercon-

nectivity between appropriate synaptic partners.

EXPERIMENTAL PROCEDURES

Generation of Nap1 Mutant Mice

Two independent ES cell lines, XE133 and XE68, containing identical

insertions in the Nap1 locus were obtained from BayGenomics to

generate the Nap1 mutant mice. See Supplemental Experimental

Procedures for details on the generation and characterization of

Nap1 mutant mice.

Live Imaging of Neural Tube Development in Nap1 Mutants

E8.5–E9.5 embryos from Nap1lacZ/LacZ, ACTB-EGFP or Nap1wt/wt,

ACTB-EGFP mice were immobilized with a mix of artificial cerebrospi-

nal fluid and 1% low-melting-point agarose on a MatTek 35 mm glass

bottom dish, immersed in OptiMEM/10% FBS media, and placed in

a live incubation chamber attached to a Zeiss Pascal confocal micro-

scope. The apposing neural folds of the head region of the embryos

were repeatedly imaged every 3 min for up to 2 hr.

Histology and Immunohistochemistry

For X-gal staining, embryos were fixed in 2% paraformaldehyde (PFA)

and 0.1% gluteraldehyde in 0.1 M phosphate buffer, then stained with

a b-Gal Staining Set (Roche). For scanning electron microscopy, em-

bryos were fixed as above and processed according to standard pro-
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cedures at UNC’s electron microscope core facility. For H&E staining,

embryos were fixed in 4% PFA, then dehydrated in ethanol, cleared in

Histoclear (National Diagnostics), and embedded in paraffin. Seven-

micron sections were mounted, deparaffinized, and stained with Harris

hematoxylin and eosin-Y. Whole-mount images were taken using a

Leica MZFL III dissecting microscope and Nikon Coolpix 4500 digital

camera. Immunostaining of E9.5 telencephalic neuroepithelial cells,

embryonic cortical neurons, or cortical sections were performed as

described earlier (Schmid et al., 2003; Gongidi et al., 2004). See Sup-

plemental Experimental Procedures for details on the list and source of

antibodies used.

Immunoprecipitation, Western Blot, and In Situ Hybridization

Analysis

A polyclonal antibody to Nap1 was generated against the peptide se-

quence CHAVYKQSVTSSA (Covance). A monoclonal anti-b-galactosi-

dase antibody (Promega) was used for immunoprecipitation of mutant

fusion Nap1. Immunoprecipitation and immunoblot analysis with anti-

Nap1 antisera or anti-b-gal antibody was performed as described

(Schmid et al., 2005). In situ hybridization was performed as previously

described (Anton et al., 2004). See Supplemental Experimental Proce-

dures for details.

Generation and Characterization of Nap1-Specific shRNA

The Nap1 unique target sequences, GCTCACCATCCTCAACGAC,

GTTGCACACTGCACTTTCG, GTTCCTGAGTGAGAGCCTT, CCAGA

TTGCTGCAGCTTTG, and GGAATTCCTGGCGCTTGCA, are located

at 48–66 bp, 2031–2049 bp, 2547–2565 bp, 3111–3129 bp, and

3168–3186 bp, respectively, of Nap1 cDNA. As a negative control for

each of the shRNA construct, 3 nt mutations were made in the respec-

tive targeting sequence (e.g., GCTTACCATTCTCAATGAC [control for

48–66 bp target sequence]). The target sequence oligos and mutated

target sequence oligos were subcloned into pCGLH vector (gift from

Dr. Sestan, Yale University), which contains chicken b-actin promoter-

driven EGFP and H1 promoter for shRNA transcription. See Supple-

mental Experimental Procedures for details on the characterization

of Nap1-specific shRNA.

Generation and Characterization of Nap1 Fragments

See Supplemental Experimental Procedures for details.

PDGF Assays

See Supplemental Experimental Procedures for details.

Functional Analysis of Nap1 in the Developing Cerebral Cortex

To determine the effect of ectopic, premature induction of Nap1 in mi-

grating neurons, NeuroD promoter-Nap1-IRES-EGFP or control Neu-

roD promoter-IRES-EGFP plasmids were in utero electroporated into

E14–E15 cerebral cortex (Gongidi et al., 2004), and cortices were an-

alyzed 48 hr later for changes in neuronal migration and differentiation.

See Supplemental Experimental Procedures for details.

To determine the effect of Nap1 during postmigratory differentiation

of cortical neurons in vitro, dissociated E14 cortical neurons were

transfected with either control or Nap1 shRNA plasmids, and changes

in neuronal differentiation were analyzed 3 days later. See Supplemen-

tal Experimental Procedures for details.

To determine the effect of Nap1 on postmigratory differentiation of

cortical neurons in vivo, E15 embryos were electroporated with

Nap1 or control shRNA, allowed to survive till postnatal day 2 or 17,

and the patterns of dendritic and axonal morphology (i.e., length, num-

bers, branching patterns, and orientation of apical processes) of con-

trol and Nap1 shRNA-expressing neurons (GFP+) in cerebral cortex

were evaluated as described earlier (Schmid et al., 2004; Anton

et al., 2004). See Supplemental Experimental Procedures for details.

Primary neuroepithelial cells from E9.5 telencephalon were isolated

and maintained in DMEM with 10% FBS and penicillin/streptomycin as

described earlier (Schmid et al., 2003; Anton et al., 2004).
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WAVE1 Protein Tracking

To characterize the movement of WAVE1 protein in normal and Nap1-

disrupted cells, WAVE1 (gift from Dr. Terada, University of Texas

Southwestern) and Kaede (MBL Co.) were subcloned into pCAGS

plasmid to generate WAVE1 fused to Kaede. E9.5 neuroepithelial cells

from wild-type and Nap1 mutant cells were transfected with WAVE1-

Kaede (green). Some of the wild-type cells were also cotransfected

with Nap1 shRNA and WAVE-Kaede. Twenty-four hours later, local-

ized spots in transfected cells were photoconverted with a 200 ms

pulse of UV laser (351–364 nm) attached to a Leica SP2 laser scanning

confocal microscope. The movement of converted WAVE1-Kaede

(red) was evaluated by time-lapse imaging of WAVE1 green/red fluo-

rescence. The relative changes in WAVE1 fluorescence intensity in

the photoconverted regions of the cells were measured using Zeiss

LSM image browser and image J program.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/54/3/429/DC1/.
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